예제 #1
0
// returns an individual randomly selected from the best N%
Genome Species::GetIndividual(Parameters& a_Parameters, RNG& a_RNG) const
{
    ASSERT(m_Individuals.size() > 0);

    // Make a pool of only evaluated individuals!
    std::vector<Genome> t_Evaluated;
    for(unsigned int i=0; i<m_Individuals.size(); i++)
    {
        if (m_Individuals[i].IsEvaluated())
            t_Evaluated.push_back( m_Individuals[i] );
    }

    ASSERT(t_Evaluated.size() > 0);

    if (t_Evaluated.size() == 1)
    {
        return (t_Evaluated[0]);
    }
    else if (t_Evaluated.size() == 2)
    {
        return (t_Evaluated[ Rounded(a_RNG.RandFloat()) ]);
    }

    // Warning!!!! The individuals must be sorted by best fitness for this to work
    int t_chosen_one=0;

    // Here might be introduced better selection scheme, but this works OK for now
    if (!a_Parameters.RouletteWheelSelection)
    {   //start with the last one just for comparison sake
        int temp_genome;
        
        
        int t_num_parents = static_cast<int>( floor((a_Parameters.SurvivalRate * (static_cast<double>(t_Evaluated.size())))+1.0));
       
        ASSERT(t_num_parents>0);
        if (t_num_parents>=t_Evaluated.size())
          t_num_parents = t_Evaluated.size()-1;
        t_chosen_one = a_RNG.RandInt(0, t_num_parents);
        for (unsigned int i = 0; i < a_Parameters.TournamentSize; i++)
        {
            temp_genome = a_RNG.RandInt(0, t_num_parents);
            
            if (m_Individuals[temp_genome].GetFitness() > m_Individuals[t_chosen_one].GetFitness())
            {
                t_chosen_one = temp_genome;
            }
        }
        
    }
    else
    {
        // roulette wheel selection
        std::vector<double> t_probs;
        for(unsigned int i=0; i<t_Evaluated.size(); i++)
            t_probs.push_back( t_Evaluated[i].GetFitness() );
        t_chosen_one = a_RNG.Roulette(t_probs);
    }

    return (t_Evaluated[t_chosen_one]);
}
예제 #2
0
파일: Species.cpp 프로젝트: Arpic/robogen
// Reproduce mates & mutates the individuals of the species
// It may access the global species list in the population
// because some babies may turn out to belong in another species
// that have to be created.
// Also calls Birth() for every new baby
void Species::Reproduce(Population &a_Pop, Parameters& a_Parameters, RNG& a_RNG)
{
    Genome t_baby; // temp genome for reproduction

    int t_offspring_count = Rounded(GetOffspringRqd());

    // no offspring?! yikes.. dead species!
    if (t_offspring_count == 0)
    {
        // maybe do something else?
        return;
    }

    //////////////////////////
    // Reproduction

    // Spawn t_offspring_count babies
    bool t_champ_chosen = false;
    bool t_baby_exists_in_pop = false;
    while(t_offspring_count--)
    {
    	bool t_new_individual = true;

        // if the champ was not chosen, do it now..
        if (!t_champ_chosen)
        {
            t_baby = m_Individuals[0];
            t_champ_chosen = true;
            t_new_individual = false;
        }
        // or if it was, then proceed with the others
        else
        {
            do // - while the baby already exists somewhere in the new population
            {
                // this tells us if the baby is a result of mating
                bool t_mated = false;

                // There must be individuals there..
                ASSERT(NumIndividuals() > 0);

                // for a species of size 1 we can only mutate
                // NOTE: but does it make sense since we know this is the champ?
                if (NumIndividuals() == 1)
                {
                    t_baby = GetIndividual(a_Parameters, a_RNG);
                    t_mated = false;
                }
                // else we can mate
                else
                {
                    do // keep trying to mate until a good offspring is produced
                    {
                        Genome t_mom = GetIndividual(a_Parameters, a_RNG);

