/** creates and captures a linear constraint * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h * * @see SCIPcreateConsLinear() for information about the basic constraint flag configuration * * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons() */ JNIEXPORT jlong JNISCIPCONSLINEAR(createConsBasicLinear)( JNIEnv* env, /**< JNI environment variable */ jobject jobj, /**< JNI class pointer */ jlong jscip, /**< SCIP data structure */ jstring jname, /**< name of constraint */ jint jnvars, /**< number of nonzeros in the constraint */ jlongArray jvars, /**< array with variables of constraint entries */ jdoubleArray jvals, /**< array with coefficients of constraint entries */ jdouble jlhs, /**< left hand side of constraint */ jdouble jrhs /**< right hand side of constraint */ ) { SCIP* scip; SCIP_CONS* cons; const char* name; int nvars; /* convert JNI pointer into C pointer */ scip = (SCIP*) (size_t) jscip; assert(scip != NULL); /* convert JNI string into C const char* */ name = (*env)->GetStringUTFChars(env, jname, NULL); if( name == NULL ) SCIPABORT(); /* create linear constraint with zero variables */ JNISCIP_CALL( SCIPcreateConsBasicLinear(scip, &cons, name, 0, NULL, NULL, (SCIP_Real) jlhs, (SCIP_Real) jrhs) ); /* convert JNI integer into integer */ nvars = (int)jnvars; if( nvars > 0 ) { jlong* vars; jdouble* vals; int v; JNISCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) ); JNISCIP_CALL( SCIPallocBufferArray(scip, &vals, nvars) ); (*env)->GetLongArrayRegion(env, jvars, 0, nvars, vars); (*env)->GetDoubleArrayRegion(env, jvals, 0, nvars, vals); for( v = 0; v < nvars; ++v ) { JNISCIP_CALL( SCIPaddCoefLinear(scip, cons, (SCIP_VAR*)(size_t)vars[v], (SCIP_Real)vals[v])); } SCIPfreeBufferArray(scip, &vals); SCIPfreeBufferArray(scip, &vars); } /* relase string object */ (*env)->ReleaseStringUTFChars(env, jname, name); return (jlong)(size_t)cons; }
/** writes problem to file */ JNIEXPORT jint JNISCIPREADERPIP(writePip)( JNIEnv* env, /**< JNI environment variable */ jobject jobj, /**< JNI class pointer */ jlong jscip, /**< SCIP data structure */ jlong jfile, /**< output file, or NULL if standard output should be used */ jstring jname, /**< problem name */ jboolean jtransformed, /**< TRUE iff problem is the transformed problem */ jint jobjsense, /**< objective sense */ jdouble jobjscale, /**< scalar applied to objective function; external objective value is * extobj = objsense * objscale * (intobj + objoffset) */ jdouble jobjoffset, /**< objective offset from bound shifting and fixing */ jlongArray jvars, /**< array with active variables ordered binary, integer, implicit, continuous */ jint jnvars, /**< number of mutable variables in the problem */ jint jnbinvars, /**< number of binary variables */ jint jnintvars, /**< number of general integer variables */ jint jnimplvars, /**< number of implicit integer variables */ jint jncontvars, /**< number of continuous variables */ jlongArray jconss, /**< array with constraints of the problem */ jint jnconss /**< number of constraints in the problem */ ) { SCIP* scip; const char* name; SCIP_VAR** vars; SCIP_CONS** conss; SCIP_RESULT result; jboolean iscopy; /* convert JNI pointer into C pointer */ scip = (SCIP*) (size_t) jscip; assert(scip != NULL); JNISCIP_CALL( SCIPallocBufferArray(scip, &vars, (int)jnvars) ); JNISCIP_CALL( SCIPallocBufferArray(scip, &conss, (int)jnconss) ); (*env)->GetLongArrayRegion(env, jvars, 0, jnvars, (jlong*)(*vars)); (*env)->GetLongArrayRegion(env, jconss, 0, jnconss, (jlong*)(*conss)); /* convert JNI string into C const char* */ name = (*env)->GetStringUTFChars(env, jname, &iscopy); if( name == NULL ) SCIPABORT(); assert(iscopy); JNISCIP_CALL( SCIPwritePip(scip, (FILE*)(size_t) jfile, name, (SCIP_Bool)jtransformed, (SCIP_OBJSENSE)jobjsense, (SCIP_Real)jobjscale, (SCIP_Real)jobjoffset, vars, (int)jnvars, (int)jnbinvars, (int)jnintvars, (jint)jnimplvars, (int)jncontvars, conss, (int)jnconss, &result) ); SCIPfreeBufferArray(scip, &vars); SCIPfreeBufferArray(scip, &conss); (*env)->ReleaseStringUTFChars(env, jname, name); return (jint) result; }
/** creates a new solution for the original problem by copying the solution of the subproblem */ static SCIP_RETCODE createNewSol( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< the current heuristic */ SCIP_SOL* sol, /**< solution of the subproblem */ SCIP_Bool* success /**< used to store whether new solution was found or not */ ) { SCIP_VAR** vars; /* the original problem's variables */ int nvars; /* the original problem's number of variables */ SCIP_Real* solvals; /* solution values of the subproblem */ SCIP_SOL* newsol; /* solution to be created for the original problem */ assert(scip != NULL); /* get variables' data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) ); /* copy the solution */ SCIP_CALL( SCIPgetSolVals(scip, sol, nvars, vars, solvals) ); /* create new solution for the original problem */ SCIP_CALL( SCIPcreateSol(scip, &newsol, heur) ); SCIP_CALL( SCIPsetSolVals(scip, newsol, nvars, vars, solvals) ); /* try to add new solution to scip and free it immediately */ SCIP_CALL( SCIPtrySolFree(scip, &newsol, FALSE, TRUE, TRUE, TRUE, success) ); SCIPfreeBufferArray(scip, &solvals); return SCIP_OKAY; }
static SCIP_RETCODE selectBranchingVertex( SCIP* scip, /**< original SCIP data structure */ int* vertex /**< the vertex to branch on */ ) { SCIP_PROBDATA* probdata; SCIP_VAR** edgevars; GRAPH* g; SCIP_Real maxflow; SCIP_Real* inflow; int a; int k; int nnodes; int branchvert; /* get problem data */ probdata = SCIPgetProbData(scip); assert(probdata != NULL); /* get graph */ g = SCIPprobdataGetGraph(probdata); assert(g != NULL); /* LP has not been solved */ if( !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) { *vertex = UNKNOWN; return SCIP_OKAY; } edgevars = SCIPprobdataGetEdgeVars(scip); assert(edgevars != NULL); nnodes = g->knots; SCIP_CALL( SCIPallocBufferArray(scip, &inflow, nnodes) ); branchvert = UNKNOWN; maxflow = 1.0; for( k = 0; k < nnodes; k++ ) { inflow[k] = 0.0; for( a = g->inpbeg[k]; a != EAT_LAST; a = g->ieat[a] ) inflow[k] += SCIPvarGetLPSol(edgevars[a]); if( !Is_term(g->term[k]) && SCIPisLT(scip, inflow[k], 1.0) && SCIPisLT(scip, fabs(inflow[k] - 0.5), maxflow) ) { branchvert = k; maxflow = fabs(inflow[k] - 0.5); SCIPdebugMessage("new maxflow %f on vertex %d \n", inflow[k], branchvert ); } } SCIPdebugMessage("maxflow %f on vertex %d, term? %d \n", maxflow, branchvert, Is_term(g->term[branchvert]) ); (*vertex) = branchvert; SCIPfreeBufferArray(scip, &inflow); return SCIP_OKAY; }
/** writes problem to file */ JNIEXPORT jint JNISCIPREADERCCG(writeCcg)( JNIEnv* env, /**< JNI environment variable */ jobject jobj, /**< JNI class pointer */ jlong jscip, /**< SCIP data structure */ jlong jfile, /**< output file, or NULL if standard output should be used */ jstring jname, /**< problem name */ jboolean jtransformed, /**< TRUE iff problem is the transformed problem */ jlongArray jvars, /**< array with active variables ordered binary, integer, implicit, continuous */ jint jnvars, /**< number of mutable variables in the problem */ jlongArray jconss, /**< array with constraints of the problem */ jint jnconss /**< number of constraints in the problem */ ) { SCIP* scip; const char* name; SCIP_VAR** vars; SCIP_CONS** conss; SCIP_RESULT result; jboolean iscopy; /* convert JNI pointer into C pointer */ scip = (SCIP*) (size_t) jscip; assert(scip != NULL); JNISCIP_CALL( SCIPallocBufferArray(scip, &vars, (int)jnvars) ); JNISCIP_CALL( SCIPallocBufferArray(scip, &conss, (int)jnconss) ); (*env)->GetLongArrayRegion(env, jvars, 0, jnvars, (jlong*)(*vars)); (*env)->GetLongArrayRegion(env, jconss, 0, jnconss, (jlong*)(*conss)); /* convert JNI string into C const char* */ name = (*env)->GetStringUTFChars(env, jname, &iscopy); if( name == NULL ) SCIPABORT(); assert(iscopy); JNISCIP_CALL( SCIPwriteCcg(scip, (FILE*)(size_t)jfile, name, (SCIP_Bool)jtransformed, vars, (int)jnvars, conss, (int)jnconss, &result) ); SCIPfreeBufferArray(scip, &vars); SCIPfreeBufferArray(scip, &conss); (*env)->ReleaseStringUTFChars(env, jname, name); return (jint) result; }
/** creates and captures an indicator constraint with given linear constraint and slack variable * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the * method SCIPcreateConsIndicator(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h * * @note @a binvar is checked to be binary only later. This enables a change of the type in * procedures reading an instance. * * @note we assume that @a slackvar actually appears in @a lincons and we also assume that it takes * the role of a slack variable! * * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons() * * @see SCIPcreateConsIndicatorLinCons() for information about the basic constraint flag configuration * * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons() */ JNIEXPORT jlong JNISCIPCONSINDICATOR(createConsBasicIndicator)( JNIEnv* env, /**< JNI environment variable */ jobject jobj, /**< JNI class pointer */ jlong jscip, /**< SCIP data structure */ jstring jname, /**< name of constraint */ jlong jbinvar, /**< binary indicator variable (or NULL) */ jint nvars, /**< number of variables in the inequality */ jlongArray jvars, /**< array with variables of inequality (or NULL) */ jdoubleArray jvals, /**< values of variables in inequality (or NULL) */ jdouble rhs /**< rhs of the inequality */ ) { SCIP* scip; SCIP_CONS* cons; const char* name; SCIP_VAR* binvar; SCIP_VAR** vars; SCIP_Real* vals; /* convert JNI pointer into C pointer */ scip = (SCIP*) (size_t) jscip; assert(scip != NULL); /* convert JNI string into C const char* */ name = (*env)->GetStringUTFChars(env, jname, NULL); if( name == NULL ) SCIPABORT(); /* convert JNI pointer into C pointer */ binvar = (SCIP_VAR*) (size_t) jbinvar; JNISCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) ); JNISCIP_CALL( SCIPallocBufferArray(scip, &vals, nvars) ); (*env)->GetLongArrayRegion(env, jvars, 0, nvars, (jlong*)(*vars)); (*env)->GetDoubleArrayRegion(env, jvals, 0, nvars, (jdouble*)vals); JNISCIP_CALL( SCIPcreateConsBasicIndicator(scip, &cons, name, binvar, (int)nvars, vars, vals, (SCIP_Real)rhs) ); SCIPfreeBufferArray(scip, &vals); SCIPfreeBufferArray(scip, &vars); (*env)->ReleaseStringUTFChars(env, jname, name); return (jlong)(size_t)cons; }
/** creates the rows of the subproblem */ static SCIP_RETCODE createRows( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars /**< the variables of the subproblem */ ) { SCIP_ROW** rows; /* original scip rows */ SCIP_CONS* cons; /* new constraint */ SCIP_VAR** consvars; /* new constraint's variables */ SCIP_COL** cols; /* original row's columns */ SCIP_Real constant; /* constant added to the row */ SCIP_Real lhs; /* left hand side of the row */ SCIP_Real rhs; /* left right side of the row */ SCIP_Real* vals; /* variables' coefficient values of the row */ int nrows; int nnonz; int i; int j; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert(lhs <= rhs); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(scip, &consvars); } return SCIP_OKAY; }
/** parese job informations */ static SCIP_RETCODE getJobs( SCIP* scip, /**< SCIP data structure */ int lineno, /**< current line number of input file */ char* linestr, /**< current line */ STATE* state, /**< pointer to current reading state */ SCIP_RCPSPDATA* rcpspdata /**< pointer to resources constrained project scheduling data */ ) { char jobname[SCIP_MAXSTRLEN]; int value; int jobid; int r; assert(linestr != NULL); assert(state != NULL); /* skip lines which are not of interest */ if ( (!strncmp(linestr, "REQUESTS", 4) ) || ( !strncmp(linestr, "jobnr", 3) ) || ( !strncmp(linestr, "-", 1) ) ) { *state = JOBS; return SCIP_OKAY; } /* parse job id */ SCIPstrToIntValue(linestr, &value, &linestr); jobid = value - 1; /* construct job name */ (void)SCIPsnprintf(jobname, SCIP_MAXSTRLEN, "%d" , jobid) ; /* copy job name */ SCIP_CALL( SCIPduplicateBufferArray(scip, &rcpspdata->jobnames[jobid], jobname, strlen(jobname) + 1) ); /* skip next value */ SCIPstrToIntValue(linestr, &value, &linestr); /* parse duration */ SCIPstrToIntValue(linestr, &value, &linestr); rcpspdata->durations[jobid] = value; SCIP_CALL( SCIPallocBufferArray(scip, &rcpspdata->demands[jobid], rcpspdata->nresources) ); /* parse demands */ for( r = 0; r < rcpspdata->nresources; ++r ) { SCIPstrToIntValue(linestr, &value, &linestr); rcpspdata->demands[jobid][r] = value; } /* check if we paresed the last job */ if(jobid == rcpspdata->njobs - 1) *state = NEXT; return SCIP_OKAY; }
