예제 #1
0
파일: nbtree.c 프로젝트: LJoNe/gpdb
/*
 *	btinsert() -- insert an index tuple into a btree.
 *
 *		Descend the tree recursively, find the appropriate location for our
 *		new tuple, and put it there.
 */
Datum
btinsert(PG_FUNCTION_ARGS)
{
	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_DECLARE;

	Relation	rel = (Relation) PG_GETARG_POINTER(0);
	Datum	   *values = (Datum *) PG_GETARG_POINTER(1);
	bool	   *isnull = (bool *) PG_GETARG_POINTER(2);
	ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
	Relation	heapRel = (Relation) PG_GETARG_POINTER(4);
	bool		checkUnique = PG_GETARG_BOOL(5);
	IndexTuple	itup;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_ENTER;

	if (checkUnique && (
				(gp_indexcheck_insert == INDEX_CHECK_ALL && RelationIsHeap(heapRel)) ||
				(gp_indexcheck_insert == INDEX_CHECK_SYSTEM &&
				 PG_CATALOG_NAMESPACE == RelationGetNamespace(heapRel))))
	{
		_bt_validate_tid(rel, ht_ctid);
	}

	/* generate an index tuple */
	itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
	itup->t_tid = *ht_ctid;

	_bt_doinsert(rel, itup, checkUnique, heapRel);

	pfree(itup);

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_EXIT;

	PG_RETURN_BOOL(true);
}
예제 #2
0
파일: analyzefuncs.c 프로젝트: AnLingm/gpdb
/**
 * Given the oid of a relation, this method calculates reltuples, relpages. This only looks up
 * local information (on master or segments). It produces meaningful values for AO and
 * heap tables and returns [0.0,0.0] for all other relations.
 * Input: 
 * 	relationoid
 * Output:
 * 	array of two values [reltuples,relpages]
 */
Datum
gp_statistics_estimate_reltuples_relpages_oid(PG_FUNCTION_ARGS)
{
	
	float4		relpages = 0.0;		
	float4		reltuples = 0.0;			
	Oid			relOid = PG_GETARG_OID(0);
	Datum		values[2];
	ArrayType   *result;
	
	Relation rel = try_relation_open(relOid, AccessShareLock, false);

	if (rel != NULL)
	{
		if (rel->rd_rel->relkind == RELKIND_RELATION)
		{
			if (RelationIsHeap(rel))
			{
				gp_statistics_estimate_reltuples_relpages_heap(rel, &reltuples, &relpages);
			}
			else if (RelationIsAoRows(rel))
			{
				gp_statistics_estimate_reltuples_relpages_ao_rows(rel, &reltuples, &relpages);
			}
			else if	(RelationIsAoCols(rel))
			{
				gp_statistics_estimate_reltuples_relpages_ao_cs(rel, &reltuples, &relpages);
			}
		}
		else if (rel->rd_rel->relkind == RELKIND_INDEX)
		{
			reltuples = 1.0;
			relpages = RelationGetNumberOfBlocks(rel);
		}
		else
		{
			/**
			 * Should we silently return [0.0,0.0] or error out? Currently, we choose option 1.
			 */
		}
		relation_close(rel, AccessShareLock);
	}
	else
	{
		/**
		 * Should we silently return [0.0,0.0] or error out? Currently, we choose option 1.
		 */
	}
	
	values[0] = Float4GetDatum(reltuples);
	values[1] = Float4GetDatum(relpages);

	result = construct_array(values, 2,
					FLOAT4OID,
					sizeof(float4), true, 'i');

	PG_RETURN_ARRAYTYPE_P(result);
}
예제 #3
0
파일: dbsize.c 프로젝트: pf-qiu/gpdb
/*
 * calculate size of (one fork of) a relation
 *
 * Iterator over all files belong to the relation and do stat.
 * The obviously better way is to use glob.  For whatever reason,
 * glob is extremely slow if there are lots of relations in the
 * database.  So we handle all cases, instead. 
 *
 * Note: we can safely apply this to temp tables of other sessions, so there
 * is no check here or at the call sites for that.
 */
static int64
calculate_relation_size(Relation rel, ForkNumber forknum)
{
	int64		totalsize = 0;
	char	   *relationpath;
	char		pathname[MAXPGPATH];
	unsigned int segcount = 0;

	relationpath = relpathbackend(rel->rd_node, rel->rd_backend, forknum);

if (RelationIsHeap(rel))
{
	/* Ordinary relation, including heap and index.
	 * They take form of relationpath, or relationpath.%d
	 * There will be no holes, therefore, we can stop when
	 * we reach the first non-existing file.
	 */
	for (segcount = 0;; segcount++)
	{
		struct stat fst;

		CHECK_FOR_INTERRUPTS();

		if (segcount == 0)
			snprintf(pathname, MAXPGPATH, "%s",
					 relationpath);
		else
			snprintf(pathname, MAXPGPATH, "%s.%u",
					 relationpath, segcount);

		if (stat(pathname, &fst) < 0)
		{
			if (errno == ENOENT)
				break;
			else
				ereport(ERROR,
						(errcode_for_file_access(),
						 errmsg("could not stat file %s: %m", pathname)));
		}
		totalsize += fst.st_size;
	}
}
/* AO tables don't have any extra forks. */
else if (forknum == MAIN_FORKNUM)
{
	if (RelationIsAoRows(rel))
	{
		totalsize = GetAOTotalBytes(rel, GetActiveSnapshot());
	}
	else if (RelationIsAoCols(rel))
	{
		totalsize = GetAOCSTotalBytes(rel, GetActiveSnapshot(), true);
	}
}

	/* RELSTORAGE_VIRTUAL has no space usage */
	return totalsize;
}
예제 #4
0
파일: cdbsreh.c 프로젝트: qiuyesuifeng/gpdb
/*
 * IsErrorTable
 *
 * Returns true if relid is used as an error table, which has dependent object
 * that is an external table.  Though it's not great we didn't have a clear
 * definition of Error Table, it satisfies the current requirements.
 */
bool
IsErrorTable(Relation rel)
{
	cqContext	   *pcqCtx, *pcqCtxExt, ctxExt;
	HeapTuple		tup;
	Relation		extrel;
	bool			result = false;

	/* fast path to quick check */
	if (!RelationIsHeap(rel))
		return false;

