예제 #1
0
/** output method of display column to output file stream 'file' */
static
SCIP_DECL_DISPOUTPUT(SCIPdispOutputAvgdualbound)
{  /*lint --e{715}*/
   SCIP_Real avgdualbound;

   assert(disp != NULL);
   assert(strcmp(SCIPdispGetName(disp), DISP_NAME_AVGDUALBOUND) == 0);
   assert(scip != NULL);

   avgdualbound = SCIPgetAvgDualbound(GCGpricerGetOrigprob(scip));
   if( SCIPisInfinity(scip, REALABS(avgdualbound)) )
      SCIPinfoMessage(scip, file, "      --      ");
   else
      SCIPinfoMessage(scip, file, "%13.6e ", avgdualbound);

   return SCIP_OKAY;
}
예제 #2
0
/** execution method of primal heuristic */
static
SCIP_DECL_HEUREXEC(heurExecActconsdiving) /*lint --e{715}*/
{   /*lint --e{715}*/
    SCIP_HEURDATA* heurdata;
    SCIP_LPSOLSTAT lpsolstat;
    SCIP_VAR* var;
    SCIP_VAR** lpcands;
    SCIP_Real* lpcandssol;
    SCIP_Real* lpcandsfrac;
    SCIP_Real searchubbound;
    SCIP_Real searchavgbound;
    SCIP_Real searchbound;
    SCIP_Real objval;
    SCIP_Real oldobjval;
    SCIP_Real frac;
    SCIP_Real bestfrac;
    SCIP_Bool bestcandmayrounddown;
    SCIP_Bool bestcandmayroundup;
    SCIP_Bool bestcandroundup;
    SCIP_Bool mayrounddown;
    SCIP_Bool mayroundup;
    SCIP_Bool roundup;
    SCIP_Bool lperror;
    SCIP_Bool cutoff;
    SCIP_Bool backtracked;
    SCIP_Longint ncalls;
    SCIP_Longint nsolsfound;
    SCIP_Longint nlpiterations;
    SCIP_Longint maxnlpiterations;
    int nlpcands;
    int startnlpcands;
    int depth;
    int maxdepth;
    int maxdivedepth;
    int divedepth;
    SCIP_Real actscore;
    SCIP_Real downscore;
    SCIP_Real upscore;
    SCIP_Real bestactscore;
    int bestcand;
    int c;

    assert(heur != NULL);
    assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
    assert(scip != NULL);
    assert(result != NULL);
    assert(SCIPhasCurrentNodeLP(scip));

    *result = SCIP_DELAYED;

    /* do not call heuristic of node was already detected to be infeasible */
    if( nodeinfeasible )
        return SCIP_OKAY;

    /* only call heuristic, if an optimal LP solution is at hand */
    if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
        return SCIP_OKAY;

    /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
    if( SCIPisGE(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)) )
        return SCIP_OKAY;

    /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
    if( !SCIPisLPSolBasic(scip) )
        return SCIP_OKAY;

    /* don't dive two times at the same node */
    if( SCIPgetLastDivenode(scip) == SCIPgetNNodes(scip) && SCIPgetDepth(scip) > 0 )
        return SCIP_OKAY;

    *result = SCIP_DIDNOTRUN;

    /* get heuristic's data */
    heurdata = SCIPheurGetData(heur);
    assert(heurdata != NULL);

    /* only try to dive, if we are in the correct part of the tree, given by minreldepth and maxreldepth */
    depth = SCIPgetDepth(scip);
    maxdepth = SCIPgetMaxDepth(scip);
    maxdepth = MAX(maxdepth, 30);
    if( depth < heurdata->minreldepth*maxdepth || depth > heurdata->maxreldepth*maxdepth )
        return SCIP_OKAY;

    /* calculate the maximal number of LP iterations until heuristic is aborted */
    nlpiterations = SCIPgetNNodeLPIterations(scip);
    ncalls = SCIPheurGetNCalls(heur);
    nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
    maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
    maxnlpiterations += heurdata->maxlpiterofs;

    /* don't try to dive, if we took too many LP iterations during diving */
    if( heurdata->nlpiterations >= maxnlpiterations )
        return SCIP_OKAY;

    /* allow at least a certain number of LP iterations in this dive */
    maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);

    /* get fractional variables that should be integral */
    SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );

    /* don't try to dive, if there are no fractional variables */
    if( nlpcands == 0 )
        return SCIP_OKAY;

    /* calculate the objective search bound */
    if( SCIPgetNSolsFound(scip) == 0 )
    {
        if( heurdata->maxdiveubquotnosol > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquotnosol * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquotnosol > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquotnosol * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    else
    {
        if( heurdata->maxdiveubquot > 0.0 )
            searchubbound = SCIPgetLowerbound(scip)
                            + heurdata->maxdiveubquot * (SCIPgetCutoffbound(scip) - SCIPgetLowerbound(scip));
        else
            searchubbound = SCIPinfinity(scip);
        if( heurdata->maxdiveavgquot > 0.0 )
            searchavgbound = SCIPgetLowerbound(scip)
                             + heurdata->maxdiveavgquot * (SCIPgetAvgLowerbound(scip) - SCIPgetLowerbound(scip));
        else
            searchavgbound = SCIPinfinity(scip);
    }
    searchbound = MIN(searchubbound, searchavgbound);
    if( SCIPisObjIntegral(scip) )
        searchbound = SCIPceil(scip, searchbound);

    /* calculate the maximal diving depth: 10 * min{number of integer variables, max depth} */
    maxdivedepth = SCIPgetNBinVars(scip) + SCIPgetNIntVars(scip);
    maxdivedepth = MIN(maxdivedepth, maxdepth);
    maxdivedepth *= 10;

    *result = SCIP_DIDNOTFIND;

    /* start diving */
    SCIP_CALL( SCIPstartProbing(scip) );

    /* enables collection of variable statistics during probing */
    SCIPenableVarHistory(scip);

    /* get LP objective value */
    lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
    objval = SCIPgetLPObjval(scip);

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") executing actconsdiving heuristic: depth=%d, %d fractionals, dualbound=%g, avgbound=%g, cutoffbound=%g, searchbound=%g\n",
                     SCIPgetNNodes(scip), SCIPgetDepth(scip), nlpcands, SCIPgetDualbound(scip), SCIPgetAvgDualbound(scip),
                     SCIPretransformObj(scip, SCIPgetCutoffbound(scip)), SCIPretransformObj(scip, searchbound));

    /* dive as long we are in the given objective, depth and iteration limits and fractional variables exist, but
     * - if possible, we dive at least with the depth 10
     * - if the number of fractional variables decreased at least with 1 variable per 2 dive depths, we continue diving
     */
    lperror = FALSE;
    cutoff = FALSE;
    divedepth = 0;
    bestcandmayrounddown = FALSE;
    bestcandmayroundup = FALSE;
    startnlpcands = nlpcands;
    while( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL && nlpcands > 0
            && (divedepth < 10
                || nlpcands <= startnlpcands - divedepth/2
                || (divedepth < maxdivedepth && heurdata->nlpiterations < maxnlpiterations && objval < searchbound))
            && !SCIPisStopped(scip) )
    {
        divedepth++;
        SCIP_CALL( SCIPnewProbingNode(scip) );

        /* choose variable fixing:
         * - prefer variables that may not be rounded without destroying LP feasibility:
         *   - of these variables, round variable with least number of locks in corresponding direction
         * - if all remaining fractional variables may be rounded without destroying LP feasibility:
         *   - round variable with least number of locks in opposite of its feasible rounding direction
         */
        bestcand = -1;
        bestactscore = -1.0;
        bestfrac = SCIP_INVALID;
        bestcandmayrounddown = TRUE;
        bestcandmayroundup = TRUE;
        bestcandroundup = FALSE;
        for( c = 0; c < nlpcands; ++c )
        {
            var = lpcands[c];
            mayrounddown = SCIPvarMayRoundDown(var);
            mayroundup = SCIPvarMayRoundUp(var);
            frac = lpcandsfrac[c];
            if( mayrounddown || mayroundup )
            {
                /* the candidate may be rounded: choose this candidate only, if the best candidate may also be rounded */
                if( bestcandmayrounddown || bestcandmayroundup )
                {
                    /* choose rounding direction:
                     * - if variable may be rounded in both directions, round corresponding to the fractionality
                     * - otherwise, round in the infeasible direction, because feasible direction is tried by rounding
                     *   the current fractional solution
                     */
                    if( mayrounddown && mayroundup )
                        roundup = (frac > 0.5);
                    else
                        roundup = mayrounddown;

                    if( roundup )
                        frac = 1.0 - frac;
                    actscore = getNActiveConsScore(scip, var, &downscore, &upscore);