/** initialize graph */ static SCIP_RETCODE initGraph( SCIP* scip, /**< SCIP data structure */ SparseGraph* G, /**< graph to free */ unsigned int nNodes, /**< number of nodes */ unsigned int initSize /**< initial size of lists */ ) { unsigned int i; G->n = nNodes; G->m = 0; SCIP_CALL( SCIPallocBufferArray(scip, &G->deg, (int) nNodes) ); SCIP_CALL( SCIPallocBufferArray(scip, &G->size, (int) nNodes) ); SCIP_CALL( SCIPallocBufferArray(scip, &G->A, (int) nNodes) ); SCIP_CALL( SCIPallocBufferArray(scip, &G->W, (int) nNodes) ); for( i = 0; i < nNodes; ++i ) { G->deg[i] = 0; G->size[i] = initSize; SCIP_CALL( SCIPallocBufferArray(scip, &(G->A[i]), (int) initSize) ); /*lint !e866 */ SCIP_CALL( SCIPallocBufferArray(scip, &(G->W[i]), (int) initSize) ); /*lint !e866 */ G->A[i][0] = -1; } return SCIP_OKAY; }
/** parese number of resources */ static SCIP_RETCODE getNResources( SCIP* scip, /**< SCIP data structure */ int lineno, /**< current line number of input file */ char* linestr, /**< current line */ STATE* state, /**< pointer to current reading state */ SCIP_RCPSPDATA* rcpspdata /**< pointer to resources constrained project scheduling data */ ) { SCIP_Real nresources; char* endptr; char* number; assert(linestr != NULL); assert(state != NULL); if( strncmp(linestr, "RESOURCES", 4) == 0 ) return SCIP_OKAY; /* truncate the line via ':' and ignore the first part */ (void)SCIPstrtok(linestr, ":", &endptr); number = SCIPstrtok(NULL, ":", &endptr); if( !SCIPstrToRealValue(number, &nresources, &endptr) ) { parseError(scip, lineno, "expexted number of resources", linestr, state); return SCIP_OKAY; } rcpspdata->nresources = (int)(nresources + 0.5); SCIP_CALL( SCIPallocBufferArray(scip, &rcpspdata->capacities, nresources) ); SCIP_CALL( SCIPallocBufferArray(scip, &rcpspdata->resourcenames, nresources) ); *state = NEXT; return SCIP_OKAY; }
/** LP solution separation method of separator */ static SCIP_DECL_SEPAEXECLP(sepaExeclpImpliedbounds) { /*lint --e{715}*/ SCIP_VAR** vars; SCIP_VAR** fracvars; SCIP_Real* solvals; SCIP_Real* fracvals; SCIP_Bool cutoff; int nvars; int nbinvars; int nfracs; int ncuts; assert(sepa != NULL); assert(scip != NULL); *result = SCIP_DIDNOTRUN; /* gets active problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, NULL, NULL, NULL) ); if( nbinvars == 0 ) return SCIP_OKAY; /* get fractional problem variables */ /* todo try out also separating fractional implicit integer variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &fracvars, &fracvals, NULL, &nfracs, NULL, NULL) ); if( nfracs == 0 ) return SCIP_OKAY; /* get solution values for all variables */ SCIP_CALL( SCIPallocBufferArray(scip, &solvals, nvars) ); SCIP_CALL( SCIPgetVarSols(scip, nvars, vars, solvals) ); /* call the cut separation */ SCIP_CALL( separateCuts(scip, sepa, NULL, solvals, fracvars, fracvals, nfracs, &cutoff, &ncuts) ); /* adjust result code */ if ( cutoff ) *result = SCIP_CUTOFF; else if ( ncuts > 0 ) *result = SCIP_SEPARATED; else *result = SCIP_DIDNOTFIND; /* free temporary memory */ SCIPfreeBufferArray(scip, &solvals); return SCIP_OKAY; }
/** constraint copying method of constraint handler */ static SCIP_DECL_CONSCOPY(consCopyConjuction) { /*lint --e{715}*/ SCIP_CONSDATA* sourcedata; SCIP_CONS** sourceconss; SCIP_CONS** conss; int nconss; int c; sourcedata = SCIPconsGetData(sourcecons); assert(sourcedata != NULL); nconss = sourcedata->nconss; if( nconss == 0 && !SCIPconsIsModifiable(sourcecons) ) { *valid = TRUE; return SCIP_OKAY; } SCIP_CALL( SCIPallocBufferArray(scip, &conss, nconss) ); sourceconss = sourcedata->conss; /* copy each constraint one by one */ for( c = 0; c < nconss && (*valid); ++c ) { SCIP_CALL( SCIPgetConsCopy(sourcescip, scip, sourceconss[c], &conss[c], sourceconshdlr, varmap, consmap, SCIPconsGetName(sourceconss[c]), SCIPconsIsInitial(sourceconss[c]), SCIPconsIsSeparated(sourceconss[c]), SCIPconsIsEnforced(sourceconss[c]), SCIPconsIsChecked(sourceconss[c]), SCIPconsIsPropagated(sourceconss[c]), SCIPconsIsLocal(sourceconss[c]), SCIPconsIsModifiable(sourceconss[c]), SCIPconsIsDynamic(sourceconss[c]), SCIPconsIsRemovable(sourceconss[c]), SCIPconsIsStickingAtNode(sourceconss[c]), global, valid) ); assert(!(*valid) || conss[c] != NULL); } if( *valid ) { SCIP_CALL( SCIPcreateConsDisjunction(scip, cons, name, nconss, conss, initial, enforce, check, local, modifiable, dynamic) ); } SCIPfreeBufferArray(scip, &conss); return SCIP_OKAY; }
/** creates a new solution for the original problem by copying the solution of the subproblem */ static SCIP_RETCODE createNewSol( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP structure of the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_HEUR* heur, /**< crossover heuristic structure */ SCIP_SOL* subsol, /**< solution of the subproblem */ int* solindex, /**< index of the solution */ SCIP_Bool* success /**< used to store whether new solution was found or not */ ) { SCIP_VAR** vars; /* the original problem's variables */ int nvars; SCIP_SOL* newsol; /* solution to be created for the original problem */ SCIP_Real* subsolvals; /* solution values of the subproblem */ assert(scip != NULL); assert(subscip != NULL); assert(subvars != NULL); assert(subsol != NULL); /* get variables' data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* sub-SCIP may have more variables than the number of active (transformed) variables in the main SCIP * since constraint copying may have required the copy of variables that are fixed in the main SCIP */ assert(nvars <= SCIPgetNOrigVars(subscip)); SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); /* copy the solution */ SCIP_CALL( SCIPgetSolVals(subscip, subsol, nvars, subvars, subsolvals) ); /* create new solution for the original problem */ SCIP_CALL( SCIPcreateSol(scip, &newsol, heur) ); SCIP_CALL( SCIPsetSolVals(scip, newsol, nvars, vars, subsolvals) ); *solindex = SCIPsolGetIndex(newsol); /* try to add new solution to scip and free it immediately */ SCIP_CALL( SCIPtrySolFree(scip, &newsol, FALSE, TRUE, TRUE, TRUE, success) ); SCIPfreeBufferArray(scip, &subsolvals); return SCIP_OKAY; }
/** handle given linear constraint information */ static SCIP_RETCODE handleLinearCons( SCIP* scip, /**< SCIP data structure */ SCIP_VAR** vars, /**< array of variables */ SCIP_Real* vals, /**< array of coefficients values (or NULL if all coefficient values are 1) */ int nvars, /**< number of variables */ SCIP_Bool transformed, /**< transformed constraint? */ SparseGraph* G /**< graph */ ) { int v; SCIP_VAR** activevars; SCIP_Real* activevals; int nactivevars; SCIP_Real activeconstant = 0.0; assert( scip != NULL ); assert( nvars > 0 ); /* duplicate variable and value array */ nactivevars = nvars; SCIP_CALL( SCIPduplicateBufferArray(scip, &activevars, vars, nactivevars ) ); if( vals != NULL ) SCIP_CALL( SCIPduplicateBufferArray(scip, &activevals, vals, nactivevars ) ); else { SCIP_CALL( SCIPallocBufferArray(scip, &activevals, nactivevars) ); for( v = 0; v < nactivevars; ++v ) activevals[v] = 1.0; } /* retransform given variables to active variables */ SCIP_CALL( getActiveVariables(scip, activevars, activevals, &nactivevars, &activeconstant, transformed) ); /* print constraint */ SCIP_CALL( createEdgesFromRow(scip, activevars, activevals, nactivevars, G) ); /* free buffer arrays */ SCIPfreeBufferArray(scip, &activevars); SCIPfreeBufferArray(scip, &activevals); return SCIP_OKAY; }
/** creates a new solution for the original problem by copying the solution of the subproblem */ static SCIP_RETCODE createNewSol( SCIP* scip, /**< SCIP data structure of the original problem */ SCIP* subscip, /**< SCIP data structure of the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_HEUR* heur, /**< the Localbranching heuristic */ SCIP_SOL* subsol, /**< solution of the subproblem */ SCIP_Bool* success /**< pointer to store, whether new solution was found */ ) { SCIP_VAR** vars; int nvars; SCIP_SOL* newsol; SCIP_Real* subsolvals; assert( scip != NULL ); assert( subscip != NULL ); assert( subvars != NULL ); assert( subsol != NULL ); /* copy the solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* sub-SCIP may have more variables than the number of active (transformed) variables in the main SCIP * since constraint copying may have required the copy of variables that are fixed in the main SCIP */ assert(nvars <= SCIPgetNOrigVars(subscip)); SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); /* copy the solution */ SCIP_CALL( SCIPgetSolVals(subscip, subsol, nvars, subvars, subsolvals) ); /* create new solution for the original problem */ SCIP_CALL( SCIPcreateSol(scip, &newsol, heur) ); SCIP_CALL( SCIPsetSolVals(scip, newsol, nvars, vars, subsolvals) ); SCIP_CALL( SCIPtrySolFree(scip, &newsol, FALSE, TRUE, TRUE, TRUE, success) ); SCIPfreeBufferArray(scip, &subsolvals); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** separate 2-cuts */ static SCIP_RETCODE sep_2cut( SCIP* scip, /**< SCIP data structure */ SCIP_CONSHDLR* conshdlr, /**< constraint handler */ SCIP_CONSHDLRDATA* conshdlrdata, /**< constraint handler data */ SCIP_CONSDATA* consdata, /**< constraint data */ int maxcuts, /**< maximal number of cuts */ int* ncuts /**< pointer to store number of cuts */ ) { const SCIP_Bool nested_cut = conshdlrdata->nestedcut; const SCIP_Bool back_cut = conshdlrdata->backcut; const SCIP_Bool creep_flow = conshdlrdata->creepflow; const SCIP_Bool disjunct_cut = conshdlrdata->disjunctcut; const SCIP_Bool flowsep = conshdlrdata->flowsep; GRAPH* g; SCIP_Real* xval; SCIP_Real* cost; PATH* path; int* w; int* capa; int* term; int terms = 0; int tsave; int i; int k; int layer; int count = 0; int rerun = FALSE; int nedges; int nnodes; SCIP_Bool addedcut; assert(scip != NULL); assert(conshdlr != NULL); assert(conshdlrdata != NULL); g = consdata->graph; assert(g != NULL); nedges = g->edges; nnodes = g->knots; addedcut = FALSE; xval = SCIPprobdataGetXval(scip, NULL); assert(xval != NULL); SCIP_CALL( SCIPallocBufferArray(scip, &capa, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &cost, nedges) ); SCIP_CALL( SCIPallocBufferArray(scip, &w, nnodes) ); SCIP_CALL( SCIPallocBufferArray(scip, &term, g->terms) ); SCIP_CALL( SCIPallocBufferArray(scip, &path, nnodes) ); for( layer = 0; layer < g->layers; layer++ ) { /* For 2-terminal nets no cuts are necessary if flows are given */ if( flowsep && (g->locals[layer] == 2) ) continue; for( i = 0; i < nedges; i++ ) cost[i] = SCIPisFeasLT(scip, xval[layer * nedges + i], 1.0) ? 1.0 : 0.0; for( i = 0; i < nnodes; i++ ) { w[i] = 0; g->mark[i] = TRUE; } graph_path_exec(scip, g, FSP_MODE, g->source[layer], cost, path); /* search all terminals not connected to the root by the LP solution */ for( i = 0, count = 0; i < nnodes; i++ ) { if( (g->term[i] == layer) && (i != g->source[layer]) ) { if( SCIPisPositive(scip, path[i].dist) ) term[terms++] = i; else count++; } } SCIPdebugMessage("Cut Pretest: %d eliminations\n", count); count = 0; tsave = terms; /* from source to terminal */ if( !nested_cut || disjunct_cut ) set_capacity(g, layer, creep_flow, 0, capa, xval); while( terms > 0 ) { if( SCIPisStopped(scip) && terms % 100 == 0 ) break; /* look for reachable terminal */ i = graph_next_term(terms, term, w); terms--; assert(g->term[i] == layer); assert(g->source[layer] != i); if( nested_cut && !disjunct_cut ) set_capacity(g, layer, creep_flow, 0, capa, xval); do { graph_mincut_exec(g, g->source[layer], i, capa, w, rerun); rerun = TRUE; /* cut */ for( k = 0; k < nnodes; k++ ) g->mark[k] = (w[k] != 0); SCIP_CALL( cut_add(scip, conshdlr, g, layer, xval, capa, nested_cut || disjunct_cut, ncuts, &addedcut) ); if( addedcut ) { count++; if( *ncuts >= maxcuts ) goto TERMINATE; } else break; } while( nested_cut ); /* Nested Cut is CONSTANT ! */ } /* back cuts enabled? */ if( back_cut ) { if( !nested_cut || disjunct_cut ) set_capacity(g, layer, creep_flow, 1, capa, xval); terms = tsave; while( terms > 0 ) { /* look for reachable terminal */ i = graph_next_term(terms, term, w); terms--; assert(g->term[i] == layer); assert(g->source[layer] != i); if( nested_cut && !disjunct_cut ) set_capacity(g, layer, creep_flow, 1, capa, xval); rerun = FALSE; do { graph_mincut_exec(g, i, g->source[layer], capa, w, rerun); rerun = TRUE; for( k = 0; k < nnodes; k++ ) g->mark[k] = (w[k] != 0) ? 