                        // choose whether to mate at all
                        // Do not allow crossover when in simplifying phase
                        if ((a_RNG.RandFloat() < a_Parameters.CrossoverRate) && (a_Pop.GetSearchMode() != SIMPLIFYING))
                        {
                            // get the father
                            Genome t_dad;
                            bool t_interspecies = false;

                            // There is a probability that the father may come from another species
                            if ((a_RNG.RandFloat() < a_Parameters.InterspeciesCrossoverRate) && (a_Pop.m_Species.size()>1))
                            {
                                // Find different species (random one) // !!!!!!!!!!!!!!!!!
                                int t_diffspec = a_RNG.RandInt(0, static_cast<int>(a_Pop.m_Species.size()-1));
                                t_dad = a_Pop.m_Species[t_diffspec].GetIndividual(a_Parameters, a_RNG);
                                t_interspecies = true;
                            }
                            else
                            {
                                // Mate within species
                                t_dad = GetIndividual(a_Parameters, a_RNG);

                                // The other parent should be a different one
                                // number of tries to find different parent
                                int t_tries = 32;
                                if (!a_Parameters.AllowClones)
                                    while(((t_mom.GetID() == t_dad.GetID()) || (t_mom.CompatibilityDistance(t_dad, a_Parameters) < 0.00001) ) && (t_tries--))
                                    {
                                        t_dad = GetIndividual(a_Parameters, a_RNG);
                                    }
                                else
                                    while(((t_mom.GetID() == t_dad.GetID()) ) && (t_tries--))
                                    {
                                        t_dad = GetIndividual(a_Parameters, a_RNG);
                                    }
                                t_interspecies = false;
                            }

                            // OK we have both mom and dad so mate them
                            // Choose randomly one of two types of crossover
                            if (a_RNG.RandFloat() < a_Parameters.MultipointCrossoverRate)
                            {
                                t_baby = t_mom.Mate( t_dad, false, t_interspecies, a_RNG);
                            }
                            else
                            {
                                t_baby = t_mom.Mate( t_dad, true, t_interspecies, a_RNG);
                            }

                            t_mated = true;
                        }
                        // don't mate - reproduce the mother asexually
                        else
                        {
                            t_baby = t_mom;
                            t_mated = false;
                        }

                    } while (t_baby.HasDeadEnds() || (t_baby.NumLinks() == 0));
                    // in case of dead ends after crossover we will repeat crossover
                    // until it works
                }


                // Mutate the baby
                if ((!t_mated) || (a_RNG.RandFloat() < a_Parameters.OverallMutationRate))
                    MutateGenome(t_baby_exists_in_pop, a_Pop, t_baby, a_Parameters, a_RNG);

                // Check if this baby is already present somewhere in the offspring
                // we don't want that
                t_baby_exists_in_pop = false;
                // Unless of course, we want
                if (!a_Parameters.AllowClones)
                {
                    for(unsigned int i=0; i<a_Pop.m_TempSpecies.size(); i++)
                    {
                        for(unsigned int j=0; j<a_Pop.m_TempSpecies[i].m_Individuals.size(); j++)
                        {
                            if (
                                (t_baby.CompatibilityDistance(a_Pop.m_TempSpecies[i].m_Individuals[j], a_Parameters) < 0.00001) // identical genome?
                               )

                            {
                                t_baby_exists_in_pop = true;
                                break;
                            }
                        }
                    }
                }
            }
            while (t_baby_exists_in_pop); // end do
        }

        // Final place to test for problems
        // If there is anything wrong here, we will just
        // pick a random individual and leave him unchanged
        if ((t_baby.NumLinks() == 0) || t_baby.HasDeadEnds())
        {
            t_baby = GetIndividual(a_Parameters, a_RNG);
            t_new_individual = false;
        }

        if (t_new_individual) {
			// We have a new offspring now
			// give the offspring a new ID
			t_baby.SetID(a_Pop.GetNextGenomeID());
			a_Pop.IncrementNextGenomeID();