	/*
	 * Otherwise, go deeper and play with pg_depend...
	 */
	pcqCtx = caql_beginscan(NULL,
							cql("SELECT * FROM pg_depend "
								" WHERE refclassid = :1 "
								" AND refobjid = :2 "
								" AND refobjsubid = :3 ",
								ObjectIdGetDatum(RelationRelationId),
								ObjectIdGetDatum(RelationGetRelid(rel)),
								Int32GetDatum(0)));

	extrel = relation_open(ExtTableRelationId, AccessShareLock);
	pcqCtxExt = caql_addrel(cqclr(&ctxExt), extrel);

	while (HeapTupleIsValid(tup = caql_getnext(pcqCtx)))
	{
		Form_pg_depend dep = (Form_pg_depend) GETSTRUCT(tup);
		Oid				fmterrtbl;

		fmterrtbl = caql_getoid(pcqCtxExt,
								cql("SELECT fmterrtbl FROM pg_exttable "
									" WHERE reloid = :1",
									ObjectIdGetDatum(dep->objid)));
		if (RelationGetRelid(rel) == fmterrtbl)
		{
			result = true;
			break;
		}
	}

	relation_close(extrel, AccessShareLock);

	caql_endscan(pcqCtx);

	return result;
}
예제 #5
0
/*
 * calculate size of a relation
 *
 * Iterator over all files belong to the relation and do stat.
 * The obviously better way is to use glob.  For whatever reason,
 * glob is extremely slow if there are lots of relations in the
 * database.  So we handle all cases, instead. 
 */
int64
calculate_relation_size(Relation rel)
{
	int64		totalsize = 0;
	char	   *relationpath;
	char		pathname[MAXPGPATH];

    struct stat fst;
    int i;

	relationpath = relpath(rel->rd_node);

    if(RelationIsHeap(rel))
    {
        /* Ordinary relation, including heap and index.
         * They take form of relationpath, or relationpath.%d
         * There will be no holes, therefore, we can stop we
         * we reach the first non-exist file.
         */
        for(i=0; ; ++i)
        {
            if (i==0)
                snprintf(pathname, MAXPGPATH, "%s", relationpath); 
            else
                snprintf(pathname, MAXPGPATH, "%s.%d", relationpath, i);

            if (stat(pathname, &fst) >= 0)
                totalsize += fst.st_size;
            else
            {
                if (errno == ENOENT)
                    break;
                else
                    ereport(ERROR, (errcode_for_file_access(), 
                                    errmsg("could not stat file %s: %m", pathname)
                                ));
            }
        }
    }
	else if (RelationIsAoRows(rel))
		totalsize = GetAOTotalBytes(rel, SnapshotNow);
	else if (RelationIsParquet(rel))
		totalsize = GetParquetTotalBytes(rel, SnapshotNow);
           
    /* RELSTORAGE_VIRTUAL has no space usage */
    return totalsize;
}
예제 #6
0
/*
 * getTableType
 *   Return the table type for a given relation.
 */
int
getTableType(Relation rel)
{
	Assert(rel != NULL && rel->rd_rel != NULL);
	
	if (RelationIsHeap(rel))
	{
		return TableTypeHeap;
	}

	if (RelationIsAoRows(rel))
	{
		return TableTypeAppendOnly;
	}
	
	if (RelationIsParquet(rel))
	{
		return TableTypeParquet;
	}

	elog(ERROR, "undefined table type for storage format: %c", rel->rd_rel->relstorage);
	return TableTypeInvalid;
}
예제 #7
0
/* ----------------------------------------------------------------
 *		ExecInsert
 *
 *		INSERTs have to add the tuple into
 *		the base relation and insert appropriate tuples into the
 *		index relations.
 *		Insert can be part of an update operation when
 *		there is a preceding SplitUpdate node. 
 * ----------------------------------------------------------------
 */
void
ExecInsert(TupleTableSlot *slot,
		   DestReceiver *dest,
		   EState *estate,
		   PlanGenerator planGen,
		   bool isUpdate)
{
	void		*tuple = NULL;
	ResultRelInfo *resultRelInfo = NULL;
	Relation	resultRelationDesc = NULL;
	Oid			newId = InvalidOid;
	TupleTableSlot *partslot = NULL;

	AOTupleId	aoTupleId = AOTUPLEID_INIT;

	bool		rel_is_heap = false;
	bool 		rel_is_aorows = false;
	bool		rel_is_external = false;
    bool		rel_is_parquet = false;

	/*
	 * get information on the (current) result relation
	 */
	if (estate->es_result_partitions)
	{
		resultRelInfo = slot_get_partition(slot, estate);
		estate->es_result_relation_info = resultRelInfo;

		if (NULL != resultRelInfo->ri_parquetSendBack)
		{
			/*
			 * The Parquet part we are about to insert into
			 * has sendBack information. This means we're inserting into the
			 * part twice, which is not supported. Error out (GPSQL-2291)
			 */
			Assert(gp_parquet_insert_sort);
			ereport(ERROR, (errcode(ERRCODE_CDB_FEATURE_NOT_YET),
					errmsg("Cannot insert out-of-order tuples in parquet partitions"),
					errhint("Sort the data on the partitioning key(s) before inserting"),
					errOmitLocation(true)));
		}

		/*
		 * Check if we need to close the last parquet partition we
		 * inserted into (GPSQL-2291).
		 */
		Oid new_part_oid = resultRelInfo->ri_RelationDesc->rd_id;
		if (gp_parquet_insert_sort &&
				PLANGEN_OPTIMIZER == planGen &&
				InvalidOid != estate->es_last_parq_part &&
				new_part_oid != estate->es_last_parq_part)
		{

			Assert(NULL != estate->es_partition_state->result_partition_hash);

			ResultPartHashEntry *entry = hash_search(estate->es_partition_state->result_partition_hash,
									&estate->es_last_parq_part,
									HASH_FIND,
									NULL /* found */);

			Assert(NULL != entry);
			Assert(entry->offset < estate->es_num_result_relations);

			ResultRelInfo *oldResultRelInfo = & estate->es_result_relations[entry->offset];

			elog(DEBUG1, "Switching from old part oid=%d name=[%s] to new part oid=%d name=[%s]",
					estate->es_last_parq_part,
					oldResultRelInfo->ri_RelationDesc->rd_rel->relname.data,
					new_part_oid,
					resultRelInfo->ri_RelationDesc->rd_rel->relname.data);

			/*
			 * We are opening a new partition, and the last partition we
			 * inserted into was a Parquet part. Let's close the old
			 * parquet insert descriptor to free the memory before
			 * opening the new one.
			 */
			ParquetInsertDescData *oldInsertDesc = oldResultRelInfo->ri_parquetInsertDesc;

			/*
			 * We need to preserve the "sendback" information that needs to be
			 * sent back to the QD process from this part.
			 * Compute it here, and store it for later use.
			 */
			QueryContextDispatchingSendBack sendback =
					CreateQueryContextDispatchingSendBack(1);
			sendback->relid = RelationGetRelid(oldResultRelInfo->ri_RelationDesc);
			oldInsertDesc->sendback = sendback;
			parquet_insert_finish(oldInsertDesc);

			/* Store the sendback information in the resultRelInfo for this part */
			oldResultRelInfo->ri_parquetSendBack = sendback;

			/* Record in the resultRelInfo that we closed the parquet insert descriptor */
			oldResultRelInfo->ri_parquetInsertDesc = NULL;

			/* Reset the last parquet part Oid, it's now closed */
			estate->es_last_parq_part = InvalidOid;
		}
	}
	else
	{
		resultRelInfo = estate->es_result_relation_info;
	}