                    /* penalize too small fractions */
                    if( frac < 0.01 )
                        actscore *= 0.01;

                    /* prefer decisions on binary variables */
                    if( !SCIPvarIsBinary(var) )
                        actscore *= 0.01;

                    /* check, if candidate is new best candidate */
                    assert(0.0 < frac && frac < 1.0);
                    if( SCIPisGT(scip, actscore, bestactscore) || (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                    {
                        bestcand = c;
                        bestactscore = actscore;
                        bestfrac = frac;
                        bestcandmayrounddown = mayrounddown;
                        bestcandmayroundup = mayroundup;
                        bestcandroundup = roundup;
                    }
                }
            }
            else
            {
                /* the candidate may not be rounded */
                actscore = getNActiveConsScore(scip, var, &downscore, &upscore);
                roundup = (downscore < upscore);
                if( roundup )
                    frac = 1.0 - frac;

                /* penalize too small fractions */
                if( frac < 0.01 )
                    actscore *= 0.01;

                /* prefer decisions on binary variables */
                if( !SCIPvarIsBinary(var) )
                    actscore *= 0.01;

                /* check, if candidate is new best candidate: prefer unroundable candidates in any case */
                assert(0.0 < frac && frac < 1.0);
                if( bestcandmayrounddown || bestcandmayroundup || SCIPisGT(scip, actscore, bestactscore) ||
                        (SCIPisGE(scip, actscore, bestactscore) && frac < bestfrac) )
                {
                    bestcand = c;
                    bestactscore = actscore;
                    bestfrac = frac;
                    bestcandmayrounddown = FALSE;
                    bestcandmayroundup = FALSE;
                    bestcandroundup = roundup;
                }
                assert(bestfrac < SCIP_INVALID);
            }
        }
        assert(bestcand != -1);

        /* if all candidates are roundable, try to round the solution */
        if( bestcandmayrounddown || bestcandmayroundup )
        {
            SCIP_Bool success;

            /* create solution from diving LP and try to round it */
            SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
            SCIP_CALL( SCIProundSol(scip, heurdata->sol, &success) );

            if( success )
            {
                SCIPdebugMessage("actconsdiving found roundable primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

                /* try to add solution to SCIP */
                SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

                /* check, if solution was feasible and good enough */
                if( success )
                {
                    SCIPdebugMessage(" -> solution was feasible and good enough\n");
                    *result = SCIP_FOUNDSOL;
                }
            }
        }
        assert(bestcand != -1);
        var = lpcands[bestcand];

        backtracked = FALSE;
        do
        {
            /* if the variable is already fixed or if the solution value is outside the domain, numerical troubles may have
             * occured or variable was fixed by propagation while backtracking => Abort diving!
             */
            if( SCIPvarGetLbLocal(var) >= SCIPvarGetUbLocal(var) - 0.5 )
            {
                SCIPdebugMessage("Selected variable <%s> already fixed to [%g,%g] (solval: %.9f), diving aborted \n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                cutoff = TRUE;
                break;
            }
            if( SCIPisFeasLT(scip, lpcandssol[bestcand], SCIPvarGetLbLocal(var)) || SCIPisFeasGT(scip, lpcandssol[bestcand], SCIPvarGetUbLocal(var)) )
            {
                SCIPdebugMessage("selected variable's <%s> solution value is outside the domain [%g,%g] (solval: %.9f), diving aborted\n",
                                 SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), lpcandssol[bestcand]);
                assert(backtracked);
                break;
            }

            /* apply rounding of best candidate */
            if( bestcandroundup == !backtracked )
            {
                /* round variable up */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPfeasCeil(scip, lpcandssol[bestcand]), SCIPvarGetUbLocal(var));
                SCIP_CALL( SCIPchgVarLbProbing(scip, var, SCIPfeasCeil(scip, lpcandssol[bestcand])) );
            }
            else
            {
                /* round variable down */
                SCIPdebugMessage("  dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT": var <%s>, round=%u/%u, sol=%g, oldbounds=[%g,%g], newbounds=[%g,%g]\n",
                                 divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                                 SCIPvarGetName(var), bestcandmayrounddown, bestcandmayroundup,
                                 lpcandssol[bestcand], SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
                                 SCIPvarGetLbLocal(var), SCIPfeasFloor(scip, lpcandssol[bestcand]));
                SCIP_CALL( SCIPchgVarUbProbing(scip, lpcands[bestcand], SCIPfeasFloor(scip, lpcandssol[bestcand])) );
            }