1 : 0; SCIP_CALL( cut_add(scip, conshdlr, g, layer, xval, capa, nested_cut || disjunct_cut, ncuts, &addedcut) ); if( addedcut ) { count++; if( *ncuts >= maxcuts ) goto TERMINATE; } else break; #if 0 if (nested_cut || disjunct_cut) for(k = p->beg[p->rcnt - 1]; k < p->nzcnt; k++) capa[p->ind[k] % nedges + (((p->ind[k] % nedges) % 2) ? -1 : 1)] = FLOW_FACTOR; #endif } while( nested_cut ); /* Nested Cut is CONSTANT ! */ rerun = FALSE; } } } TERMINATE: SCIPfreeBufferArray(scip, &path); SCIPfreeBufferArray(scip, &term); SCIPfreeBufferArray(scip, &w); SCIPfreeBufferArray(scip, &cost); SCIPfreeBufferArray(scip, &capa); SCIPdebugMessage("2-cut Separator: %d Inequalities added\n", count); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecIntdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR** pseudocands; SCIP_VAR** fixcands; SCIP_Real* fixcandscores; SCIP_Real searchubbound; SCIP_Real searchavgbound; SCIP_Real searchbound; SCIP_Real objval; SCIP_Bool lperror; SCIP_Bool cutoff; SCIP_Bool backtracked; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int nfixcands; int nbinfixcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int nextcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 100); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get unfixed integer variables */ SCIP_CALL( SCIPgetPseudoBranchCands(scip, &pseudocands, &nfixcands, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nfixcands == 0 ) return SCIP_OKAY; /* calculate the objective search bound */ if( SCIPgetNSolsFound(scip) == 0 ) { if( heurdata->maxdiveubquotnosol > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquotnosol > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } else { if( heurdata->maxdiveubquot > 0.0 ) searchubbound = SCIPgetLowerbound(scip) + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip)); else searchubbound = SCIPinfinity(scip); if( heurdata->maxdiveavgquot > 0.0 ) searchavgbound = SCIPgetLowerbound(scip) + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip)); else searchavgbound = SCIPinfinity(scip); } searchbound = MIN(searchubbound, searchavgbound); if( SCIPisObjIntegral(scip) ) searchbound = SCIPceil(scip, searchbound); /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */ maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); maxdivedepth = MIN(maxdivedepth, maxdepth); maxdivedepth *= 10; *result = SCIP_DIDNOTFIND; /* start diving */ SCIP_CALL( SCIPstartProbing(scip) ); /* enables collection of variable statistics during probing */ SCIPenableVarHistory(scip); SCIPdebugMessage("(node %" SCIP_LONGINT_FORMAT ") executing intdiving heuristic: depth=%d, %d non-fixed, dualbound=%g, searchbound=%g\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nfixcands, SCIPgetDualbound(scip), SCIPretransformObj(scip, searchbound)); /* copy the pseudo candidates into own array, because we want to reorder them */ SCIP_CALL( SCIPduplicateBufferArray(scip, &fixcands, pseudocands, nfixcands) ); /* sort non-fixed variables by non-increasing inference score, but prefer binaries over integers in any case */ SCIP_CALL( SCIPallocBufferArray(scip, &fixcandscores, nfixcands) ); nbinfixcands = 0; for( c = 0; c < nfixcands; ++c ) { SCIP_VAR* var; SCIP_Real score; int colveclen; int left; int right; int i; assert(c >= nbinfixcands); var = fixcands[c]; assert(SCIPvarIsIntegral(var)); colveclen = (SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN ? SCIPcolGetNNonz(SCIPvarGetCol(var)) : 0); if( SCIPvarIsBinary(var) ) { score = 500.0 * SCIPvarGetNCliques(var, TRUE) + 100.0 * SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/100.0; /* shift the non-binary variables one slot to the right */ for( i = c; i > nbinfixcands; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } /* put the new candidate into the first nbinfixcands slot */ left = 0; right = nbinfixcands; nbinfixcands++; } else { score = 5.0 * (SCIPvarGetNCliques(var, FALSE) + SCIPvarGetNCliques(var, TRUE)) + SCIPvarGetNImpls(var, FALSE) + SCIPvarGetNImpls(var, TRUE) + SCIPgetVarAvgInferenceScore(scip, var) + (SCIP_Real)colveclen/10000.0; /* put the new candidate in the slots after the binary candidates */ left = nbinfixcands; right = c; } for( i = right; i > left && score > fixcandscores[i-1]; --i ) { fixcands[i] = fixcands[i-1]; fixcandscores[i] = fixcandscores[i-1]; } fixcands[i] = var; fixcandscores[i] = score; SCIPdebugMessage(" <%s>: ncliques=%d/%d, nimpls=%d/%d, inferencescore=%g, colveclen=%d -> score=%g\n", SCIPvarGetName(var), SCIPvarGetNCliques(var, FALSE), SCIPvarGetNCliques(var, TRUE), SCIPvarGetNImpls(var, FALSE), SCIPvarGetNImpls(var, TRUE), SCIPgetVarAvgInferenceScore(scip, var), colveclen, score); } SCIPfreeBufferArray(scip, &fixcandscores); /* get LP objective value */ lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; objval = SCIPgetLPObjval(scip); /* dive as long we are in the given objective, depth and iteration limits, but if possible, we dive at least with * the depth 10 */ lperror = FALSE; cutoff = FALSE; divedepth = 0; nextcand = 0; while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && (divedepth < 10 || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound)) && !SCIPisStopped(scip) ) { SCIP_VAR* var; SCIP_Real bestsolval; SCIP_Real bestfixval; int bestcand; SCIP_Longint nnewlpiterations; SCIP_Longint nnewdomreds; /* open a new probing node if this will not exceed the maximal tree depth, otherwise stop here */ if( SCIPgetDepth(scip) < SCIPgetDepthLimit(scip) ) { SCIP_CALL( SCIPnewProbingNode(scip) ); divedepth++; } else break; nnewlpiterations = 0; nnewdomreds = 0; /* fix binary variable that is closest to 1 in the LP solution to 1; * if all binary variables are fixed, fix integer variable with least fractionality in LP solution */ bestcand = -1; bestsolval = -1.0; bestfixval = 1.0; /* look in the binary variables for fixing candidates */ for( c = nextcand; c < nbinfixcands; ++c ) { SCIP_Real solval; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetLbLocal(var) > 0.5 || SCIPvarGetUbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); if( solval > bestsolval ) { bestcand = c; bestfixval = 1.0; bestsolval = solval; if( SCIPisGE(scip, bestsolval, 1.0) ) { /* we found an unfixed binary variable with LP solution value of 1.0 - there cannot be a better candidate */ break; } else if( SCIPisLE(scip, bestsolval, 0.0) ) { /* the variable is currently at 0.0 - this is the only situation where we want to fix it to 0.0 */ bestfixval = 0.0; } } } /* if all binary variables are fixed, look in the integer variables for a fixing candidate */ if( bestcand == -1 ) { SCIP_Real bestfrac; bestfrac = SCIP_INVALID; for( c = MAX(nextcand, nbinfixcands); c < nfixcands; ++c ) { SCIP_Real solval; SCIP_Real frac; var = fixcands[c]; /* ignore already fixed variables */ if( var == NULL ) continue; if( SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) < 0.5 ) { fixcands[c] = NULL; continue; } /* get the LP solution value */ solval = SCIPvarGetLPSol(var); frac = SCIPfrac(scip, solval); /* ignore integer variables that are currently integral */ if( SCIPisFeasFracIntegral(scip, frac) ) continue; if( frac < bestfrac ) { bestcand = c; bestsolval = solval; bestfrac = frac; bestfixval = SCIPfloor(scip, bestsolval + 0.5); if( SCIPisZero(scip, bestfrac) ) { /* we found an unfixed integer variable with integral LP solution value */ break; } } } } assert(-1 <= bestcand && bestcand < nfixcands); /* if there is no unfixed candidate left, we are done */ if( bestcand == -1 ) break; var = fixcands[bestcand]; assert(var != NULL); assert(SCIPvarIsIntegral(var)); assert(SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var) > 0.5); assert(SCIPisGE(scip, bestfixval, SCIPvarGetLbLocal(var))); assert(SCIPisLE(scip, bestfixval, SCIPvarGetUbLocal(var))); backtracked = FALSE; do { /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have * occured or variable was fixed by propagation while backtracking => Abort diving! */ if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 ) { SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g], diving aborted \n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var)); cutoff = TRUE; break; } if( SCIPisFeasLT(scip, bestfixval, SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, bestfixval, SCIPvarGetUbLocal(var)) ) { SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); assert(backtracked); break; } /* apply fixing of best candidate */ SCIPdebugMessage(" dive %d/%d, LP iter %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", %d unfixed: var <%s>, sol=%g, oldbounds=[%g,%g], fixed to %g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPgetNPseudoBranchCands(scip), SCIPvarGetName(var), bestsolval, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), bestfixval); SCIP_CALL( SCIPfixVarProbing(scip, var, bestfixval) ); /* apply domain propagation */ SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, &nnewdomreds) ); if( !cutoff ) { /* if the best candidate was just fixed to its LP value and no domain reduction was found, the LP solution * stays valid, and the LP does not need to be resolved */ if( nnewdomreds > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* resolve the diving LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG SCIP_RETCODE retstat; nlpiterations = SCIPgetNLPIterations(scip); retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Intdiving heuristic; LP solve terminated with code <%d>\n",retstat); } #else nlpiterations = SCIPgetNLPIterations(scip); SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) ); #endif if( lperror ) break; /* update iteration count */ nnewlpiterations = SCIPgetNLPIterations(scip) - nlpiterations; heurdata->nlpiterations += nnewlpiterations; /* get LP solution status */ lpsolstat = SCIPgetLPSolstat(scip); assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE && (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip))))); } } /* perform backtracking if a cutoff was detected */ if( cutoff && !backtracked && heurdata->backtrack ) { SCIPdebugMessage(" *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip)); SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) ); /* after backtracking there has to be at least one open node without exceeding the maximal tree depth */ assert(SCIPgetDepthLimit(scip) > SCIPgetDepth(scip)); SCIP_CALL( SCIPnewProbingNode(scip) ); bestfixval = SCIPvarIsBinary(var) ? 1.0 - bestfixval : (SCIPisGT(scip, bestsolval, bestfixval) && SCIPisFeasLE(scip, bestfixval + 1, SCIPvarGetUbLocal(var)) ? bestfixval + 1 : bestfixval - 1); backtracked = TRUE; } else backtracked = FALSE; } while( backtracked ); if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* get new objective value */ objval = SCIPgetLPObjval(scip); if( nnewlpiterations > 0 || !SCIPisEQ(scip, bestsolval, bestfixval) ) { /* we must start again with the first candidate, since the LP solution changed */ nextcand = 0; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("intdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } else nextcand = bestcand+1; /* continue with the next candidate in the following loop */ } SCIPdebugMessage(" -> lpsolstat=%d, objval=%g/%g\n", lpsolstat, objval, searchbound); } /* free temporary memory */ SCIPfreeBufferArray(scip, &fixcands); /* end diving */ SCIP_CALL( SCIPendProbing(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; SCIPdebugMessage("intdiving heuristic finished\n"); return SCIP_OKAY; }