	Assert (!resultRelInfo->ri_projectReturning);

	resultRelationDesc = resultRelInfo->ri_RelationDesc;

	rel_is_heap = RelationIsHeap(resultRelationDesc);
	rel_is_aorows = RelationIsAoRows(resultRelationDesc);
	rel_is_external = RelationIsExternal(resultRelationDesc);
    rel_is_parquet = RelationIsParquet(resultRelationDesc);

	/* Validate that insert is not part of an non-allowed update operation. */
	if (isUpdate && (rel_is_aorows || rel_is_parquet))
	{
		ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				errmsg("Append-only tables are not updatable. Operation not permitted."),
				errOmitLocation(true)));
	}

	partslot = reconstructMatchingTupleSlot(slot, resultRelInfo);
	if (rel_is_heap || rel_is_external)
	{
		tuple = ExecFetchSlotHeapTuple(partslot);
	}
	else if (rel_is_aorows)
	{
		tuple = ExecFetchSlotMemTuple(partslot, false);
	}
	else if (rel_is_parquet)
	{
		tuple = NULL;
	}

	Assert( partslot != NULL );
	Assert( rel_is_parquet || (tuple != NULL));

	/* Execute triggers in Planner-generated plans */
	if (planGen == PLANGEN_PLANNER)
	{
		/* BEFORE ROW INSERT Triggers */
		if (resultRelInfo->ri_TrigDesc &&
			resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
		{
			HeapTuple	newtuple;

			/* NYI */
			if(rel_is_parquet)
				elog(ERROR, "triggers are not supported on tables that use column-oriented storage");

			newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);

			if (newtuple == NULL)	/* "do nothing" */
			{
				return;
			}

			if (newtuple != tuple)	/* modified by Trigger(s) */
			{
				/*
				 * Put the modified tuple into a slot for convenience of routines
				 * below.  We assume the tuple was allocated in per-tuple memory
				 * context, and therefore will go away by itself. The tuple table
				 * slot should not try to clear it.
				 */
				TupleTableSlot *newslot = estate->es_trig_tuple_slot;

				if (newslot->tts_tupleDescriptor != partslot->tts_tupleDescriptor)
					ExecSetSlotDescriptor(newslot, partslot->tts_tupleDescriptor);
				ExecStoreGenericTuple(newtuple, newslot, false);
				newslot->tts_tableOid = partslot->tts_tableOid; /* for constraints */
				tuple = newtuple;
				partslot = newslot;
			}
		}
	}
	/*
	 * Check the constraints of the tuple
	 */
	if (resultRelationDesc->rd_att->constr &&
			planGen == PLANGEN_PLANNER)
	{
		ExecConstraints(resultRelInfo, partslot, estate);
	}
	/*
	 * insert the tuple
	 *
	 * Note: heap_insert returns the tid (location) of the new tuple in the
	 * t_self field.
	 *
	 * NOTE: for append-only relations we use the append-only access methods.
	 */
	if (rel_is_aorows)
	{
		if (resultRelInfo->ri_aoInsertDesc == NULL)
		{
			ResultRelSegFileInfo *segfileinfo = NULL;
			/* Set the pre-assigned fileseg number to insert into */
			ResultRelInfoSetSegFileInfo(resultRelInfo, estate->es_result_segfileinfos);
			segfileinfo = (ResultRelSegFileInfo *)list_nth(resultRelInfo->ri_aosegfileinfos, GetQEIndex());
			resultRelInfo->ri_aoInsertDesc =
				appendonly_insert_init(resultRelationDesc,
									   segfileinfo);

		}

		appendonly_insert(resultRelInfo->ri_aoInsertDesc, tuple, &newId, &aoTupleId);
	}
	else if (rel_is_external)
	{
		/* Writable external table */
		if (resultRelInfo->ri_extInsertDesc == NULL)
			resultRelInfo->ri_extInsertDesc = external_insert_init(
					resultRelationDesc, 0);

		newId = external_insert(resultRelInfo->ri_extInsertDesc, tuple);
	}
    else if(rel_is_parquet)
	{
		/* If there is no parquet insert descriptor, create it now. */
		if (resultRelInfo->ri_parquetInsertDesc == NULL)
		{
			ResultRelSegFileInfo *segfileinfo = NULL;
			ResultRelInfoSetSegFileInfo(resultRelInfo, estate->es_result_segfileinfos);
			segfileinfo = (ResultRelSegFileInfo *)list_nth(resultRelInfo->ri_aosegfileinfos, GetQEIndex());
			resultRelInfo->ri_parquetInsertDesc = parquet_insert_init(resultRelationDesc, segfileinfo);

			/*
			 * Just opened a new parquet partition for insert. Save the Oid
			 * in estate, so that we can close it when switching to a
			 * new partition (GPSQL-2291)
			 */
			elog(DEBUG1, "Saving es_last_parq_part. Old=%d, new=%d", estate->es_last_parq_part, resultRelationDesc->rd_id);
			estate->es_last_parq_part = resultRelationDesc->rd_id;
		}

		newId = parquet_insert(resultRelInfo->ri_parquetInsertDesc, partslot);
	}
	else
	{
		Insist(rel_is_heap);

		newId = heap_insert(resultRelationDesc,
							tuple,
							estate->es_snapshot->curcid,
							true, true, GetCurrentTransactionId());
	}

	IncrAppended();
	(estate->es_processed)++;
	(resultRelInfo->ri_aoprocessed)++;
	estate->es_lastoid = newId;

	partslot->tts_tableOid = RelationGetRelid(resultRelationDesc);

	if (rel_is_aorows || rel_is_parquet)
	{

		/* NOTE: Current version does not support index upon parquet table. */
		/*
		 * insert index entries for AO Row-Store tuple
		 */
		if (resultRelInfo->ri_NumIndices > 0 && !rel_is_parquet)
			ExecInsertIndexTuples(partslot, (ItemPointer)&aoTupleId, estate, false);
	}
	else
	{
		/* Use parttuple for index update in case this is an indexed heap table. */
		TupleTableSlot *xslot = partslot;
		void *xtuple = tuple;

		setLastTid(&(((HeapTuple) xtuple)->t_self));

		/*
		 * insert index entries for tuple
		 */
		if (resultRelInfo->ri_NumIndices > 0)
			ExecInsertIndexTuples(xslot, &(((HeapTuple) xtuple)->t_self), estate, false);