			// sort the baby's genes
			t_baby.SortGenes();

			// clear the baby's fitness
			t_baby.SetFitness(0);
			t_baby.SetAdjFitness(0);
			t_baby.SetOffspringAmount(0);

			t_baby.ResetEvaluated();
        }

        //////////////////////////////////
        // put the baby to its species  //
        //////////////////////////////////

        // before Reproduce() is invoked, it is assumed that a
        // clone of the population exists with the name of m_TempSpecies
        // we will store results there.
        // after all reproduction completes, the original species will be replaced back

        bool t_found = false;
        std::vector<Species>::iterator t_cur_species = a_Pop.m_TempSpecies.begin();

        // No species yet?
        if (t_cur_species == a_Pop.m_TempSpecies.end())
        {
            // create the first species and place the baby there
            a_Pop.m_TempSpecies.push_back( Species(t_baby, a_Pop.GetNextSpeciesID()));
            a_Pop.IncrementNextSpeciesID();
        }
        else
        {
            // try to find a compatible species
            Genome t_to_compare = t_cur_species->GetRepresentative();

            t_found = false;
            while((t_cur_species != a_Pop.m_TempSpecies.end()) && (!t_found))
            {
                if (t_baby.IsCompatibleWith( t_to_compare, a_Parameters))
                {
                    // found a compatible species
                    t_cur_species->AddIndividual(t_baby);
                    t_found = true; // the search is over
                }
                else
                {
                    // keep searching for a matching species
                    t_cur_species++;
                    if (t_cur_species != a_Pop.m_TempSpecies.end())
                    {
                        t_to_compare = t_cur_species->GetRepresentative();
                    }
                }
            }

            // if couldn't find a match, make a new species
            if (!t_found)
            {
                a_Pop.m_TempSpecies.push_back( Species(t_baby, a_Pop.GetNextSpeciesID()));
                a_Pop.IncrementNextSpeciesID();
            }
        }
    }
}
예제 #3
0
파일: Cga.cpp 프로젝트: pxli168/source
//------------------------------------- Epoch ----------------------------
//
//  This function performs one epoch of the genetic algorithm and returns 
//  a vector of pointers to the new phenotypes
//------------------------------------------------------------------------
vector<CNeuralNet*> Cga::Epoch(const vector<double> &FitnessScores)
{
  //first check to make sure we have the correct amount of fitness scores
  if (FitnessScores.size() != m_vecGenomes.size())
  {
    MessageBox(NULL,"Cga::Epoch(scores/ genomes mismatch)!","Error", MB_OK);
  }

  //reset appropriate values and kill off the existing phenotypes and
  //any poorly performing species
  ResetAndKill();

  //update the genomes with the fitnesses scored in the last run
  for (int gen=0; gen<m_vecGenomes.size(); ++gen)
  {
    m_vecGenomes[gen].SetFitness(FitnessScores[gen]);
  }

  //sort genomes and keep a record of the best performers
  SortAndRecord();

  //separate the population into species of similar topology, adjust
  //fitnesses and calculate spawn levels
  SpeciateAndCalculateSpawnLevels();

  //this will hold the new population of genomes
  vector<CGenome> NewPop;

  //request the offspring from each species. The number of children to 
  //spawn is a double which we need to convert to an int. 
  int NumSpawnedSoFar = 0;

  CGenome baby;