/** problem reading method of reader */ static SCIP_DECL_READERREAD(readerReadBpa) { /*lint --e{715}*/ SCIP_FILE* file; SCIP_Longint* weights; int* ids; SCIP_Bool error; char name[SCIP_MAXSTRLEN]; char format[16]; char buffer[SCIP_MAXSTRLEN]; int capacity; int nitems; int bestsolvalue; int nread; int weight; int nweights; int lineno; *result = SCIP_DIDNOTRUN; /* open file */ file = SCIPfopen(filename, "r"); if( file == NULL ) { SCIPerrorMessage("cannot open file <%s> for reading\n", filename); SCIPprintSysError(filename); return SCIP_NOFILE; } lineno = 0; /* read problem name */ if( !SCIPfeof(file) ) { /* get next line */ if( SCIPfgets(buffer, sizeof(buffer), file) == NULL ) return SCIP_READERROR; lineno++; /* parse dimension line */ sprintf(format, "%%%ds\n", SCIP_MAXSTRLEN); nread = sscanf(buffer, format, name); if( nread == 0 ) { SCIPwarningMessage(scip, "invalid input line %d in file <%s>: <%s>\n", lineno, filename, buffer); return SCIP_READERROR; } SCIPdebugMessage("problem name <%s>\n", name); } /* read problem dimension */ if( !SCIPfeof(file) ) { /* get next line */ if( SCIPfgets(buffer, sizeof(buffer), file) == NULL ) return SCIP_READERROR; lineno++; /* parse dimension line */ nread = sscanf(buffer, "%d %d %d\n", &capacity, &nitems, &bestsolvalue); if( nread < 2 ) { SCIPwarningMessage(scip, "invalid input line %d in file <%s>: <%s>\n", lineno, filename, buffer); return SCIP_READERROR; } SCIPdebugMessage("capacity = <%d>, number of items = <%d>, best known solution = <%d>\n", capacity, nitems, bestsolvalue); } /* allocate buffer memory for storing the weights and ids temporary */ SCIP_CALL( SCIPallocBufferArray(scip, &weights, nitems) ); SCIP_CALL( SCIPallocBufferArray(scip, &ids, nitems) ); /* pasre weights */ nweights = 0; error = FALSE; while( !SCIPfeof(file) && !error ) { /* get next line */ if( SCIPfgets(buffer, sizeof(buffer), file) == NULL ) break; lineno++; /* parse the line */ nread = sscanf(buffer, "%d\n", &weight); if( nread == 0 ) { SCIPwarningMessage(scip, "invalid input line %d in file <%s>: <%s>\n", lineno, filename, buffer); error = TRUE; break; } SCIPdebugMessage("found weight %d <%d>\n", nweights, weight); weights[nweights] = weight; ids[nweights] = nweights; nweights++; if( nweights == nitems ) break; } if( nweights < nitems ) { SCIPwarningMessage(scip, "set nitems from <%d> to <%d> since the file <%s> only contains <%d> weights\n", nitems, weights, filename, weights); nitems = nweights; } if( !error ) { /* create a new problem in SCIP */ SCIP_CALL( SCIPprobdataCreate(scip, name, ids, weights, nitems, (SCIP_Longint)capacity) ); } (void)SCIPfclose(file); SCIPfreeBufferArray(scip, &ids); SCIPfreeBufferArray(scip, &weights); if( error ) return SCIP_READERROR; *result = SCIP_SUCCESS; return SCIP_OKAY; }
/** sets up the problem data */ SCIP_RETCODE SCIPprobdataCreate( SCIP* scip, /**< SCIP data structure */ const char* probname, /**< problem name */ int* ids, /**< array of item ids */ SCIP_Longint* weights, /**< array containing the item weights */ int nitems, /**< number of items */ SCIP_Longint capacity /**< bin capacity */ ) { SCIP_PROBDATA* probdata; SCIP_CONS** conss; char name[SCIP_MAXSTRLEN]; int i; assert(scip != NULL); /* create event handler if it does not exist yet */ if( SCIPfindEventhdlr(scip, EVENTHDLR_NAME) == NULL ) { SCIP_CALL( SCIPincludeEventhdlrBasic(scip, NULL, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecAddedVar, NULL) ); } /* create problem in SCIP and add non-NULL callbacks via setter functions */ SCIP_CALL( SCIPcreateProbBasic(scip, probname) ); SCIP_CALL( SCIPsetProbDelorig(scip, probdelorigBinpacking) ); SCIP_CALL( SCIPsetProbTrans(scip, probtransBinpacking) ); SCIP_CALL( SCIPsetProbDeltrans(scip, probdeltransBinpacking) ); SCIP_CALL( SCIPsetProbInitsol(scip, probinitsolBinpacking) ); SCIP_CALL( SCIPsetProbExitsol(scip, probexitsolBinpacking) ); /* set objective sense */ SCIP_CALL( SCIPsetObjsense(scip, SCIP_OBJSENSE_MINIMIZE) ); /* tell SCIP that the objective will be always integral */ SCIP_CALL( SCIPsetObjIntegral(scip) ); SCIP_CALL( SCIPallocBufferArray(scip, &conss, nitems) ); /* create set covering constraints for each item */ for( i = 0; i < nitems; ++i ) { (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "item_%d", ids[i]); SCIP_CALL( SCIPcreateConsBasicSetcover(scip, &conss[i], name, 0, NULL) ); /* declare constraint modifiable for adding variables during pricing */ SCIP_CALL( SCIPsetConsModifiable(scip, conss[i], TRUE) ); SCIP_CALL( SCIPaddCons(scip, conss[i]) ); } /* create problem data */ SCIP_CALL( probdataCreate(scip, &probdata, NULL, conss, weights, ids, 0, nitems, capacity) ); SCIP_CALL( createInitialColumns(scip, probdata) ); /* set user problem data */ SCIP_CALL( SCIPsetProbData(scip, probdata) ); SCIP_CALL( SCIPpricerBinpackingActivate(scip, conss, weights, ids, nitems, capacity) ); /* free local buffer arrays */ SCIPfreeBufferArray(scip, &conss); return SCIP_OKAY; }
/** selects the branching variable from given candidate array */ static SCIP_RETCODE selectBranchVar( SCIP* scip, /**< SCIP data structure */ SCIP_BRANCHRULE* branchrule, /**< branching rule */ SCIP_VAR** cands, /**< array of branching candidates */ SCIP_Real* candssol, /**< array of candidate solution values */ SCIP_Real* candsscore, /**< array of candidate scores */ int ncands, /**< the number of candidates */ SCIP_VAR** brvar, /**< pointer to store the selected branching candidate or NULL if none */ SCIP_Real* brpoint /**< pointer to store branching point of selected branching variable */ ) { /*lint --e{850}*/ SCIP_BRANCHRULEDATA* branchruledata; SCIP_VAR* cand; SCIP_Real candsol; SCIP_Real bestbranchscore; SCIP_Real scoremin; SCIP_Real scoresum; SCIP_Real scoremax; SCIP_VAR** candssorted; int* candsorigidx; int i; int j; assert(brvar != NULL); assert(brpoint != NULL); (*brvar) = NULL; (*brpoint) = SCIP_INVALID; if( ncands == 0 ) return SCIP_OKAY; branchruledata = SCIPbranchruleGetData(branchrule); assert(branchruledata != NULL); /* sort branching candidates (in a copy), such that same variables are on consecutive positions */ SCIP_CALL( SCIPduplicateBufferArray(scip, &candssorted, cands, ncands) ); SCIP_CALL( SCIPallocBufferArray(scip, &candsorigidx, ncands) ); for( i = 0; i < ncands; ++i ) candsorigidx[i] = i; SCIPsortPtrInt((void**)candssorted, candsorigidx, SCIPvarComp, ncands); bestbranchscore = -1.0; for( i = 0; i < ncands; ++i ) { cand = candssorted[i]; /* there should be no fixed branching candidates */ assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(cand), SCIPvarGetUbLocal(cand))); /* compute min, sum, and max of all registered scores for this variables * set candsol to a valid value, if someone registered one */ scoremin = candsscore[candsorigidx[i]]; scoresum = scoremin; scoremax = scoremin; candsol = candssol[candsorigidx[i]]; for( j = i+1 ; j < ncands && SCIPvarCompare(candssorted[j], cand) == 0; ++j ) { assert(candsscore[candsorigidx[j]] >= 0.0); scoresum += candsscore[candsorigidx[j]]; if( candsscore[candsorigidx[j]] < scoremin ) scoremin = candsscore[candsorigidx[j]]; else if( candsscore[candsorigidx[j]] > scoremax ) scoremax = candsscore[candsorigidx[j]]; /* @todo if there are two valid externcandssol available for the same variable, should we take the one closer to the middle of the domain? */ if( SCIPisInfinity(scip, REALABS(candsol)) ) candsol = candssol[candsorigidx[j]]; } /* set i to last occurrence of cand in candssorted (instead of first one as before), so in next round we look at another variable */ i = j-1; assert(candssorted[i] == cand); /* check if new candidate is better than previous candidate (if any) */ SCIP_CALL( updateBestCandidate(scip, branchruledata, brvar, brpoint, &bestbranchscore, cand, scoremin, scoremax, scoresum, candsol) ); } /* there were candidates, but no variable was selected; this can only happen if the branching points are huge values * for all variables on which we cannot branch * @todo delay the node? */ if( (*brvar) == NULL ) { SCIPerrorMessage("no branching could be created: all external candidates have huge bounds\n"); SCIPABORT(); return SCIP_BRANCHERROR; /*lint !e527*/ } /* free buffer arrays */ SCIPfreeBufferArray(scip, &candssorted); SCIPfreeBufferArray(scip, &candsorigidx); return SCIP_OKAY; }
/** constraint parsing method of constraint handler */ static SCIP_DECL_CONSPARSE(consParseConjunction) { /*lint --e{715}*/ SCIP_CONS** conss; int nconss; int sconss; char* token; char* saveptr; char* nexttokenstart; char* copystr; assert(scip != NULL); assert(conshdlr != NULL); assert(cons != NULL); assert(success != NULL); assert(str != NULL); assert(name != NULL); SCIPdebugMessage("parsing conjunction <%s>\n", name); *success = TRUE; /* allocate memory for constraint in conjunction, initial size is set to 10 */ nconss = 0; sconss = 10; SCIP_CALL( SCIPallocBufferArray(scip, &conss, sconss) ); SCIP_CALL( SCIPduplicateBufferArray(scip, ©str, str, (int)strlen(str)+1) ); /* find '(' at the beginning, string should start with 'conjunction(' */ saveptr = strpbrk(copystr, "("); /*lint !e158*/ if( saveptr == NULL ) { SCIPdebugMessage("error parsing conjunctive constraint: \"%s\"\n", str); *success = FALSE; goto TERMINATE; } /* skip '(' */ ++saveptr; /* remember token start position */ nexttokenstart = saveptr; /* brackets '(' and ')' can exist co we check for them and the constraint delimeter */ saveptr = strpbrk(saveptr, "(,"); /* brackets '(' and ')' can exist in the rest of the string so we need to skip them to find the end of the first * sub-constraint marked by a ',' */ if( saveptr != NULL ) { do { int bracketcounter = 0; if( *saveptr == '(' ) { do { ++bracketcounter; ++saveptr; /* find last ending bracket */ while( bracketcounter > 0 ) { saveptr = strpbrk(saveptr, "()"); if( saveptr != NULL ) { if( *saveptr == '(' ) ++bracketcounter; else --bracketcounter; ++saveptr; } else { SCIPdebugMessage("error parsing conjunctive constraint: \"%s\"\n", str); *success = FALSE; goto TERMINATE; } } saveptr = strpbrk(saveptr, "(,"); } while( saveptr != NULL && *saveptr == '(' ); } /* we found a ',' so the end of the first sub-constraint is determined */ if( saveptr != NULL ) { assert(*saveptr == ','); /* resize constraint array if necessary */ if( nconss == sconss ) { sconss = SCIPcalcMemGrowSize(scip, nconss+1); assert(nconss < sconss); SCIP_CALL( SCIPreallocBufferArray(scip, &conss, sconss) ); } assert(saveptr > nexttokenstart); /* extract token for parsing */ SCIP_CALL( SCIPduplicateBufferArray(scip, &token, nexttokenstart, saveptr - nexttokenstart + 1) ); token[saveptr - nexttokenstart] = '\0'; SCIPdebugMessage("conjunctive parsing token(constraint): %s\n", token); /* parsing a constraint, part of the conjunction */ SCIP_CALL( SCIPparseCons(scip, &(conss[nconss]), token, initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, success) ); SCIPfreeBufferArray(scip, &token); if( *success ) ++nconss; else { SCIPdebugMessage("error parsing conjunctive constraint: \"%s\"\n", str); goto TERMINATE; } /* skip ',' delimeter */ ++saveptr; /* remember token start position */ nexttokenstart = saveptr; saveptr = strpbrk(saveptr, "(,"); } } while( saveptr != NULL ); } /* find end of conjunction constraint */ saveptr = strrchr(nexttokenstart, ')'); if( saveptr == NULL ) { SCIPdebugMessage("error parsing conjunctive constraint: \"%s\"\n", str); *success = FALSE; goto TERMINATE; } /* parse last sub-constraint */ else { /* resize constraint array if necessary */ if( nconss == sconss ) { ++sconss; SCIP_CALL( SCIPreallocBufferArray(scip, &conss, sconss) ); } assert(saveptr > nexttokenstart); /* extract token for parsing */ SCIP_CALL( SCIPduplicateBufferArray(scip, &token, nexttokenstart, saveptr - nexttokenstart + 1) ); token[saveptr - nexttokenstart] = '\0'; SCIPdebugMessage("conjunctive parsing token(constraint): %s\n", token); /* parsing a constraint, part of the conjunction */ SCIP_CALL( SCIPparseCons(scip, &(conss[nconss]), token, initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, success) ); if( *success ) ++nconss; SCIPfreeBufferArray(scip, &token); } assert(nconss > 0 || !(*success)); /* if parsing sub-constraints was fine, create the conjunctive constraint */ if( *success ) { /* create conjunctive constraint */ SCIP_CALL( SCIPcreateConsConjunction(scip, cons, name, nconss, conss, enforce, check, local, modifiable, dynamic) ); } /* free parsed constraints */ for( --nconss; nconss >= 0; --nconss ) { SCIP_CALL( SCIPreleaseCons(scip, &conss[nconss]) ); } TERMINATE: /* free temporary memory */ SCIPfreeBufferArray(scip, ©str); SCIPfreeBufferArray(scip, &conss); return SCIP_OKAY; }