	}

	if (planGen == PLANGEN_PLANNER)
	{
		/* AFTER ROW INSERT Triggers */
		ExecARInsertTriggers(estate, resultRelInfo, tuple);
	}
}
예제 #8
0
파일: analyzefuncs.c 프로젝트: AnLingm/gpdb
/**
 * This method estimates the number of tuples and pages in a heaptable relation. Getting the number of blocks is straightforward.
 * Estimating the number of tuples is a little trickier. There are two factors that complicate this:
 * 	1. Tuples may be of variable length.
 * 	2. There may be dead tuples lying around.
 * To do this, it chooses a certain number of blocks (as determined by a guc) randomly. The process of choosing is not strictly
 * uniformly random since we have a target number of blocks in mind. We start processing blocks in order and choose an block 
 * with a probability p determined by the ratio of target to total blocks. It is possible that we get really unlucky and reject
 * a large number of blocks up front. We compensate for this by increasing p dynamically. Thus, we are guaranteed to choose the target number
 * of blocks. We read all heaptuples from these blocks and keep count of number of live tuples. We scale up this count to
 * estimate reltuples. Relpages is an exact value.
 * 
 * Input:
 * 	rel - Relation. Must be a heaptable. 
 * 
 * Output:
 * 	reltuples - estimated number of tuples in relation.
 * 	relpages  - exact number of pages.
 */
static void gp_statistics_estimate_reltuples_relpages_heap(Relation rel, float4 *reltuples, float4 *relpages)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	float4		nrowsseen = 0;	/* # rows seen (including dead rows) */
	float4		nrowsdead = 0;	/* # rows dead */
	float4		totalEmptyPages = 0; /* # of empty pages with only dead rows */
	float4		totalSamplePages = 0; /* # of pages sampled */

	BlockNumber nblockstotal = 0;	/* nblocks in relation */
	BlockNumber nblockstarget = (BlockNumber) gp_statistics_blocks_target; 
	BlockNumber nblocksseen = 0;
	int			j = 0; /* counter */
	
	/**
	 * Ensure that the right kind of relation with the right kind of storage is passed to us.
	 */
	Assert(rel->rd_rel->relkind == RELKIND_RELATION);
	Assert(RelationIsHeap(rel));
					
	nblockstotal = RelationGetNumberOfBlocks(rel);

	if (nblockstotal == 0 || nblockstarget == 0)
	{		
		/**
		 * If there are no blocks, there cannot be tuples.
		 */
		*reltuples = 0.0;
		*relpages = 0.0;
		return; 
	}
		
	for (j=0 ; j<nblockstotal; j++)
	{
		/**
		 * Threshold is dynamically adjusted based on how many blocks we need to examine and how many blocks
		 * are left.
		 */
		double threshold = ((double) nblockstarget - nblocksseen)/((double) nblockstotal - j);
		
		/**
		 * Random dice thrown to determine if current block is chosen.
		 */
		double diceValue = ((double) random()) / ((double) MAX_RANDOM_VALUE);
		
		if (threshold >= 1.0 || diceValue <= threshold)
		{
			totalSamplePages++;
			/**
			 * Block j shall be examined!
			 */
			BlockNumber targblock = j;
			Buffer		targbuffer;
			Page		targpage;
			OffsetNumber targoffset,
						maxoffset;

			/**
			 * Check for cancellations.
			 */
			CHECK_FOR_INTERRUPTS();

			/*
			 * We must maintain a pin on the target page's buffer to ensure that
			 * the maxoffset value stays good (else concurrent VACUUM might delete
			 * tuples out from under us).  Hence, pin the page until we are done
			 * looking at it.  We don't maintain a lock on the page, so tuples
			 * could get added to it, but we ignore such tuples.
			 */

			// -------- MirroredLock ----------
			MIRROREDLOCK_BUFMGR_LOCK;

			targbuffer = ReadBuffer(rel, targblock);
			LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
			targpage = BufferGetPage(targbuffer);
			maxoffset = PageGetMaxOffsetNumber(targpage);

			/* Figure out overall nrowsdead/nrowsseen ratio */
			/* Figure out # of empty pages based on page level #rowsseen and #rowsdead.*/
			float4 pageRowsSeen = 0.0;
			float4 pageRowsDead = 0.0;

			/* Inner loop over all tuples on the selected block. */
			for (targoffset = FirstOffsetNumber; targoffset <= maxoffset; targoffset++)
			{
				ItemId itemid;
				itemid = PageGetItemId(targpage, targoffset);
				nrowsseen++;
				pageRowsSeen++;
				if(!ItemIdIsNormal(itemid))
				{
					nrowsdead += 1;
					pageRowsDead++;
				}
				else
				{
					HeapTupleData targtuple;
					ItemPointerSet(&targtuple.t_self, targblock, targoffset);
					targtuple.t_data = (HeapTupleHeader) PageGetItem(targpage, itemid);
					targtuple.t_len = ItemIdGetLength(itemid);

					if(!HeapTupleSatisfiesVisibility(rel, &targtuple, SnapshotNow, targbuffer))
					{
						nrowsdead += 1;
						pageRowsDead++;
					}
				}
			}

			/* Now release the pin on the page */
			UnlockReleaseBuffer(targbuffer);

			MIRROREDLOCK_BUFMGR_UNLOCK;
			// -------- MirroredLock ----------

			/* detect empty pages: pageRowsSeen == pageRowsDead, also log the nrowsseen (total) and nrowsdead (total) */
			if (pageRowsSeen == pageRowsDead && pageRowsSeen > 0)
			{
				totalEmptyPages++;
			}

			nblocksseen++;
		}		
	}

	Assert(nblocksseen > 0);
	/**
	 * To calculate reltuples, scale up the number of live rows per block seen to the total number
	 * of blocks. 
	 */
	*reltuples = ceil((nrowsseen - nrowsdead) * nblockstotal / nblocksseen);
	*relpages = nblockstotal;

	if (totalSamplePages * 0.5 <= totalEmptyPages && totalSamplePages != 0)
	{
		/*
		 * LOG empty pages of bloated table for each segments.
		 */
		elog(DEBUG1, "ANALYZE detected 50%% or more empty pages (%f empty out of %f pages), please run VACUUM FULL for accurate estimation.", totalEmptyPages, totalSamplePages);
	}

	return;
}
예제 #9
0
파일: cdbsreh.c 프로젝트: qiuyesuifeng/gpdb
/*
 * ValidateErrorTableMetaData
 *
 * This function gets called if a user wants an already existing table to be
 * used as an error table for some COPY or external table operation with SREH.
 * In here we verify that the metadata of the user selected table matches the
 * predefined requirement for an error table.
 */
void
ValidateErrorTableMetaData(Relation rel)
{
	TupleDesc   tupDesc = RelationGetDescr(rel);
	Form_pg_attribute *attr = tupDesc->attrs;
	TupleConstr *constr = tupDesc->constr;
	char		*relname = RelationGetRelationName(rel);
	int			attr_count = tupDesc->natts;

	/*
	 * Verify it is an ordinary table.
	 */
	if (rel->rd_rel->relkind != RELKIND_RELATION)
		ereport(ERROR,
				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
				 errmsg("error table \"%s\" is not a table", relname)));

	/*
	 * Verify it is a heap table.
	 */
	if (!RelationIsHeap(rel))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
				 errmsg("error table \"%s\" is not a heap table", relname),
				 errhint("Use a relation with heap storage type for error table")));