  //now to iterate through each species selecting offspring to be mated and 
  //mutated	
  for (int spc=0; spc<m_vecSpecies.size(); ++spc)
  {
    //because of the number to spawn from each species is a double
    //rounded up or down to an integer it is possible to get an overflow
    //of genomes spawned. This statement just makes sure that doesn't
    //happen
    if (NumSpawnedSoFar < CParams::iNumSweepers)
    {
      //this is the amount of offspring this species is required to
      // spawn. Rounded simply rounds the double up or down.
      int NumToSpawn = Rounded(m_vecSpecies[spc].NumToSpawn());

      bool bChosenBestYet = false;

      while (NumToSpawn--)
      {
        //first grab the best performing genome from this species and transfer
        //to the new population without mutation. This provides per species
        //elitism
        if (!bChosenBestYet)
        {         
          baby = m_vecSpecies[spc].Leader();

          bChosenBestYet = true;
        }

        else
        {
          //if the number of individuals in this species is only one
          //then we can only perform mutation
          if (m_vecSpecies[spc].NumMembers() == 1)
          {         
            //spawn a child
            baby = m_vecSpecies[spc].Spawn();
          }

          //if greater than one we can use the crossover operator
          else
          {
            //spawn1
            CGenome g1 = m_vecSpecies[spc].Spawn();

            if (RandFloat() < CParams::dCrossoverRate)
            {

              //spawn2, make sure it's not the same as g1
              CGenome g2 = m_vecSpecies[spc].Spawn();

              //number of attempts at finding a different genome
              int NumAttempts = 5;

              while ( (g1.ID() == g2.ID()) && (NumAttempts--) )
              {  
                g2 = m_vecSpecies[spc].Spawn();
              }

              if (g1.ID() != g2.ID())
              {
                baby = Crossover(g1, g2);
              }
            }

            else
            {
              baby = g1;
            }
          }

          
          ++m_iNextGenomeID;

          baby.SetID(m_iNextGenomeID);

          //now we have a spawned child lets mutate it! First there is the
          //chance a neuron may be added
          if (baby.NumNeurons() < CParams::iMaxPermittedNeurons)
          {      
            baby.AddNeuron(CParams::dChanceAddNode,
                           *m_pInnovation,
                           CParams::iNumTrysToFindOldLink);
          }

          //now there's the chance a link may be added
          baby.AddLink(CParams::dChanceAddLink,
                       CParams::dChanceAddRecurrentLink,
                       *m_pInnovation,
                       CParams::iNumTrysToFindLoopedLink,
                       CParams::iNumAddLinkAttempts);

          //mutate the weights
          baby.MutateWeights(CParams::dMutationRate,
                             CParams::dProbabilityWeightReplaced,
                             CParams::dMaxWeightPerturbation);

          baby.MutateActivationResponse(CParams::dActivationMutationRate,
                                        CParams::dMaxActivationPerturbation);
        }

        //sort the babies genes by their innovation numbers
        baby.SortGenes();

        //add to new pop
        NewPop.push_back(baby);

        ++NumSpawnedSoFar;

        if (NumSpawnedSoFar == CParams::iNumSweepers)
        {        
          NumToSpawn = 0;
        }

      }//end while
       
    }//end if
     
  }//next species


  //if there is an underflow due to the rounding error and the amount
  //of offspring falls short of the population size additional children
  //need to be created and added to the new population. This is achieved
  //simply, by using tournament selection over the entire population.
  if (NumSpawnedSoFar < CParams::iNumSweepers)
  {

    //calculate amount of additional children required
    int Rqd = CParams::iNumSweepers - NumSpawnedSoFar;

    //grab them
    while (Rqd--)
    {
      NewPop.push_back(TournamentSelection(m_iPopSize/5));
    }
  }

  //replace the current population with the new one
  m_vecGenomes = NewPop;

  //create the new phenotypes
  vector<CNeuralNet*> new_phenotypes;

  for (gen=0; gen<m_vecGenomes.size(); ++gen)
  {
    //calculate max network depth
    int depth = CalculateNetDepth(m_vecGenomes[gen]);
    
    CNeuralNet* phenotype = m_vecGenomes[gen].CreatePhenotype(depth);

    new_phenotypes.push_back(phenotype);
  }

  //increase generation counter
  ++m_iGeneration;

  return new_phenotypes;
}