/** transforms given solution of the master problem into solution of the original problem * @todo think about types of epsilons used in this method */ SCIP_RETCODE GCGrelaxTransformMastersolToOrigsol( SCIP* scip, /**< SCIP data structure */ SCIP_SOL* mastersol, /**< solution of the master problem, or NULL for current LP solution */ SCIP_SOL** origsol /**< pointer to store the new created original problem's solution */ ) { SCIP* masterprob; int npricingprobs; int* blocknrs; SCIP_Real* blockvalue; SCIP_Real increaseval; SCIP_VAR** mastervars; SCIP_Real* mastervals; int nmastervars; SCIP_VAR** vars; int nvars; SCIP_Real feastol; int i; int j; assert(scip != NULL); assert(origsol != NULL); masterprob = GCGrelaxGetMasterprob(scip); npricingprobs = GCGrelaxGetNPricingprobs(scip); assert( !SCIPisInfinity(scip, SCIPgetSolOrigObj(masterprob, mastersol)) ); SCIP_CALL( SCIPcreateSol(scip, origsol, GCGrelaxGetProbingheur(scip)) ); SCIP_CALL( SCIPallocBufferArray(scip, &blockvalue, npricingprobs) ); SCIP_CALL( SCIPallocBufferArray(scip, &blocknrs, npricingprobs) ); /* get variables of the master problem and their solution values */ SCIP_CALL( SCIPgetVarsData(masterprob, &mastervars, &nmastervars, NULL, NULL, NULL, NULL) ); assert(mastervars != NULL); assert(nmastervars >= 0); SCIP_CALL( SCIPallocBufferArray(scip, &mastervals, nmastervars) ); SCIP_CALL( SCIPgetSolVals(masterprob, mastersol, nmastervars, mastervars, mastervals) ); /* initialize the block values for the pricing problems */ for( i = 0; i < npricingprobs; i++ ) { blockvalue[i] = 0.0; blocknrs[i] = 0; } /* loop over all given master variables */ for( i = 0; i < nmastervars; i++ ) { SCIP_VAR** origvars; int norigvars; SCIP_Real* origvals; SCIP_Bool isray; int blocknr; origvars = GCGmasterVarGetOrigvars(mastervars[i]); norigvars = GCGmasterVarGetNOrigvars(mastervars[i]); origvals = GCGmasterVarGetOrigvals(mastervars[i]); blocknr = GCGvarGetBlock(mastervars[i]); isray = GCGmasterVarIsRay(mastervars[i]); assert(GCGvarIsMaster(mastervars[i])); assert(!SCIPisFeasNegative(scip, mastervals[i])); /** @todo handle infinite master solution values */ assert(!SCIPisInfinity(scip, mastervals[i])); /* first of all, handle variables representing rays */ if( isray ) { assert(blocknr >= 0); /* we also want to take into account variables representing rays, that have a small value (between normal and feas eps), * so we do no feas comparison here */ if( SCIPisPositive(scip, mastervals[i]) ) { /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { if( SCIPisZero(scip, origvals[j]) ) break; assert(!SCIPisZero(scip, origvals[j])); /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done later) */ if( GCGvarIsLinking(origvars[j]) ) continue; SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[j]), origvals[j] * mastervals[i], SCIPvarGetName(mastervars[i])); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[j], origvals[j] * mastervals[i]) ); } } mastervals[i] = 0.0; continue; } /* handle the variables with value >= 1 to get integral values in original solution */ while( SCIPisFeasGE(scip, mastervals[i], 1.0) ) { /* variable was directly transferred to the master problem (only in linking conss or linking variable) */ /** @todo this may be the wrong place for this case, handle it before the while loop * and remove the similar case in the next while loop */ if( blocknr == -1 ) { assert(norigvars == 1); assert(origvals[0] == 1.0); /* increase the corresponding value */ SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i])); SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) ); mastervals[i] = 0.0; } else { assert(blocknr >= 0); /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { SCIP_VAR* pricingvar; int norigpricingvars; SCIP_VAR** origpricingvars; if( SCIPisZero(scip, origvals[j]) ) break; assert(!SCIPisZero(scip, origvals[j])); /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */ if( GCGvarIsLinking(origvars[j]) ) continue; pricingvar = GCGoriginalVarGetPricingVar(origvars[j]); assert(GCGvarIsPricing(pricingvar)); norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar); origpricingvars = GCGpricingVarGetOrigvars(pricingvar); /* just in case a variable has a value higher than the number of blocks, it represents */ if( norigpricingvars <= blocknrs[blocknr] ) { SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), mastervals[i] * origvals[j], SCIPvarGetName(mastervars[i])); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], mastervals[i] * origvals[j]) ); mastervals[i] = 1.0; } /* this should be default */ else { SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j], SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j]) ); } } mastervals[i] = mastervals[i] - 1.0; blocknrs[blocknr]++; } } } /* loop over all given master variables */ for( i = 0; i < nmastervars; i++ ) { SCIP_VAR** origvars; int norigvars; SCIP_Real* origvals; int blocknr; origvars = GCGmasterVarGetOrigvars(mastervars[i]); norigvars = GCGmasterVarGetNOrigvars(mastervars[i]); origvals = GCGmasterVarGetOrigvals(mastervars[i]); blocknr = GCGvarGetBlock(mastervars[i]); if( SCIPisFeasZero(scip, mastervals[i]) ) { continue; } assert(SCIPisFeasGE(scip, mastervals[i], 0.0) && SCIPisFeasLT(scip, mastervals[i], 1.0)); while( SCIPisFeasPositive(scip, mastervals[i]) ) { assert(GCGvarIsMaster(mastervars[i])); assert(!GCGmasterVarIsRay(mastervars[i])); if( blocknr == -1 ) { assert(norigvars == 1); assert(origvals[0] == 1.0); SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origvars[0]), origvals[0] * mastervals[i], SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origvars[0], origvals[0] * mastervals[i]) ); mastervals[i] = 0.0; } else { increaseval = MIN(mastervals[i], 1.0 - blockvalue[blocknr]); /* loop over all original variables contained in the current master variable */ for( j = 0; j < norigvars; j++ ) { SCIP_VAR* pricingvar; int norigpricingvars; SCIP_VAR** origpricingvars; if( SCIPisZero(scip, origvals[j]) ) continue; /* the original variable is a linking variable: just transfer the solution value of the direct copy (this is done above) */ if( GCGvarIsLinking(origvars[j]) ) continue; pricingvar = GCGoriginalVarGetPricingVar(origvars[j]); assert(GCGvarIsPricing(pricingvar)); norigpricingvars = GCGpricingVarGetNOrigvars(pricingvar); origpricingvars = GCGpricingVarGetOrigvars(pricingvar); if( norigpricingvars <= blocknrs[blocknr] ) { increaseval = mastervals[i]; SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[norigpricingvars-1]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) ); /* increase the corresponding value */ SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[norigpricingvars-1], origvals[j] * increaseval) ); } else { /* increase the corresponding value */ SCIPdebugMessage("Increasing value of %s by %f because of %s\n", SCIPvarGetName(origpricingvars[blocknrs[blocknr]]), origvals[j] * increaseval, SCIPvarGetName(mastervars[i]) ); SCIP_CALL( SCIPincSolVal(scip, *origsol, origpricingvars[blocknrs[blocknr]], origvals[j] * increaseval) ); } } mastervals[i] = mastervals[i] - increaseval; if( SCIPisFeasZero(scip, mastervals[i]) ) { mastervals[i] = 0.0; } blockvalue[blocknr] += increaseval; /* if the value assigned to the block is equal to 1, this block is full and we take the next block */ if( SCIPisFeasGE(scip, blockvalue[blocknr], 1.0) ) { blockvalue[blocknr] = 0.0; blocknrs[blocknr]++; } } } } SCIPfreeBufferArray(scip, &mastervals); SCIPfreeBufferArray(scip, &blocknrs); SCIPfreeBufferArray(scip, &blockvalue); /* if the solution violates one of its bounds by more than feastol * and less than 10*feastol, round it and print a warning */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPgetRealParam(scip, "numerics/feastol", &feastol) ); for( i = 0; i < nvars; ++i ) { SCIP_Real solval; SCIP_Real lb; SCIP_Real ub; solval = SCIPgetSolVal(scip, *origsol, vars[i]); lb = SCIPvarGetLbLocal(vars[i]); ub = SCIPvarGetUbLocal(vars[i]); if( SCIPisFeasGT(scip, solval, ub) && EPSEQ(solval, ub, 10 * feastol) ) { SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], ub) ); SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n", SCIPvarGetName(vars[i]), solval, ub); } else if( SCIPisFeasLT(scip, solval, lb) && EPSEQ(solval, lb, 10 * feastol) ) { SCIP_CALL( SCIPsetSolVal(scip, *origsol, vars[i], lb) ); SCIPwarningMessage(scip, "Variable %s rounded from %g to %g in relaxation solution\n", SCIPvarGetName(vars[i]), solval, lb); } } return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecObjpscostdiving) /*lint --e{715}*/ { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_LPSOLSTAT lpsolstat; SCIP_VAR* var; SCIP_VAR** lpcands; SCIP_Real* lpcandssol; SCIP_Real* lpcandsfrac; SCIP_Real primsol; SCIP_Real frac; SCIP_Real pscostquot; SCIP_Real bestpscostquot; SCIP_Real oldobj; SCIP_Real newobj; SCIP_Real objscale; SCIP_Bool bestcandmayrounddown; SCIP_Bool bestcandmayroundup; SCIP_Bool bestcandroundup; SCIP_Bool mayrounddown; SCIP_Bool mayroundup; SCIP_Bool roundup; SCIP_Bool lperror; SCIP_Longint ncalls; SCIP_Longint nsolsfound; SCIP_Longint nlpiterations; SCIP_Longint maxnlpiterations; int* roundings; int nvars; int varidx; int nlpcands; int startnlpcands; int depth; int maxdepth; int maxdivedepth; int divedepth; int bestcand; int c; assert(heur != NULL); assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(scip != NULL); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DELAYED; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic, if an optimal LP solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */ if( !SCIPisLPSolBasic(scip) ) return SCIP_OKAY; /* don't dive two times at the same node */ if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only apply heuristic, if only a few solutions have been found */ if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) >= heurdata->maxsols ) return SCIP_OKAY; /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */ depth = SCIPgetDepth(scip); maxdepth = SCIPgetMaxDepth(scip); maxdepth = MAX(maxdepth, 30); if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth ) return SCIP_OKAY; /* calculate the maximal number of LP iterations until heuristic is aborted */ nlpiterations = SCIPgetNNodeLPIterations(scip); ncalls = SCIPheurGetNCalls(heur); nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess; maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations); maxnlpiterations += heurdata->maxlpiterofs; /* don't try to dive, if we took too many LP iterations during diving */ if( heurdata->nlpiterations >= maxnlpiterations ) return SCIP_OKAY; /* allow at least a certain number of LP iterations in this dive */ maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER); /* get fractional variables that should be integral */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); /* don't try to dive, if there are no fractional variables */ if( nlpcands == 0 ) return SCIP_OKAY; /* calculate the maximal diving depth */ nvars = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip); if( SCIPgetNSolsFound(scip) == 0 ) maxdivedepth = (int)(heurdata->depthfacnosol * nvars); else maxdivedepth = (int)(heurdata->depthfac * nvars); maxdivedepth = MIN(maxdivedepth, 10*maxdepth); *result = SCIP_DIDNOTFIND; /* get temporary memory for remembering the current soft roundings */ SCIP_CALL( SCIPallocBufferArray(scip, &roundings, nvars) ); BMSclearMemoryArray(roundings, nvars); /* start diving */ SCIP_CALL( SCIPstartDive(scip) ); SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing objpscostdiving heuristic: depth=%d, %d fractionals, dualbound=%g, maxnlpiterations=%"SCIP_LONGINT_FORMAT", maxdivedepth=%d\n", SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), maxnlpiterations, maxdivedepth); /* dive as long we are in the given diving depth and iteration limits and fractional variables exist, but * - if the last objective change was in a direction, that corresponds to a feasible rounding, we continue in any case * - if possible, we dive at least with the depth 10 * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving */ lperror = FALSE; lpsolstat = SCIP_LPSOLSTAT_OPTIMAL; divedepth = 0; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; startnlpcands = nlpcands; while( !