	/*
	 * Verify number of attributes match
	 */
	if (attr_count != NUM_ERRORTABLE_ATTR)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
				 errmsg("Relation \"%s\" already exists and is not of a valid "
						"error table format (expected %d attributes, found %d)",
						relname, NUM_ERRORTABLE_ATTR, attr_count)));

	/*
	 * Verify this table is randomly-distributed.
	 */
	if (!GpPolicyIsRandomly(rel->rd_cdbpolicy))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
				 errmsg("error table \"%s\" is not randomly distributed",
						relname),
				 errhint("Use a randomly-distributed realtion for error table")));

	/*
	 * Verify this table is not a partitioned or child partition table.
	 */
	if (rel_is_partitioned(RelationGetRelid(rel)) ||
		rel_is_child_partition(RelationGetRelid(rel)))
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
				 errmsg("error table \"%s\" is a partitioned table",
						relname),
				 errdetail("Either root or child partition are not allowed as an error table")));

	/*
	 * Verify this table has no constraints.
	 *
	 * This errors out with DEFAULTs, CHECKs or NOT NULLs.
	 *
	 * Unique constraint is not allowed in randomly-distributed table
	 * so we don't check it here.
	 *
	 * We never insert NULL values in some attributes, but allowing
	 * NOT NULL for error table columns doesn't give much convenience
	 * to the user anyway.  Likewise, DEFAULT values are not of interest
	 * mostly, but it does not give much value to user, either.
	 */
	if (constr)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
				 errmsg("Relation \"%s\" already exists and is not of a valid "
						"error table format. If appears to have constraints "
						"defined.", relname)));

	/*
	 * run through each attribute at a time and verify it's what we expect
	 */
	VerifyErrorTableAttr(attr, errtable_cmdtime, "cmdtime", TIMESTAMPTZOID, relname);
	VerifyErrorTableAttr(attr, errtable_relname, "relname", TEXTOID, relname);
	VerifyErrorTableAttr(attr, errtable_filename, "filename", TEXTOID, relname);
	VerifyErrorTableAttr(attr, errtable_linenum, "linenum", INT4OID, relname);
	VerifyErrorTableAttr(attr, errtable_bytenum, "bytenum", INT4OID, relname);
	VerifyErrorTableAttr(attr, errtable_errmsg, "errmsg", TEXTOID, relname);
	VerifyErrorTableAttr(attr, errtable_rawdata, "rawdata", TEXTOID, relname);
	VerifyErrorTableAttr(attr, errtable_rawbytes, "rawbytes", BYTEAOID, relname);
}
예제 #10
0
파일: execDML.c 프로젝트: qiuyesuifeng/gpdb
/* ----------------------------------------------------------------
 *		ExecUpdate
 *
 *		note: we can't run UPDATE queries with transactions
 *		off because UPDATEs are actually INSERTs and our
 *		scan will mistakenly loop forever, updating the tuple
 *		it just inserted..	This should be fixed but until it
 *		is, we don't want to get stuck in an infinite loop
 *		which corrupts your database..
 * ----------------------------------------------------------------
 */
void
ExecUpdate(TupleTableSlot *slot,
		   ItemPointer tupleid,
		   TupleTableSlot *planSlot,
		   DestReceiver *dest,
		   EState *estate)
{
	void*	tuple;
	ResultRelInfo *resultRelInfo;
	Relation	resultRelationDesc;
	HTSU_Result result;
	ItemPointerData update_ctid;
	TransactionId update_xmax;
	AOTupleId	aoTupleId = AOTUPLEID_INIT;
	TupleTableSlot *partslot = NULL;

	/*
	 * abort the operation if not running transactions
	 */
	if (IsBootstrapProcessingMode())
		elog(ERROR, "cannot UPDATE during bootstrap");
	
	/*
	 * get information on the (current) result relation
	 */
	resultRelInfo = estate->es_result_relation_info;
	resultRelationDesc = resultRelInfo->ri_RelationDesc;

	bool		rel_is_heap = RelationIsHeap(resultRelationDesc);
	bool 		rel_is_aorows = RelationIsAoRows(resultRelationDesc);
	bool		rel_is_aocols = RelationIsAoCols(resultRelationDesc);
	bool		rel_is_external = RelationIsExternal(resultRelationDesc);

	/*
	 * get the heap tuple out of the tuple table slot, making sure we have a
	 * writable copy
	 */
	if (rel_is_heap)
	{
		partslot = slot;
		tuple = ExecFetchSlotHeapTuple(partslot);
	}
	else if (rel_is_aorows || rel_is_aocols)
	{
		/*
		 * It is necessary to reconstruct a logically compatible tuple to
		 * a phyiscally compatible tuple.  The slot's tuple descriptor comes
		 * from the projection target list, which doesn't indicate dropped
		 * columns, and MemTuple cannot deal with cases without converting
		 * the target list back into the original relation's tuple desc.
		 */
		partslot = reconstructMatchingTupleSlot(slot, resultRelInfo);

		/*
		 * We directly inline toasted columns here as update with toasted columns
		 * would create two references to the same toasted value.
		 */
		tuple = ExecFetchSlotMemTuple(partslot, true);
	}
	else if (rel_is_external) 
	{
		if (estate->es_result_partitions && 
			estate->es_result_partitions->part->parrelid != 0)
		{
			ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				errmsg("Update external partitions not supported.")));			
			return;
		}
		else
		{
			partslot = slot;
			tuple = ExecFetchSlotHeapTuple(partslot);
		}
	}
	else 
	{
		Insist(false);
	}

	/* see if this update would move the tuple to a different partition */
	if (estate->es_result_partitions)
		checkPartitionUpdate(estate, partslot, resultRelInfo);

	/* BEFORE ROW UPDATE Triggers */
	if (resultRelInfo->ri_TrigDesc &&
		resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
	{
		HeapTuple	newtuple;

		newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
										tupleid, tuple,
										estate->es_snapshot->curcid);

		if (newtuple == NULL)	/* "do nothing" */
			return;

		if (newtuple != tuple)	/* modified by Trigger(s) */
		{
			/*
			 * Put the modified tuple into a slot for convenience of routines
			 * below.  We assume the tuple was allocated in per-tuple memory
			 * context, and therefore will go away by itself. The tuple table
			 * slot should not try to clear it.
			 */
			TupleTableSlot *newslot = estate->es_trig_tuple_slot;

			if (newslot->tts_tupleDescriptor != partslot->tts_tupleDescriptor)
				ExecSetSlotDescriptor(newslot, partslot->tts_tupleDescriptor);
			ExecStoreGenericTuple(newtuple, newslot, false);
            newslot->tts_tableOid = partslot->tts_tableOid; /* for constraints */
			partslot = newslot;
			tuple = newtuple;
		}
	}

