/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecMutation) { /*lint --e{715}*/ SCIP_Longint maxnnodes; SCIP_Longint nsubnodes; /* node limit for the subproblem */ SCIP_HEURDATA* heurdata; /* heuristic's data */ SCIP* subscip; /* the subproblem created by mutation */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real maxnnodesr; SCIP_Real memorylimit; SCIP_Real timelimit; /* timelimit for the subproblem */ SCIP_Real upperbound; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_RETCODE retcode; assert( heur != NULL ); assert( scip != NULL ); assert( result != NULL ); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); *result = SCIP_DELAYED; /* only call heuristic, if feasible solution is available */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; /* only call heuristic, if the best solution comes from transformed problem */ assert( SCIPgetBestSol(scip) != NULL ); if( SCIPsolIsOriginal(SCIPgetBestSol(scip)) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* only call heuristic, if discrete variables are present */ if( SCIPgetNBinVars(scip) == 0 && SCIPgetNIntVars(scip) == 0 ) return SCIP_OKAY; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodesr = heurdata->nodesquot * SCIPgetNNodes(scip); /* reward mutation if it succeeded often, count the setup costs for the sub-MIP as 100 nodes */ maxnnodesr *= 1.0 + 2.0 * (SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur) + 1.0); maxnnodes = (SCIP_Longint) maxnnodesr - 100 * SCIPheurGetNCalls(heur); maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nsubnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_mutationsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_mutationsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_Bool valid; valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "rens", TRUE, FALSE, TRUE, &valid) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); } for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* create a new problem, which fixes variables with same value in bestsol and LP relaxation */ SCIP_CALL( createSubproblem(scip, subscip, subvars, heurdata->minfixingrate, &heurdata->randseed, heurdata->uselprows) ); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handlers; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no decutions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip, SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip, -1.0 * SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove) * SCIPgetUpperbound(scip) + heurdata->minimprove * SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* solve the subproblem */ SCIPdebugMessage("Solve Mutation subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Mutation heuristic; sub-SCIP terminated with code <%d>\n",retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) *result = SCIP_FOUNDSOL; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** main procedure of the zeroobj heuristic, creates and solves a sub-SCIP */ SCIP_RETCODE SCIPapplyZeroobj( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< result data structure */ SCIP_Real minimprove, /**< factor by which zeroobj should at least improve the incumbent */ SCIP_Longint nnodes /**< node limit for the subproblem */ ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_HEURDATA* heurdata; /* heuristic's private data structure */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_Real large; int nvars; /* number of original problem's variables */ int i; SCIP_Bool success; SCIP_Bool valid; SCIP_RETCODE retcode; SCIP_SOL** subsols; int nsubsols; assert(scip != NULL); assert(heur != NULL); assert(result != NULL); assert(nnodes >= 0); assert(0.0 <= minimprove && minimprove <= 1.0); *result = SCIP_DIDNOTRUN; /* only call heuristic once at the root */ if( SCIPgetDepth(scip) <= 0 && SCIPheurGetNCalls(heur) > 0 ) return SCIP_OKAY; /* get heuristic data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); /* only call the heuristic if we do not have an incumbent */ if( SCIPgetNSolsFound(scip) > 0 && heurdata->onlywithoutsol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; /* get variable data */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* different methods to create sub-problem: either copy LP relaxation or the CIP with all constraints */ valid = FALSE; /* copy complete SCIP instance */ SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "zeroobj", TRUE, FALSE, TRUE, &valid) ); SCIPdebugMessage("Copying the SCIP instance was %s complete.