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0 && (divedepth < 10 || nlpcands <= startnlpcands - divedepth/2 || (divedepth < maxdivedepth && nlpcands <= startnlpcands - divedepth/10 && heurdata->nlpiterations < maxnlpiterations)) && !SCIPisStopped(scip) ) { SCIP_RETCODE retcode; divedepth++; /* choose variable for objective change: * - prefer variables that may not be rounded without destroying LP feasibility: * - of these variables, change objective value of variable with largest rel. difference of pseudo cost values * - if all remaining fractional variables may be rounded without destroying LP feasibility: * - change objective value of variable with largest rel. difference of pseudo cost values */ bestcand = -1; bestpscostquot = -1.0; bestcandmayrounddown = TRUE; bestcandmayroundup = TRUE; bestcandroundup = FALSE; for( c = 0; c < nlpcands; ++c ) { var = lpcands[c]; mayrounddown = SCIPvarMayRoundDown(var); mayroundup = SCIPvarMayRoundUp(var); primsol = lpcandssol[c]; frac = lpcandsfrac[c]; if( mayrounddown || mayroundup ) { /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */ if( bestcandmayrounddown || bestcandmayroundup ) { /* choose rounding direction: * - if variable may be rounded in both directions, round corresponding to the pseudo cost values * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding * the current fractional solution */ roundup = FALSE; if( mayrounddown && mayroundup ) calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); else if( mayrounddown ) calcPscostQuot(scip, var, primsol, frac, +1, &pscostquot, &roundup); else calcPscostQuot(scip, var, primsol, frac, -1, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate */ if( pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = mayrounddown; bestcandmayroundup = mayroundup; bestcandroundup = roundup; } } } else { /* the candidate may not be rounded: calculate pseudo cost quotient and preferred direction */ calcPscostQuot(scip, var, primsol, frac, 0, &pscostquot, &roundup); /* prefer variables, that have already been soft rounded but failed to get integral */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] != 0 ) pscostquot *= 1000.0; /* check, if candidate is new best candidate: prefer unroundable candidates in any case */ if( bestcandmayrounddown || bestcandmayroundup || pscostquot > bestpscostquot ) { bestcand = c; bestpscostquot = pscostquot; bestcandmayrounddown = FALSE; bestcandmayroundup = FALSE; bestcandroundup = roundup; } } } assert(bestcand != -1); /* if all candidates are roundable, try to round the solution */ if( bestcandmayrounddown || bestcandmayroundup ) { SCIP_Bool success; /* create solution from diving LP and try to round it */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) ); if( success ) { SCIPdebugMessage("objpscostdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } } var = lpcands[bestcand]; /* check, if the best candidate was already subject to soft rounding */ varidx = SCIPvarGetProbindex(var); assert(0 <= varidx && varidx < nvars); if( roundings[varidx] == +1 ) { /* variable was already soft rounded upwards: hard round it downwards */ SCIP_CALL( SCIPchgVarUbDive(scip, var, SCIPfeasFloor(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded upwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else if( roundings[varidx] == -1 ) { /* variable was already soft rounded downwards: hard round it upwards */ SCIP_CALL( SCIPchgVarLbDive(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) ); SCIPdebugMessage(" dive %d/%d: var <%s>, round=%u/%u, sol=%g, was already soft rounded downwards -> bounds=[%g,%g]\n", divedepth, maxdivedepth, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var)); } else { assert(roundings[varidx] == 0); /* apply soft rounding of best candidate via a change in the objective value */ objscale = divedepth * 1000.0; oldobj = SCIPgetVarObjDive(scip, var); if( bestcandroundup ) { /* soft round variable up: make objective value (more) negative */ if( oldobj < 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MIN(newobj, -objscale); /* remember, that this variable was soft rounded upwards */ roundings[varidx] = +1; } else { /* soft round variable down: make objective value (more) positive */ if( oldobj > 0.0 ) newobj = objscale * oldobj; else newobj = -objscale * oldobj; newobj = MAX(newobj, objscale); /* remember, that this variable was soft rounded downwards */ roundings[varidx] = -1; } SCIP_CALL( SCIPchgVarObjDive(scip, var, newobj) ); SCIPdebugMessage(" dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, bounds=[%g,%g], obj=%g, newobj=%g\n", divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations, SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup, lpcandssol[bestcand], SCIPgetVarLbDive(scip, var), SCIPgetVarUbDive(scip, var), oldobj, newobj); } /* resolve the diving LP */ nlpiterations = SCIPgetNLPIterations(scip); retcode = SCIPsolveDiveLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, NULL); lpsolstat = SCIPgetLPSolstat(scip); /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY ) { SCIP_CALL( retcode ); } #endif SCIPwarningMessage(scip, "Error while solving LP in Objpscostdiving heuristic; LP solve terminated with code <%d>\n", retcode); SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n"); } if( lperror ) break; /* update iteration count */ heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations; /* get LP solution status and fractional variables, that should be integral */ if( lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { /* get new fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) ); } SCIPdebugMessage(" -> lpsolstat=%d, nfrac=%d\n", lpsolstat, nlpcands); } /* check if a solution has been found */ if( nlpcands == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* create solution from diving LP */ SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) ); SCIPdebugMessage("objpscostdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol)); /* try to add solution to SCIP */ SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check, if solution was feasible and good enough */ if( success ) { SCIPdebugMessage(" -> solution was feasible and good enough\n"); *result = SCIP_FOUNDSOL; } } /* end diving */ SCIP_CALL( SCIPendDive(scip) ); if( *result == SCIP_FOUNDSOL ) heurdata->nsuccess++; /* free temporary memory for remembering the current soft roundings */ SCIPfreeBufferArray(scip, &roundings); SCIPdebugMessage("objpscostdiving heuristic finished\n"); return SCIP_OKAY; }
/** creates and captures a linear constraint * * @note the constraint gets captured, hence at one point you have to release it using the method {@link releaseCons()} */ JNIEXPORT jlong JNISCIPCONSLINEAR(createConsLinear)( JNIEnv* env, /**< JNI environment variable */ jobject jobj, /**< JNI class pointer */ jlong jscip, /**< SCIP data structure */ jstring jname, /**< name of constraint */ jint jnvars, /**< number of nonzeros in the constraint */ jlongArray jvars, /**< array with variables of constraint entries */ jdoubleArray jvals, /**< array with coefficients of constraint entries */ jdouble jlhs, /**< left hand side of constraint */ jdouble jrhs, /**< right hand side of constraint */ jboolean initial, /**< should the LP relaxation of constraint be in the initial LP? * Usually set to TRUE. Set to FALSE for 'lazy constraints'. */ jboolean separate, /**< should the constraint be separated during LP processing? * Usually set to TRUE. */ jboolean enforce, /**< should the constraint be enforced during node processing? * TRUE for model constraints, FALSE for additional, redundant constraints. */ jboolean check, /**< should the constraint be checked for feasibility? * TRUE for model constraints, FALSE for additional, redundant constraints. */ jboolean propagate, /**< should the constraint be propagated during node processing? * Usually set to TRUE. */ jboolean local, /**< is constraint only valid locally? * Usually set to FALSE. Has to be set to TRUE, e.g., for branching constraints. */ jboolean modifiable, /**< is constraint modifiable (subject to column generation)? * Usually set to FALSE. In column generation applications, set to TRUE if pricing * adds coefficients to this constraint. */ jboolean dynamic, /**< is constraint subject to aging? * Usually set to FALSE. Set to TRUE for own cuts which * are seperated as constraints. */ jboolean removable, /**< should the relaxation be removed from the LP due to aging or cleanup? * Usually set to FALSE. Set to TRUE for 'lazy constraints' and 'user cuts'. */ jboolean stickingatnode /**< should the constraint always be kept at the node where it was added, even * if it may be moved to a more global node? * Usually set to FALSE. Set to TRUE to for constraints that represent node data. */ ) { SCIP* scip; SCIP_CONS* cons; const char* name; int nvars; /* convert JNI pointer into C pointer */ scip = (SCIP*) (size_t) jscip; assert(scip != NULL); /* convert JNI string into C const char* */ name = (*env)->GetStringUTFChars(env, jname, NULL); if( name == NULL ) SCIPABORT(); /* create linear constraint with zero variables */ JNISCIP_CALL( SCIPcreateConsLinear(scip, &cons, name, 0, NULL, NULL, (SCIP_Real) jlhs, (SCIP_Real) jrhs, (SCIP_Bool) initial, (SCIP_Bool) separate, (SCIP_Bool) enforce, (SCIP_Bool) check, (SCIP_Bool) propagate, (SCIP_Bool) local, (SCIP_Bool) modifiable, (SCIP_Bool) dynamic, (SCIP_Bool) removable, (SCIP_Bool) stickingatnode) ); /* convert JNI integer into integer */ nvars = (int)jnvars; if( nvars > 0 ) { jlong* vars; jdouble* vals; int v; JNISCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) ); JNISCIP_CALL( SCIPallocBufferArray(scip, &vals, nvars) ); (*env)->GetLongArrayRegion(env, jvars, 0, nvars, vars); (*env)->GetDoubleArrayRegion(env, jvals, 0, nvars, vals); for( v = 0; v < nvars; ++v ) { JNISCIP_CALL( SCIPaddCoefLinear(scip, cons, (SCIP_VAR*)(size_t)vars[v], (SCIP_Real)vals[v])); } SCIPfreeBufferArray(scip, &vals); SCIPfreeBufferArray(scip, &vars); } /* relase string object */ (*env)->ReleaseStringUTFChars(env, jname, name); return (jlong)(size_t)cons; }
/** creates a subproblem for subscip by fixing a number of variables */ static SCIP_RETCODE createSubproblem( SCIP* scip, /**< original SCIP data structure */ SCIP* subscip, /**< SCIP data structure for the subproblem */ SCIP_VAR** subvars, /**< the variables of the subproblem */ SCIP_Real minfixingrate, /**< percentage of integer variables that have to be fixed */ unsigned int* randseed, /**< a seed value for the random number generator */ SCIP_Bool uselprows /**< should subproblem be created out of the rows in the LP rows? */ ) { SCIP_VAR** vars; /* original scip variables */ SCIP_SOL* sol; /* pool of solutions */ SCIP_Bool* marked; /* array of markers, which variables to fixed */ SCIP_Bool fixingmarker; /* which flag should label a fixed variable? */ int nvars; int nbinvars; int nintvars; int i; int j; int nmarkers; /* get required data of the original problem */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); sol = SCIPgetBestSol(scip); assert(sol != NULL); SCIP_CALL( SCIPallocBufferArray(scip, &marked, nbinvars+nintvars) ); if( minfixingrate > 0.5 ) { nmarkers = nbinvars + nintvars - (int) SCIPfloor(scip, minfixingrate*(nbinvars+nintvars)); fixingmarker = FALSE; } else { nmarkers = (int) SCIPceil(scip, minfixingrate*(nbinvars+nintvars)); fixingmarker = TRUE; } assert( 0 <= nmarkers && nmarkers <= SCIPceil(scip,(nbinvars+nintvars)/2.0 ) ); j = 0; BMSclearMemoryArray(marked, nbinvars+nintvars); while( j < nmarkers ) { do { i = SCIPgetRandomInt(0, nbinvars+nintvars-1, randseed); } while( marked[i] ); marked[i] = TRUE; j++; } assert( j == nmarkers ); /* change bounds of variables of the subproblem */ for( i = 0; i < nbinvars + nintvars; i++ ) { /* fix all randomly marked variables */ if( marked[i] == fixingmarker ) { SCIP_Real solval; SCIP_Real lb; SCIP_Real ub; solval = SCIPgetSolVal(scip, sol, vars[i]); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); assert(SCIPisLE(scip, lb, ub)); /* due to dual reductions, it may happen that the solution value is not in the variable's domain anymore */ if( SCIPisLT(scip, solval, lb) ) solval = lb; else if( SCIPisGT(scip, solval, ub) ) solval = ub; /* perform the bound change */ if( !SCIPisInfinity(scip, solval) && !SCIPisInfinity(scip, -solval) ) { SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], solval) ); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], solval) ); } } } if( uselprows ) { SCIP_ROW** rows; /* original scip rows */ int nrows; /* get the rows and their number */ SCIP_CALL( SCIPgetLPRowsData(scip, &rows, &nrows) ); /* copy all rows to linear constraints */ for( i = 0; i < nrows; i++ ) { SCIP_CONS* cons; SCIP_VAR** consvars; SCIP_COL** cols; SCIP_Real constant; SCIP_Real lhs; SCIP_Real rhs; SCIP_Real* vals; int nnonz; /* ignore rows that are only locally valid */ if( SCIProwIsLocal(rows[i]) ) continue; /* get the row's data */ constant = SCIProwGetConstant(rows[i]); lhs = SCIProwGetLhs(rows[i]) - constant; rhs = SCIProwGetRhs(rows[i]) - constant; vals = SCIProwGetVals(rows[i]); nnonz = SCIProwGetNNonz(rows[i]); cols = SCIProwGetCols(rows[i]); assert( lhs <= rhs ); /* allocate memory array to be filled with the corresponding subproblem variables */ SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nnonz) ); for( j = 0; j < nnonz; j++ ) consvars[j] = subvars[SCIPvarGetProbindex(SCIPcolGetVar(cols[j]))]; /* create a new linear constraint and add it to the subproblem */ SCIP_CALL( SCIPcreateConsLinear(subscip, &cons, SCIProwGetName(rows[i]), nnonz, consvars, vals, lhs, rhs, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE) ); SCIP_CALL( SCIPaddCons(subscip, cons) ); SCIP_CALL( SCIPreleaseCons(subscip, &cons) ); /* free temporary memory */ SCIPfreeBufferArray(scip, &consvars); } } SCIPfreeBufferArray(scip, &marked); return SCIP_OKAY; }