	/*
	 * Check the constraints of the tuple
	 *
	 * If we generate a new candidate tuple after EvalPlanQual testing, we
	 * must loop back here and recheck constraints.  (We don't need to redo
	 * triggers, however.  If there are any BEFORE triggers then trigger.c
	 * will have done heap_lock_tuple to lock the correct tuple, so there's no
	 * need to do them again.)
	 */
lreplace:;
	if (resultRelationDesc->rd_att->constr)
		ExecConstraints(resultRelInfo, partslot, estate);

	if (!GpPersistent_IsPersistentRelation(resultRelationDesc->rd_id))
	{
		/*
		 * Normal UPDATE path.
		 */

		/*
		 * replace the heap tuple
		 *
		 * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
		 * the row to be updated is visible to that snapshot, and throw a can't-
		 * serialize error if not.	This is a special-case behavior needed for
		 * referential integrity updates in serializable transactions.
		 */
		if (rel_is_heap)
		{
			result = heap_update(resultRelationDesc, tupleid, tuple,
							 &update_ctid, &update_xmax,
							 estate->es_snapshot->curcid,
							 estate->es_crosscheck_snapshot,
							 true /* wait for commit */ );
		} 
		else if (rel_is_aorows)
		{
			if (IsXactIsoLevelSerializable)
			{
				ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					errmsg("Updates on append-only tables are not supported in serializable transactions.")));			
			}

			if (resultRelInfo->ri_updateDesc == NULL)
			{
				ResultRelInfoSetSegno(resultRelInfo, estate->es_result_aosegnos);
				resultRelInfo->ri_updateDesc = (AppendOnlyUpdateDesc)
					appendonly_update_init(resultRelationDesc, ActiveSnapshot, resultRelInfo->ri_aosegno);
			}
			result = appendonly_update(resultRelInfo->ri_updateDesc,
								 tuple, (AOTupleId *) tupleid, &aoTupleId);
		}
		else if (rel_is_aocols)
		{
			if (IsXactIsoLevelSerializable)
			{
				ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					errmsg("Updates on append-only tables are not supported in serializable transactions.")));			
			}

			if (resultRelInfo->ri_updateDesc == NULL)
			{
				ResultRelInfoSetSegno(resultRelInfo, estate->es_result_aosegnos);
				resultRelInfo->ri_updateDesc = (AppendOnlyUpdateDesc)
					aocs_update_init(resultRelationDesc, resultRelInfo->ri_aosegno);
			}
			result = aocs_update(resultRelInfo->ri_updateDesc,
								 partslot, (AOTupleId *) tupleid, &aoTupleId);
		}
		else
		{
			Assert(!"We should not be here");
		}
		switch (result)
		{
			case HeapTupleSelfUpdated:
				/* already deleted by self; nothing to do */
				return;

			case HeapTupleMayBeUpdated:
				break;

			case HeapTupleUpdated:
				if (IsXactIsoLevelSerializable)
					ereport(ERROR,
							(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
							 errmsg("could not serialize access due to concurrent update")));
				else if (!ItemPointerEquals(tupleid, &update_ctid))
				{
					TupleTableSlot *epqslot;

					epqslot = EvalPlanQual(estate,
										   resultRelInfo->ri_RangeTableIndex,
										   &update_ctid,
										   update_xmax,
										   estate->es_snapshot->curcid);
					if (!TupIsNull(epqslot))
					{
						*tupleid = update_ctid;
						partslot = ExecFilterJunk(estate->es_junkFilter, epqslot);
						tuple = ExecFetchSlotHeapTuple(partslot);
						goto lreplace;
					}
				}
				/* tuple already deleted; nothing to do */
				return;

			default:
				elog(ERROR, "unrecognized heap_update status: %u", result);
				return;
		}
	}
	else
	{
		HeapTuple persistentTuple;

		/*
		 * Persistent metadata path.
		 */
		persistentTuple = heap_copytuple(tuple);
		persistentTuple->t_self = *tupleid;

		frozen_heap_inplace_update(resultRelationDesc, persistentTuple);

		heap_freetuple(persistentTuple);
	}

	IncrReplaced();
	(estate->es_processed)++;
	(resultRelInfo->ri_aoprocessed)++;

	/*
	 * Note: instead of having to update the old index tuples associated with
	 * the heap tuple, all we do is form and insert new index tuples. This is
	 * because UPDATEs are actually DELETEs and INSERTs, and index tuple
	 * deletion is done later by VACUUM (see notes in ExecDelete).	All we do
	 * here is insert new index tuples.  -cim 9/27/89
	 */
	/*
	 * insert index entries for tuple
	 *
	 * Note: heap_update returns the tid (location) of the new tuple in the
	 * t_self field.
	 */
	if (rel_is_aorows || rel_is_aocols)
	{
		if (resultRelInfo->ri_NumIndices > 0)
			ExecInsertIndexTuples(partslot, (ItemPointer)&aoTupleId, estate, false);
	}
	else
	{
		if (resultRelInfo->ri_NumIndices > 0)
			ExecInsertIndexTuples(partslot, &(((HeapTuple) tuple)->t_self), estate, false);
	}

	/* AFTER ROW UPDATE Triggers */
	ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);

}
예제 #11
0
파일: execDML.c 프로젝트: qiuyesuifeng/gpdb
/* ----------------------------------------------------------------
 *		ExecDelete
 *
 *		DELETE is like UPDATE, except that we delete the tuple and no
 *		index modifications are needed.
 *		DELETE can be part of an update operation when
 *		there is a preceding SplitUpdate node. 
 *
 * ----------------------------------------------------------------
 */
void
ExecDelete(ItemPointer tupleid,
		   TupleTableSlot *planSlot,
		   DestReceiver *dest,
		   EState *estate,
		   PlanGenerator planGen,
		   bool isUpdate)
{
	ResultRelInfo *resultRelInfo;
	Relation resultRelationDesc;
	HTSU_Result result;
	ItemPointerData update_ctid;
	TransactionId update_xmax;

	/*
	 * Get information on the (current) result relation.
	 */
	if (estate->es_result_partitions && planGen == PLANGEN_OPTIMIZER)
	{
		Assert(estate->es_result_partitions->part->parrelid);

#ifdef USE_ASSERT_CHECKING
		Oid parent = estate->es_result_partitions->part->parrelid;
#endif

		/* Obtain part for current tuple. */
		resultRelInfo = slot_get_partition(planSlot, estate);
		estate->es_result_relation_info = resultRelInfo;

#ifdef USE_ASSERT_CHECKING
		Oid part = RelationGetRelid(resultRelInfo->ri_RelationDesc);
#endif

		Assert(parent != part);
	}
	else
	{
		resultRelInfo = estate->es_result_relation_info;
	}
	resultRelationDesc = resultRelInfo->ri_RelationDesc;