            /* apply domain propagation */
            SCIP_CALL( SCIPpropagateProbing(scip, 0, &cutoff, NULL) );
            if( !cutoff )
            {
                /* resolve the diving LP */
                /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
                 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
                 */
#ifdef NDEBUG
                SCIP_RETCODE retstat;
                nlpiterations = SCIPgetNLPIterations(scip);
                retstat = SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff);
                if( retstat != SCIP_OKAY )
                {
                    SCIPwarningMessage(scip, "Error while solving LP in Actconsdiving heuristic; LP solve terminated with code <%d>\n",retstat);
                }
#else
                nlpiterations = SCIPgetNLPIterations(scip);
                SCIP_CALL( SCIPsolveProbingLP(scip, MAX((int)(maxnlpiterations - heurdata->nlpiterations), MINLPITER), &lperror, &cutoff) );
#endif

                if( lperror )
                    break;

                /* update iteration count */
                heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;

                /* get LP solution status, objective value, and fractional variables, that should be integral */
                lpsolstat = SCIPgetLPSolstat(scip);
                assert(cutoff || (lpsolstat != SCIP_LPSOLSTAT_OBJLIMIT && lpsolstat != SCIP_LPSOLSTAT_INFEASIBLE &&
                                  (lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || SCIPisLT(scip, SCIPgetLPObjval(scip), SCIPgetCutoffbound(scip)))));
            }

            /* perform backtracking if a cutoff was detected */
            if( cutoff && !backtracked && heurdata->backtrack )
            {
                SCIPdebugMessage("  *** cutoff detected at level %d - backtracking\n", SCIPgetProbingDepth(scip));
                SCIP_CALL( SCIPbacktrackProbing(scip, SCIPgetProbingDepth(scip)-1) );
                SCIP_CALL( SCIPnewProbingNode(scip) );
                backtracked = TRUE;
            }
            else
                backtracked = FALSE;
        }
        while( backtracked );

        if( !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
        {
            /* get new objective value */
            oldobjval = objval;
            objval = SCIPgetLPObjval(scip);

            /* update pseudo cost values */
            if( SCIPisGT(scip, objval, oldobjval) )
            {
                if( bestcandroundup )
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 1.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
                else
                {
                    SCIP_CALL( SCIPupdateVarPseudocost(scip, lpcands[bestcand], 0.0-lpcandsfrac[bestcand],
                                                       objval - oldobjval, 1.0) );
                }
            }

            /* get new fractional variables */
            SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, NULL, NULL) );
        }
        SCIPdebugMessage("   -> lpsolstat=%d, objval=%g/%g, nfrac=%d\n", lpsolstat, objval, searchbound, nlpcands);
    }

    /* check if a solution has been found */
    if( nlpcands == 0 && !lperror && !cutoff && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
    {
        SCIP_Bool success;

        /* create solution from diving LP */
        SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
        SCIPdebugMessage("actconsdiving found primal solution: obj=%g\n", SCIPgetSolOrigObj(scip, heurdata->sol));

        /* try to add solution to SCIP */
        SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, &success) );

        /* check, if solution was feasible and good enough */
        if( success )
        {
            SCIPdebugMessage(" -> solution was feasible and good enough\n");
            *result = SCIP_FOUNDSOL;
        }
    }

    /* end diving */
    SCIP_CALL( SCIPendProbing(scip) );

    if( *result == SCIP_FOUNDSOL )
        heurdata->nsuccess++;

    SCIPdebugMessage("(node %"SCIP_LONGINT_FORMAT") finished actconsdiving heuristic: %d fractionals, dive %d/%d, LP iter %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT", objval=%g/%g, lpsolstat=%d, cutoff=%u\n",
                     SCIPgetNNodes(scip), nlpcands, divedepth, maxdivedepth, heurdata->nlpiterations, maxnlpiterations,
                     SCIPretransformObj(scip, objval), SCIPretransformObj(scip, searchbound), lpsolstat, cutoff);

    return SCIP_OKAY;
}