/** execution method of presolver */ static SCIP_DECL_PRESOLEXEC(presolExecDualagg) { /*lint --e{715}*/ SCIPMILPMATRIX* matrix; SCIP_Bool initialized; SCIP_Bool complete; assert(result != NULL); *result = SCIP_DIDNOTRUN; if( (SCIPgetStage(scip) != SCIP_STAGE_PRESOLVING) || SCIPinProbing(scip) || SCIPisNLPEnabled(scip) ) return SCIP_OKAY; if( SCIPisStopped(scip) || SCIPgetNActivePricers(scip) > 0 ) return SCIP_OKAY; if( SCIPgetNBinVars(scip) == 0 ) return SCIP_OKAY; if( !SCIPallowDualReds(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; matrix = NULL; SCIP_CALL( SCIPmatrixCreate(scip, &matrix, &initialized, &complete) ); /* we only work on pure MIPs currently */ if( initialized && complete ) { AGGRTYPE* aggtypes; SCIP_VAR** binvars; int nvaragg; int ncols; ncols = SCIPmatrixGetNColumns(matrix); nvaragg = 0; SCIP_CALL( SCIPallocBufferArray(scip, &aggtypes, ncols) ); BMSclearMemoryArray(aggtypes, ncols); SCIP_CALL( SCIPallocBufferArray(scip, &binvars, ncols) ); SCIPdebug( BMSclearMemoryArray(binvars, ncols) ); /* search for aggregations */ SCIP_CALL( findUplockAggregations(scip, matrix, &nvaragg, aggtypes, binvars) ); SCIP_CALL( findDownlockAggregations(scip, matrix, &nvaragg, aggtypes, binvars) ); /* apply aggregations, if we found any */ if( nvaragg > 0 ) { int v; for( v = 0; v < ncols; v++ ) { if( aggtypes[v] != NOAGG ) { SCIP_Bool infeasible; SCIP_Bool redundant; SCIP_Bool aggregated; SCIP_Real ub; SCIP_Real lb; ub = SCIPmatrixGetColUb(matrix, v); lb = SCIPmatrixGetColLb(matrix, v); /* aggregate variable */ assert(binvars[v] != NULL); if( aggtypes[v] == BIN0UBOUND ) { SCIP_CALL( SCIPaggregateVars(scip, SCIPmatrixGetVar(matrix, v), binvars[v], 1.0, ub-lb, ub, &infeasible, &redundant, &aggregated) ); } else { assert(aggtypes[v] == BIN0LBOUND); SCIP_CALL( SCIPaggregateVars(scip, SCIPmatrixGetVar(matrix, v), binvars[v], 1.0, lb-ub, lb, &infeasible, &redundant, &aggregated) ); } /* infeasible aggregation */ if( infeasible ) { SCIPdebugMessage(" -> infeasible aggregation\n"); *result = SCIP_CUTOFF; return SCIP_OKAY; } if( aggregated ) (*naggrvars)++; } } /* set result pointer */ if( (*naggrvars) > 0 ) *result = SCIP_SUCCESS; } SCIPfreeBufferArray(scip, &binvars); SCIPfreeBufferArray(scip, &aggtypes); } SCIPmatrixFree(scip, &matrix); return SCIP_OKAY; }
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */ SCIP_RETCODE SCIPapplyZeroobj( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minimprove, /**< factor by which zeroobj should at least improve the incumbent */ SCIP_Longint nnodes /**< node limit for the subproblem */ ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HEURDATA* heurdata; /* heuristic's private data structure */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_Real large; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_Bool valid; SCIP_RETCODE retcode; SCIP_SOL** subsols; int nsubsols; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(nnodes >= 0); assert(0.0 <= minimprove && minimprove <= 1.0); *result = SCIP_DIDNOTRUN; /* only call heuristic once at the root */ if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only call the heuristic if we do not have an incumbent */ if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */ valid = FALSE; /* copy complete SCIP instance */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) ); SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); /* create event handler for LP events */ eventhdlr = NULL; SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); /* get variable image and change to 0.0 in sub-SCIP */ for( i = 0; i < nvars; i++ ) { SCIP_Real adjustedbound; SCIP_Real lb; SCIP_Real ub; SCIP_Real inf; subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) ); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); inf = SCIPinfinity(subscip); /* adjust infinite bounds in order to avoid that variables with non-zero objective * get fixed to infinite value in zeroobj subproblem */ if( SCIPisInfinity(subscip, ub ) ) { adjustedbound = MAX(large, lb+large); adjustedbound = MIN(adjustedbound, inf); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) ); } if( SCIPisInfinity(subscip, -lb ) ) { adjustedbound = MIN(-large, ub-large); adjustedbound = MAX(adjustedbound, -inf); SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) ); } } /* free hash map */ SCIPhashmapFree(&varmapfw); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable expensive techniques that merely work on the dual bound */ /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); if( !SCIPisParamFixed(subscip, "presolving/maxrounds") ) { SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) ); } /* use best dfs node selection */ if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* disable feaspump and fracdiving */ if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) ); } if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) ); } /* restrict LP iterations */ SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) ); SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) ); #ifdef SCIP_DEBUG /* for debugging zeroobj, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; SCIP_CONS* origobjcons; #ifndef NDEBUG int nobjvars; nobjvars = 0; #endif cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound(scip) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) ); for( i = 0; i < nvars; ++i) { if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) ) { SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) ); #ifndef NDEBUG nobjvars++; #endif } } SCIP_CALL( SCIPaddCons(subscip, origobjcons) ); SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) ); assert(nobjvars == SCIPgetNObjVars(scip)); } /* catch LP events of sub-SCIP */ SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); if( success ) *result = SCIP_FOUNDSOL; } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/* Read SAT formula in "CNF File Format". * * The specification is taken from the * * Satisfiability Suggested Format * * Online available at http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/Benchmarks/SAT/satformat.ps * * The method reads all files of CNF format. Other formats (SAT, SATX, SATE) are not supported. */ static SCIP_RETCODE readCnf( SCIP* scip, /**< SCIP data structure */ SCIP_FILE* file /**< input file */ ) { SCIP_RETCODE retcode; SCIP_VAR** vars; SCIP_VAR** clausevars; SCIP_CONS* cons; int* varsign; char* tok; char* nexttok; char line[MAXLINELEN]; char format[SCIP_MAXSTRLEN]; char varname[SCIP_MAXSTRLEN]; char s[SCIP_MAXSTRLEN]; SCIP_Bool dynamicconss; SCIP_Bool dynamiccols; SCIP_Bool dynamicrows; SCIP_Bool useobj; int linecount; int clauselen; int clausenum; int nvars; int nclauses; int varnum; int v; assert(scip != NULL); assert(file != NULL); retcode = SCIP_OKAY; linecount = 0; /* read header */ SCIP_CALL( readCnfLine(scip, file, line, (int) sizeof(line), &linecount) ); if( *line != 'p' ) { readError(scip, linecount, "problem declaration line expected"); return SCIP_READERROR; } if( sscanf(line, "p %8s %d %d", format, &nvars, &nclauses) != 3 ) { readError(scip, linecount, "invalid problem declaration (must be 'p cnf <nvars> <nclauses>')"); return SCIP_READERROR; } if( strcmp(format, "cnf") != 0 ) { (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid format tag <%s> (must be 'cnf')", format); readError(scip, linecount, s); return SCIP_READERROR; } if( nvars <= 0 ) { (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid number of variables <%d> (must be positive)", nvars); readError(scip, linecount, s); return SCIP_READERROR; } if( nclauses <= 0 ) { (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid number of clauses <%d> (must be positive)", nclauses); readError(scip, linecount, s); return SCIP_READERROR; } /* get parameter values */ SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/dynamicconss", &dynamicconss) ); SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/dynamiccols", &dynamiccols) ); SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/dynamicrows", &dynamicrows) ); SCIP_CALL( SCIPgetBoolParam(scip, "reading/cnfreader/useobj", &useobj) ); /* get temporary memory */ SCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &clausevars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &varsign, nvars) ); /* create the variables */ for( v = 0; v < nvars; ++v ) { (void) SCIPsnprintf(varname, SCIP_MAXSTRLEN, "x%d", v+1); SCIP_CALL( SCIPcreateVar(scip, &vars[v], varname, 0.0, 1.0, 0.0, SCIP_VARTYPE_BINARY, !dynamiccols, dynamiccols, NULL, NULL, NULL, NULL, NULL) ); SCIP_CALL( SCIPaddVar(scip, vars[v]) ); varsign[v] = 0; } /* read clauses */ clausenum = 0; clauselen = 0; do { retcode = readCnfLine(scip, file, line, (int) sizeof(line), &linecount); if( retcode != SCIP_OKAY ) goto TERMINATE; if( *line != '\0' && *line != '%' ) { tok = SCIPstrtok(line, " \f\n\r\t", &nexttok); while( tok != NULL ) { /* parse literal and check for errors */ if( sscanf(tok, "%d", &v) != 1 ) { (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid literal <%s>", tok); readError(scip, linecount, s); retcode = SCIP_READERROR; goto TERMINATE; } /* interpret literal number: v == 0: end of clause, v < 0: negated literal, v > 0: positive literal */ if( v == 0 ) { /* end of clause: construct clause and add it to SCIP */ if( clauselen == 0 ) readWarning(scip, linecount, "empty clause detected in line -- problem infeasible"); clausenum++; (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "c%d", clausenum); if( SCIPfindConshdlr(scip, "logicor") != NULL ) { /* if the constraint handler logicor exit create a logicor constraint */ SCIP_CALL( SCIPcreateConsLogicor(scip, &cons, s, clauselen, clausevars, !dynamicrows, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, dynamicconss, dynamicrows, FALSE) ); } else if( SCIPfindConshdlr(scip, "setppc") != NULL ) { /* if the constraint handler logicor does not exit but constraint * handler setppc create a setppc constraint */ SCIP_CALL( SCIPcreateConsSetcover(scip, &cons, s, clauselen, clausevars, !dynamicrows, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, dynamicconss, dynamicrows, FALSE) ); } else { /* if none of the previous constraint handler exits create a linear * constraint */ SCIP_Real* vals; int i; SCIP_CALL( SCIPallocBufferArray(scip, &vals, clauselen) ); for( i = 0; i < clauselen; ++i ) vals[i] = 1.0; SCIP_CALL( SCIPcreateConsLinear(scip, &cons, s, clauselen, clausevars, vals, 1.0, SCIPinfinity(scip), !dynamicrows, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, dynamicconss, dynamicrows, FALSE) ); SCIPfreeBufferArray(scip, &vals); } SCIP_CALL( SCIPaddCons(scip, cons) ); SCIP_CALL( SCIPreleaseCons(scip, &cons) ); clauselen = 0; } else if( v >= -nvars && v <= nvars ) { if( clauselen >= nvars ) { readError(scip, linecount, "too many literals in clause"); retcode = SCIP_READERROR; goto TERMINATE; } /* add literal to clause */ varnum = ABS(v)-1; if( v < 0 ) { SCIP_CALL( SCIPgetNegatedVar(scip, vars[varnum], &clausevars[clauselen]) ); varsign[varnum]--; } else { clausevars[clauselen] = vars[varnum]; varsign[varnum]++; } clauselen++; } else { (void) SCIPsnprintf(s, SCIP_MAXSTRLEN, "invalid variable number <%d>", ABS(v)); readError(scip, linecount, s); retcode = SCIP_READERROR; goto TERMINATE; } /* get next token */ tok = SCIPstrtok(NULL, " \f\n\r\t", &nexttok); } } } while( *line != '\0' && *line != '%' ); /* check for additional literals */ if( clauselen > 0 ) { SCIPwarningMessage(scip, "found %d additional literals after last clause\n", clauselen); } /* check number of clauses */ if( clausenum != nclauses ) { SCIPwarningMessage(scip, "expected %d clauses, but found %d\n", nclauses, clausenum); } TERMINATE: /* change objective values and release variables */ SCIP_CALL( SCIPsetObjsense(scip, SCIP_OBJSENSE_MAXIMIZE) ); if( useobj ) { for( v = 0; v < nvars; ++v ) { SCIP_CALL( SCIPchgVarObj(scip, vars[v], (SCIP_Real)varsign[v]) ); SCIP_CALL( SCIPreleaseVar(scip, &vars[v]) ); } } /* free temporary memory */ SCIPfreeBufferArray(scip, &varsign); SCIPfreeBufferArray(scip, &clausevars); SCIPfreeBufferArray(scip, &vars); return retcode; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecZirounding) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* sol; SCIP_VAR** lpcands; SCIP_VAR** zilpcands; SCIP_VAR** slackvars; SCIP_Real* upslacks; SCIP_Real* downslacks; SCIP_Real* activities; SCIP_Real* slackvarcoeffs; SCIP_Bool* rowneedsslackvar; SCIP_ROW** rows; SCIP_Real* lpcandssol; SCIP_Real* solarray; SCIP_Longint