	Assert (!resultRelInfo->ri_projectReturning);

	if (planGen == PLANGEN_PLANNER)
	{
		/* BEFORE ROW DELETE Triggers */
		if (resultRelInfo->ri_TrigDesc &&
			resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
		{
			bool		dodelete;

			dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
											estate->es_snapshot->curcid);

			if (!dodelete)			/* "do nothing" */
				return;
		}
	}

	bool isHeapTable = RelationIsHeap(resultRelationDesc);
	bool isAORowsTable = RelationIsAoRows(resultRelationDesc);
	bool isAOColsTable = RelationIsAoCols(resultRelationDesc);
	bool isExternalTable = RelationIsExternal(resultRelationDesc);

	if (isExternalTable && estate->es_result_partitions && 
		estate->es_result_partitions->part->parrelid != 0)
	{
		ereport(ERROR,
			(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
			errmsg("Delete from external partitions not supported.")));			
		return;
	}
	/*
	 * delete the tuple
	 *
	 * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
	 * the row to be deleted is visible to that snapshot, and throw a can't-
	 * serialize error if not.	This is a special-case behavior needed for
	 * referential integrity updates in serializable transactions.
	 */
ldelete:;
	if (isHeapTable)
	{
		result = heap_delete(resultRelationDesc, tupleid,
						 &update_ctid, &update_xmax,
						 estate->es_snapshot->curcid,
						 estate->es_crosscheck_snapshot,
						 true /* wait for commit */ );
	}
	else if (isAORowsTable)
	{
		if (IsXactIsoLevelSerializable)
		{
			if (!isUpdate)
				ereport(ERROR,
					   (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("Deletes on append-only tables are not supported in serializable transactions.")));		
			else
				ereport(ERROR,
					   (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("Updates on append-only tables are not supported in serializable transactions.")));	
		}

		if (resultRelInfo->ri_deleteDesc == NULL)
		{
			resultRelInfo->ri_deleteDesc = 
				appendonly_delete_init(resultRelationDesc, ActiveSnapshot);
		}

		AOTupleId* aoTupleId = (AOTupleId*)tupleid;
		result = appendonly_delete(resultRelInfo->ri_deleteDesc, aoTupleId);
	} 
	else if (isAOColsTable)
	{
		if (IsXactIsoLevelSerializable)
		{
			if (!isUpdate)
				ereport(ERROR,
					   (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("Deletes on append-only tables are not supported in serializable transactions.")));		
			else
				ereport(ERROR,
					   (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
						errmsg("Updates on append-only tables are not supported in serializable transactions.")));		
		}

		if (resultRelInfo->ri_deleteDesc == NULL)
		{
			resultRelInfo->ri_deleteDesc = 
				aocs_delete_init(resultRelationDesc);
		}

		AOTupleId* aoTupleId = (AOTupleId*)tupleid;
		result = aocs_delete(resultRelInfo->ri_deleteDesc, aoTupleId);
	}
	else
	{
		Insist(0);
	}
	switch (result)
	{
		case HeapTupleSelfUpdated:
			/* already deleted by self; nothing to do */
		
			/*
			 * In an scenario in which R(a,b) and S(a,b) have 
			 *        R               S
			 *    ________         ________
			 *     (1, 1)           (1, 2)
			 *                      (1, 7)
 			 *
   			 *  An update query such as:
 			 *   UPDATE R SET a = S.b  FROM S WHERE R.b = S.a;
 			 *   
 			 *  will have an non-deterministic output. The tuple in R 
			 * can be updated to (2,1) or (7,1).
 			 * Since the introduction of SplitUpdate, these queries will 
			 * send multiple requests to delete the same tuple. Therefore, 
			 * in order to avoid a non-deterministic output, 
			 * an error is reported in such scenario.
 			 */
			if (isUpdate)
			{

				ereport(ERROR,
					(errcode(ERRCODE_IN_FAILED_SQL_TRANSACTION ),
					errmsg("multiple updates to a row by the same query is not allowed")));
			}

			return;

		case HeapTupleMayBeUpdated:
			break;

		case HeapTupleUpdated:
			if (IsXactIsoLevelSerializable)
				ereport(ERROR,
						(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
						 errmsg("could not serialize access due to concurrent update")));
			else if (!ItemPointerEquals(tupleid, &update_ctid))
			{
				TupleTableSlot *epqslot;

				epqslot = EvalPlanQual(estate,
									   resultRelInfo->ri_RangeTableIndex,
									   &update_ctid,
									   update_xmax,
									   estate->es_snapshot->curcid);
				if (!TupIsNull(epqslot))
				{
					*tupleid = update_ctid;
					goto ldelete;
				}
			}
			/* tuple already deleted; nothing to do */
			return;

		default:
			elog(ERROR, "unrecognized heap_delete status: %u", result);
			return;
	}

	if (!isUpdate)
	{
		IncrDeleted();
		(estate->es_processed)++;
		/*
		 * To notify master if tuples deleted or not, to update mod_count.
		 */
		(resultRelInfo->ri_aoprocessed)++;
	}

	/*
	 * Note: Normally one would think that we have to delete index tuples
	 * associated with the heap tuple now...
	 *
	 * ... but in POSTGRES, we have no need to do this because VACUUM will
	 * take care of it later.  We can't delete index tuples immediately
	 * anyway, since the tuple is still visible to other transactions.
	 */


	if (planGen == PLANGEN_PLANNER)
	{
		/* AFTER ROW DELETE Triggers */
		ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
	}
}
예제 #12
0
파일: execDML.c 프로젝트: qiuyesuifeng/gpdb
/* ----------------------------------------------------------------
 *		ExecInsert
 *
 *		INSERTs have to add the tuple into
 *		the base relation and insert appropriate tuples into the
 *		index relations.
 *		Insert can be part of an update operation when
 *		there is a preceding SplitUpdate node. 
 * ----------------------------------------------------------------
 */
void
ExecInsert(TupleTableSlot *slot,
		   DestReceiver *dest,
		   EState *estate,
		   PlanGenerator planGen,
		   bool isUpdate)
{
	void		*tuple = NULL;
	ResultRelInfo *resultRelInfo = NULL;
	Relation	resultRelationDesc = NULL;
	Oid			newId = InvalidOid;
	TupleTableSlot *partslot = NULL;

	AOTupleId	aoTupleId = AOTUPLEID_INIT;

	bool		rel_is_heap = false;
	bool 		rel_is_aorows = false;
	bool		rel_is_aocols = false;
	bool		rel_is_external = false;

	/*
	 * get information on the (current) result relation
	 */
	if (estate->es_result_partitions)
	{
		resultRelInfo = slot_get_partition(slot, estate);

		/* Check whether the user provided the correct leaf part only if required */
		if (!dml_ignore_target_partition_check)
		{
			Assert(NULL != estate->es_result_partitions->part &&
					NULL != resultRelInfo->ri_RelationDesc);

			List *resultRelations = estate->es_plannedstmt->resultRelations;
			/*
			 * Only inheritance can generate multiple result relations and inheritance
			 * is not compatible with partitions. As we are in inserting in partitioned
			 * table, we should not have more than one resultRelation
			 */
			Assert(list_length(resultRelations) == 1);
			/* We only have one resultRelations entry where the user originally intended to insert */
			int rteIdxForUserRel = linitial_int(resultRelations);
			Assert (rteIdxForUserRel > 0);
			Oid userProvidedRel = InvalidOid;

			if (1 == rteIdxForUserRel)
			{
				/* Optimization for typical case */
				userProvidedRel = ((RangeTblEntry *) estate->es_plannedstmt->rtable->head->data.ptr_value)->relid;
			}
			else
			{
				userProvidedRel = getrelid(rteIdxForUserRel, estate->es_plannedstmt->rtable);
			}