nlps; int currentlpcands; int nlpcands; int nimplfracs; int i; int c; int nslacks; int nroundings; SCIP_RETCODE retcode; SCIP_Bool improvementfound; SCIP_Bool numericalerror; assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0); assert(result != NULL); assert(SCIPhasCurrentNodeLP(scip)); *result = SCIP_DIDNOTRUN; /* do not call heuristic of node was already detected to be infeasible */ if( nodeinfeasible ) return SCIP_OKAY; /* only call heuristic if an optimal LP-solution is at hand */ if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) return SCIP_OKAY; /* only call heuristic, if the LP objective value is smaller than the cutoff bound */ if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* Do not call heuristic if deactivation check is enabled and percentage of found solutions in relation * to number of calls falls below heurdata->stoppercentage */ if( heurdata->stopziround && SCIPheurGetNCalls(heur) >= heurdata->minstopncalls && SCIPheurGetNSolsFound(heur)/(SCIP_Real)SCIPheurGetNCalls(heur) < heurdata->stoppercentage ) return SCIP_OKAY; /* assure that heuristic has not already been called after the last LP had been solved */ nlps = SCIPgetNLPs(scip); if( nlps == heurdata->lastlp ) return SCIP_OKAY; heurdata->lastlp = nlps; /* get fractional variables */ SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, NULL, &nlpcands, NULL, &nimplfracs) ); nlpcands = nlpcands + nimplfracs; /* make sure that there is at least one fractional variable that should be integral */ if( nlpcands == 0 ) return SCIP_OKAY; assert(nlpcands > 0); assert(lpcands != NULL); assert(lpcandssol != NULL); /* get LP rows data */ rows = SCIPgetLPRows(scip); nslacks = SCIPgetNLPRows(scip); /* cannot do anything if LP is empty */ if( nslacks == 0 ) return SCIP_OKAY; assert(rows != NULL); assert(nslacks > 0); /* get the working solution from heuristic's local data */ sol = heurdata->sol; assert(sol != NULL); *result = SCIP_DIDNOTFIND; solarray = NULL; zilpcands = NULL; retcode = SCIP_OKAY; /* copy the current LP solution to the working solution and allocate memory for local data */ SCIP_CALL( SCIPlinkLPSol(scip, sol) ); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &solarray, nlpcands), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &zilpcands, nlpcands), TERMINATE); /* copy necessary data to local arrays */ BMScopyMemoryArray(solarray, lpcandssol, nlpcands); BMScopyMemoryArray(zilpcands, lpcands, nlpcands); /* allocate buffer data arrays */ SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvars, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &upslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &downslacks, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &slackvarcoeffs, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &rowneedsslackvar, nslacks), TERMINATE); SCIP_CALL_TERMINATE(retcode, SCIPallocBufferArray(scip, &activities, nslacks), TERMINATE); BMSclearMemoryArray(slackvars, nslacks); BMSclearMemoryArray(slackvarcoeffs, nslacks); BMSclearMemoryArray(rowneedsslackvar, nslacks); numericalerror = FALSE; nroundings = 0; /* loop over fractional variables and involved LP rows to find all rows which require a slack variable */ for( c = 0; c < nlpcands; ++c ) { SCIP_VAR* cand; SCIP_ROW** candrows; int r; int ncandrows; cand = zilpcands[c]; assert(cand != NULL); assert(SCIPcolGetLPPos(SCIPvarGetCol(cand)) >= 0); candrows = SCIPcolGetRows(SCIPvarGetCol(cand)); ncandrows = SCIPcolGetNLPNonz(SCIPvarGetCol(cand)); assert(candrows == NULL || ncandrows > 0); for( r = 0; r < ncandrows; ++r ) { int rowpos; assert(candrows != NULL); /* to please flexelint */ assert(candrows[r] != NULL); rowpos = SCIProwGetLPPos(candrows[r]); if( rowpos >= 0 && SCIPisFeasEQ(scip, SCIProwGetLhs(candrows[r]), SCIProwGetRhs(candrows[r])) ) { rowneedsslackvar[rowpos] = TRUE; SCIPdebugMessage(" Row %s needs slack variable for variable %s\n", SCIProwGetName(candrows[r]), SCIPvarGetName(cand)); } } } /* calculate row slacks for every every row that belongs to the current LP and ensure, that the current solution * has no violated constraint -- if any constraint is violated, i.e. a slack is significantly smaller than zero, * this will cause the termination of the heuristic because Zirounding does not provide feasibility recovering */ for( i = 0; i < nslacks; ++i ) { SCIP_ROW* row; SCIP_Real lhs; SCIP_Real rhs; row = rows[i]; assert(row != NULL); lhs = SCIProwGetLhs(row); rhs = SCIProwGetRhs(row); /* get row activity */ activities[i] = SCIPgetRowActivity(scip, row); assert(SCIPisFeasLE(scip, lhs, activities[i]) && SCIPisFeasLE(scip, activities[i], rhs)); /* in special case if LHS or RHS is (-)infinity slacks have to be initialized as infinity */ if( SCIPisInfinity(scip, -lhs) ) downslacks[i] = SCIPinfinity(scip); else downslacks[i] = activities[i] - lhs; if( SCIPisInfinity(scip, rhs) ) upslacks[i] = SCIPinfinity(scip); else upslacks[i] = rhs - activities[i]; SCIPdebugMessage("lhs:%5.2f <= act:%5.2g <= rhs:%5.2g --> down: %5.2g, up:%5.2g\n", lhs, activities[i], rhs, downslacks[i], upslacks[i]); /* row is an equation. Try to find a slack variable in the row, i.e., * a continuous variable which occurs only in this row. If no such variable exists, * there is no hope for an IP-feasible solution in this round */ if( SCIPisFeasEQ(scip, lhs, rhs) && rowneedsslackvar[i] ) { /* @todo: This is only necessary for rows containing fractional variables. */ rowFindSlackVar(scip, row, &(slackvars[i]), &(slackvarcoeffs[i])); if( slackvars[i] == NULL ) { SCIPdebugMessage("No slack variable found for equation %s, terminating ZI Round heuristic\n", SCIProwGetName(row)); goto TERMINATE; } else { SCIP_Real ubslackvar; SCIP_Real lbslackvar; SCIP_Real solvalslackvar; SCIP_Real coeffslackvar; SCIP_Real ubgap; SCIP_Real lbgap; assert(SCIPvarGetType(slackvars[i]) == SCIP_VARTYPE_CONTINUOUS); solvalslackvar = SCIPgetSolVal(scip, sol, slackvars[i]); ubslackvar = SCIPvarGetUbGlobal(slackvars[i]); lbslackvar = SCIPvarGetLbGlobal(slackvars[i]); coeffslackvar = slackvarcoeffs[i]; assert(!SCIPisFeasZero(scip, coeffslackvar)); ubgap = ubslackvar - solvalslackvar; lbgap = solvalslackvar - lbslackvar; if( SCIPisFeasZero(scip, ubgap) ) ubgap = 0.0; if( SCIPisFeasZero(scip, lbgap) ) lbgap = 0.0; if( SCIPisFeasPositive(scip, coeffslackvar) ) { if( !SCIPisInfinity(scip, lbslackvar) ) upslacks[i] += coeffslackvar * lbgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, ubslackvar) ) downslacks[i] += coeffslackvar * ubgap; else downslacks[i] = SCIPinfinity(scip); } else { if( !SCIPisInfinity(scip, ubslackvar) ) upslacks[i] -= coeffslackvar * ubgap; else upslacks[i] = SCIPinfinity(scip); if( !SCIPisInfinity(scip, lbslackvar) ) downslacks[i] -= coeffslackvar * lbgap; else downslacks[i] = SCIPinfinity(scip); } SCIPdebugMessage(" Slack variable for row %s at pos %d: %g <= %s = %g <= %g; Coeff %g, upslack = %g, downslack = %g \n", SCIProwGetName(row), SCIProwGetLPPos(row), lbslackvar, SCIPvarGetName(slackvars[i]), solvalslackvar, ubslackvar, coeffslackvar, upslacks[i], downslacks[i]); } } /* due to numerical inaccuracies, the rows might be feasible, even if the slacks are * significantly smaller than zero -> terminate */ if( SCIPisFeasLT(scip, upslacks[i], 0.0) || SCIPisFeasLT(scip, downslacks[i], 0.0) ) goto TERMINATE; } assert(nslacks == 0 || (upslacks != NULL && downslacks != NULL && activities != NULL)); /* initialize number of remaining variables and flag to enter the main loop */ currentlpcands = nlpcands; improvementfound = TRUE; /* iterate over variables as long as there are fractional variables left */ while( currentlpcands > 0 && improvementfound && (heurdata->maxroundingloops == -1 || nroundings < heurdata->maxroundingloops) ) { /*lint --e{850}*/ improvementfound = FALSE; nroundings++; SCIPdebugMessage("zirounding enters while loop for %d time with %d candidates left. \n", nroundings, currentlpcands); /* check for every remaining fractional variable if a shifting decreases ZI-value of the variable */ for( c = 0; c < currentlpcands; ++c ) { SCIP_VAR* var; SCIP_Real oldsolval; SCIP_Real upperbound; SCIP_Real lowerbound; SCIP_Real up; SCIP_Real down; SCIP_Real ziup; SCIP_Real zidown; SCIP_Real zicurrent; SCIP_Real shiftval; DIRECTION direction; /* get values from local data */ oldsolval = solarray[c]; var = zilpcands[c]; assert(!SCIPisFeasIntegral(scip, oldsolval)); assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN); /* calculate bounds for variable and make sure that there are no numerical inconsistencies */ upperbound = SCIPinfinity(scip); lowerbound = SCIPinfinity(scip); calculateBounds(scip, var, oldsolval, &upperbound, &lowerbound, upslacks, downslacks, nslacks, &numericalerror); if( numericalerror ) goto TERMINATE; /* calculate the possible values after shifting */ up = oldsolval + upperbound; down = oldsolval - lowerbound; /* if the variable is integer or implicit binary, do not shift further than the nearest integer */ if( SCIPvarGetType(var) != SCIP_VARTYPE_BINARY) { SCIP_Real ceilx; SCIP_Real floorx; ceilx = SCIPfeasCeil(scip, oldsolval); floorx = SCIPfeasFloor(scip, oldsolval); up = MIN(up, ceilx); down = MAX(down, floorx); } /* calculate necessary values */ ziup = getZiValue(scip, up); zidown = getZiValue(scip, down); zicurrent = getZiValue(scip, oldsolval); /* calculate the shifting direction that reduces ZI-value the most, * if both directions improve ZI-value equally, take the direction which improves the objective */ if( SCIPisFeasLT(scip, zidown, zicurrent) || SCIPisFeasLT(scip, ziup, zicurrent) ) { if( SCIPisFeasEQ(scip,ziup, zidown) ) direction = SCIPisFeasGE(scip, SCIPvarGetObj(var), 0.0) ? DIRECTION_DOWN : DIRECTION_UP; else if( SCIPisFeasLT(scip, zidown, ziup) ) direction = DIRECTION_DOWN; else direction = DIRECTION_UP; /* once a possible shifting direction and value have been found, variable value is updated */ shiftval = (direction == DIRECTION_UP ? up - oldsolval : down - oldsolval); /* this improves numerical stability in some cases */ if( direction == DIRECTION_UP ) shiftval = MIN(shiftval, upperbound); else shiftval = MIN(shiftval, lowerbound); /* update the solution */ solarray[c] = direction == DIRECTION_UP ? up : down; SCIP_CALL( SCIPsetSolVal(scip, sol, var, solarray[c]) ); /* update the rows activities and slacks */ SCIP_CALL( updateSlacks(scip, sol, var, shiftval, upslacks, downslacks, activities, slackvars, slackvarcoeffs, nslacks) ); SCIPdebugMessage("zirounding update step : %d var index, oldsolval=%g, shiftval=%g\n", SCIPvarGetIndex(var), oldsolval, shiftval); /* since at least one improvement has been found, heuristic will enter main loop for another time because the improvement * might affect many LP rows and their current slacks and thus make further rounding steps possible */ improvementfound = TRUE; } /* if solution value of variable has become feasibly integral due to rounding step, * variable is put at the end of remaining candidates array so as not to be considered in future loops */ if( SCIPisFeasIntegral(scip, solarray[c]) ) { zilpcands[c] = zilpcands[currentlpcands - 1]; solarray[c] = solarray[currentlpcands - 1]; currentlpcands--; /* counter is decreased if end of candidates array has not been reached yet */ if( c < currentlpcands ) c--; } else if( nroundings == heurdata->maxroundingloops - 1 ) goto TERMINATE; } } /* in case that no candidate is left for rounding after the final main loop * the found solution has to be checked for feasibility in the original problem */ if( currentlpcands == 0 ) { SCIP_Bool stored; SCIP_CALL(SCIPtrySol(scip, sol, FALSE, FALSE, TRUE, FALSE, &stored)); if( stored ) { #ifdef SCIP_DEBUG SCIPdebugMessage("found feasible rounded solution:\n"); SCIP_CALL( SCIPprintSol(scip, sol, NULL, FALSE) ); #endif SCIPstatisticMessage(" ZI Round solution value: %g \n", SCIPgetSolOrigObj(scip, sol)); *result = SCIP_FOUNDSOL; } } /* free memory for all locally allocated data */ TERMINATE: SCIPfreeBufferArrayNull(scip, &activities); SCIPfreeBufferArrayNull(scip, &rowneedsslackvar); SCIPfreeBufferArrayNull(scip, &slackvarcoeffs); SCIPfreeBufferArrayNull(scip, &downslacks); SCIPfreeBufferArrayNull(scip, &upslacks); SCIPfreeBufferArrayNull(scip, &slackvars); SCIPfreeBufferArrayNull(scip, &zilpcands); SCIPfreeBufferArrayNull(scip, &solarray); return retcode; }