			/* Error out if user provides a leaf partition that does not match with our calculated partition */
			if (userProvidedRel != estate->es_result_partitions->part->parrelid &&
				userProvidedRel != resultRelInfo->ri_RelationDesc->rd_id)
			{
				ereport(ERROR,
						(errcode(ERRCODE_CHECK_VIOLATION),
						 errmsg("Trying to insert row into wrong partition"),
						 errdetail("Expected partition: %s, provided partition: %s",
							resultRelInfo->ri_RelationDesc->rd_rel->relname.data,
							estate->es_result_relation_info->ri_RelationDesc->rd_rel->relname.data)));
			}
		}
		estate->es_result_relation_info = resultRelInfo;
	}
	else
	{
		resultRelInfo = estate->es_result_relation_info;
	}

	Assert (!resultRelInfo->ri_projectReturning);

	resultRelationDesc = resultRelInfo->ri_RelationDesc;

	rel_is_heap = RelationIsHeap(resultRelationDesc);
	rel_is_aocols = RelationIsAoCols(resultRelationDesc);
	rel_is_aorows = RelationIsAoRows(resultRelationDesc);
	rel_is_external = RelationIsExternal(resultRelationDesc);

	partslot = reconstructMatchingTupleSlot(slot, resultRelInfo);
	if (rel_is_heap)
	{
		tuple = ExecFetchSlotHeapTuple(partslot);
	}
	else if (rel_is_aorows)
	{
		tuple = ExecFetchSlotMemTuple(partslot, false);
	}
	else if (rel_is_external) 
	{
		if (estate->es_result_partitions && 
			estate->es_result_partitions->part->parrelid != 0)
		{
			ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				errmsg("Insert into external partitions not supported.")));			
			return;
		}
		else
		{
			tuple = ExecFetchSlotHeapTuple(partslot);
		}
	}
	else
	{
		Assert(rel_is_aocols);
		tuple = ExecFetchSlotMemTuple(partslot, true);
	}

	Assert(partslot != NULL && tuple != NULL);

	/* Execute triggers in Planner-generated plans */
	if (planGen == PLANGEN_PLANNER)
	{
		/* BEFORE ROW INSERT Triggers */
		if (resultRelInfo->ri_TrigDesc &&
			resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
		{
			HeapTuple	newtuple;

			/* NYI */
			if(rel_is_aocols)
				elog(ERROR, "triggers are not supported on tables that use column-oriented storage");

			newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);

			if (newtuple == NULL)	/* "do nothing" */
			{
				return;
			}

			if (newtuple != tuple)	/* modified by Trigger(s) */
			{
				/*
				 * Put the modified tuple into a slot for convenience of routines
				 * below.  We assume the tuple was allocated in per-tuple memory
				 * context, and therefore will go away by itself. The tuple table
				 * slot should not try to clear it.
				 */
				TupleTableSlot *newslot = estate->es_trig_tuple_slot;

				if (newslot->tts_tupleDescriptor != partslot->tts_tupleDescriptor)
					ExecSetSlotDescriptor(newslot, partslot->tts_tupleDescriptor);
				ExecStoreGenericTuple(newtuple, newslot, false);
				newslot->tts_tableOid = partslot->tts_tableOid; /* for constraints */
				tuple = newtuple;
				partslot = newslot;
			}
		}
	}
	/*
	 * Check the constraints of the tuple
	 */
	if (resultRelationDesc->rd_att->constr &&
			planGen == PLANGEN_PLANNER)
	{
		ExecConstraints(resultRelInfo, partslot, estate);
	}
	/*
	 * insert the tuple
	 *
	 * Note: heap_insert returns the tid (location) of the new tuple in the
	 * t_self field.
	 *
	 * NOTE: for append-only relations we use the append-only access methods.
	 */
	if (rel_is_aorows)
	{
		if (resultRelInfo->ri_aoInsertDesc == NULL)
		{
			/* Set the pre-assigned fileseg number to insert into */
			ResultRelInfoSetSegno(resultRelInfo, estate->es_result_aosegnos);

			resultRelInfo->ri_aoInsertDesc =
				appendonly_insert_init(resultRelationDesc,
									   ActiveSnapshot,
									   resultRelInfo->ri_aosegno,
									   false);

		}

		appendonly_insert(resultRelInfo->ri_aoInsertDesc, tuple, &newId, &aoTupleId);
	}
	else if (rel_is_aocols)
	{
		if (resultRelInfo->ri_aocsInsertDesc == NULL)
		{
			ResultRelInfoSetSegno(resultRelInfo, estate->es_result_aosegnos);
			resultRelInfo->ri_aocsInsertDesc = aocs_insert_init(resultRelationDesc, 
																resultRelInfo->ri_aosegno, false);
		}

		newId = aocs_insert(resultRelInfo->ri_aocsInsertDesc, partslot);
		aoTupleId = *((AOTupleId*)slot_get_ctid(partslot));
	}
	else if (rel_is_external)
	{
		/* Writable external table */
		if (resultRelInfo->ri_extInsertDesc == NULL)
			resultRelInfo->ri_extInsertDesc = external_insert_init(resultRelationDesc);

		newId = external_insert(resultRelInfo->ri_extInsertDesc, tuple);
	}
	else
	{
		Insist(rel_is_heap);

		newId = heap_insert(resultRelationDesc,
							tuple,
							estate->es_snapshot->curcid,
							true, true, GetCurrentTransactionId());
	}

	IncrAppended();
	(estate->es_processed)++;
	(resultRelInfo->ri_aoprocessed)++;
	estate->es_lastoid = newId;

	partslot->tts_tableOid = RelationGetRelid(resultRelationDesc);

	if (rel_is_aorows || rel_is_aocols)
	{
		/*
		 * insert index entries for AO Row-Store tuple
		 */
		if (resultRelInfo->ri_NumIndices > 0)
			ExecInsertIndexTuples(partslot, (ItemPointer)&aoTupleId, estate, false);
	}
	else
	{
		/* Use parttuple for index update in case this is an indexed heap table. */
		TupleTableSlot *xslot = partslot;
		void *xtuple = tuple;

		setLastTid(&(((HeapTuple) xtuple)->t_self));

		/*
		 * insert index entries for tuple
		 */
		if (resultRelInfo->ri_NumIndices > 0)
			ExecInsertIndexTuples(xslot, &(((HeapTuple) xtuple)->t_self), estate, false);

	}

	if (planGen == PLANGEN_PLANNER)
	{
		/* AFTER ROW INSERT Triggers */
		ExecARInsertTriggers(estate, resultRelInfo, tuple);
	}
}