\n", valid ? "" : "not "); /* create event handler for LP events */ eventhdlr = NULL; SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecZeroobj, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } /* determine large value to set variables to */ large = SCIPinfinity(scip); if( !SCIPisInfinity(scip, 0.1 / SCIPfeastol(scip)) ) large = 0.1 / SCIPfeastol(scip); /* get variable image and change to 0.0 in sub-SCIP */ for( i = 0; i < nvars; i++ ) { SCIP_Real adjustedbound; SCIP_Real lb; SCIP_Real ub; SCIP_Real inf; subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); SCIP_CALL( SCIPchgVarObj(subscip, subvars[i], 0.0) ); lb = SCIPvarGetLbGlobal(subvars[i]); ub = SCIPvarGetUbGlobal(subvars[i]); inf = SCIPinfinity(subscip); /* adjust infinite bounds in order to avoid that variables with non-zero objective * get fixed to infinite value in zeroobj subproblem */ if( SCIPisInfinity(subscip, ub ) ) { adjustedbound = MAX(large, lb+large); adjustedbound = MIN(adjustedbound, inf); SCIP_CALL( SCIPchgVarUbGlobal(subscip, subvars[i], adjustedbound) ); } if( SCIPisInfinity(subscip, -lb ) ) { adjustedbound = MIN(-large, ub-large); adjustedbound = MAX(adjustedbound, -inf); SCIP_CALL( SCIPchgVarLbGlobal(subscip, subvars[i], adjustedbound) ); } } /* free hash map */ SCIPhashmapFree(&varmapfw); /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/solutions", 1) ); /* forbid recursive call of heuristics and separators solving sub-SCIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable expensive techniques that merely work on the dual bound */ /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); if( !SCIPisParamFixed(subscip, "presolving/maxrounds") ) { SCIP_CALL( SCIPsetIntParam(subscip, "presolving/maxrounds", 50) ); } /* use best dfs node selection */ if( SCIPfindNodesel(subscip, "dfs") != NULL && !SCIPisParamFixed(subscip, "nodeselection/dfs/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/dfs/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/leastinf/priority", INT_MAX/4) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 10) ); } /* disable feaspump and fracdiving */ if( !SCIPisParamFixed(subscip, "heuristics/feaspump/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/feaspump/freq", -1) ); } if( !SCIPisParamFixed(subscip, "heuristics/fracdiving/freq") ) { SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/fracdiving/freq", -1) ); } /* restrict LP iterations */ SCIP_CALL( SCIPsetLongintParam(subscip, "lp/iterlim", 2*heurdata->maxlpiters / MAX(1,nnodes)) ); SCIP_CALL( SCIPsetLongintParam(subscip, "lp/rootiterlim", heurdata->maxlpiters) ); #ifdef SCIP_DEBUG /* for debugging zeroobj, enable MIP output */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 5) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/freq", 100000000) ); #endif /* if there is already a solution, add an objective cutoff */ if( SCIPgetNSols(scip) > 0 ) { SCIP_Real upperbound; SCIP_CONS* origobjcons; #ifndef NDEBUG int nobjvars; nobjvars = 0; #endif cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-minimprove)*SCIPgetUpperbound(scip) + minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound(scip) >= 0 ) cutoff = ( 1 - minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff); SCIP_CALL( SCIPcreateConsLinear(subscip, &origobjcons, "objbound_of_origscip", 0, NULL, NULL, -SCIPinfinity(subscip), cutoff, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) ); for( i = 0; i < nvars; ++i) { if( !SCIPisFeasZero(subscip, SCIPvarGetObj(vars[i])) ) { SCIP_CALL( SCIPaddCoefLinear(subscip, origobjcons, subvars[i], SCIPvarGetObj(vars[i])) ); #ifndef NDEBUG nobjvars++; #endif } } SCIP_CALL( SCIPaddCons(subscip, origobjcons) ); SCIP_CALL( SCIPreleaseCons(subscip, &origobjcons) ); assert(nobjvars == SCIPgetNObjVars(scip)); } /* catch LP events of sub-SCIP */ SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); SCIPdebugMessage("solving subproblem: nnodes=%"SCIP_LONGINT_FORMAT"\n", nnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_NODESOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && (!success || heurdata->addallsols); ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); if( success ) *result = SCIP_FOUNDSOL; } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecLocalbranching) { /*lint --e{715}*/ SCIP_Longint maxnnodes; /* maximum number of subnodes */ SCIP_Longint nsubnodes; /* nodelimit for subscip */ SCIP_HEURDATA* heurdata; SCIP* subscip; /* the subproblem created by localbranching */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL* bestsol; /* best solution so far */ SCIP_EVENTHDLR* eventhdlr; /* event handler for LP events */ SCIP_Real timelimit; /* timelimit for subscip (equals remaining time of scip) */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Real memorylimit; SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; int nvars; int i; SCIP_Bool success; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); *result = SCIP_DIDNOTRUN; /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert( heurdata != NULL ); /* there should be enough binary variables that a local branching constraint makes sense */ if( SCIPgetNBinVars(scip) < 2*heurdata->neighborhoodsize ) return SCIP_OKAY; *result = SCIP_DELAYED; /* only call heuristic, if an IP solution is at hand */ if( SCIPgetNSols(scip) <= 0 ) return SCIP_OKAY; bestsol = SCIPgetBestSol(scip); assert(bestsol != NULL); /* only call heuristic, if the best solution comes from transformed problem */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip, bestsol) < heurdata->nwaitingnodes) return SCIP_OKAY; /* only call heuristic, if the best solution does not come from trivial heuristic */ if( SCIPsolGetHeur(bestsol) != NULL && strcmp(SCIPheurGetName(SCIPsolGetHeur(bestsol)), "trivial") == 0 ) return SCIP_OKAY; /* reset neighborhood and minnodes, if new solution was found */ if( heurdata->lastsol != bestsol ) { heurdata->curneighborhoodsize = heurdata->neighborhoodsize; heurdata->curminnodes = heurdata->minnodes; heurdata->emptyneighborhoodsize = 0; heurdata->callstatus = EXECUTE; heurdata->lastsol = bestsol; } /* if no new solution was found and local branching also seems to fail, just keep on waiting */ if( heurdata->callstatus == WAITFORNEWSOL ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ maxnnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward local branching if it succeeded often */ maxnnodes = (SCIP_Longint)(maxnnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); maxnnodes -= 100 * SCIPheurGetNCalls(heur); /* count the setup costs for the sub-MIP as 100 nodes */ maxnnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nsubnodes = maxnnodes - heurdata->usednodes; nsubnodes = MIN(nsubnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call sub problem solving */ if( nsubnodes < heurdata->curminnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIPdebugMessage("running localbranching heuristic ...\n"); /* get the data of the variables and the best solution */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) ); /* initializing the subproblem */ SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; eventhdlr = NULL; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_localbranchsub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_localbranchsub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "localbranchsub", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } /* create event handler for LP events */ SCIP_CALL( SCIPincludeEventhdlrBasic(subscip, &eventhdlr, EVENTHDLR_NAME, EVENTHDLR_DESC, eventExecLocalbranching, NULL) ); if( eventhdlr == NULL ) { SCIPerrorMessage("event handler for "HEUR_NAME" heuristic not found.\n"); return SCIP_PLUGINNOTFOUND; } } SCIPdebugMessage("Copying the plugins was %ssuccessful.\n", success ? "" : "not "); for (i = 0; i < nvars; ++i) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); /* if the subproblem could not be created, free memory and return */ if( !success ) { *result = SCIP_DIDNOTRUN; goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); #ifndef SCIP_DEBUG /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); #endif /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ heurdata->nodelimit = nsubnodes; SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nsubnodes) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/stallnodes", MAX(10, nsubnodes/10)) ); SCIP_CALL( SCIPsetIntParam(subscip, "limits/bestsol", 3) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* employ a limit on the number of enforcement rounds in the quadratic constraint handler; this fixes the issue that * sometimes the quadratic constraint handler needs hundreds or thousands of enforcement rounds to determine the * feasibility status of a single node without fractional branching candidates by separation (namely for uflquad * instances); however, the solution status of the sub-SCIP might get corrupted by this; hence no deductions shall be * made for the original SCIP */ if( SCIPfindConshdlr(subscip, "quadratic") != NULL && !SCIPisParamFixed(subscip, "constraints/quadratic/enfolplimit") ) { SCIP_CALL( SCIPsetIntParam(subscip, "constraints/quadratic/enfolplimit", 500) ); } /* copy the original problem and add the local branching constraint */ if( heurdata->uselprows ) { SCIP_CALL( createSubproblem(scip, subscip, subvars) ); } SCIP_CALL( addLocalBranchingConstraint(scip, subscip, subvars, heurdata) ); /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert( !SCIPisInfinity(scip,SCIPgetUpperbound(scip)) ); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* catch LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPtransformProb(subscip) ); SCIP_CALL( SCIPcatchEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, NULL) ); } /* solve the subproblem */ SCIPdebugMessage("solving local branching subproblem with neighborhoodsize %d and maxnodes %"SCIP_LONGINT_FORMAT"\n", heurdata->curneighborhoodsize, nsubnodes); retcode = SCIPsolve(subscip); /* drop LP events of sub-SCIP */ if( !heurdata->uselprows ) { assert(eventhdlr != NULL); SCIP_CALL( SCIPdropEvent(subscip, SCIP_EVENTTYPE_LPSOLVED, eventhdlr, (SCIP_EVENTDATA*) heurdata, -1) ); } /* Errors in solving the subproblem should not kill the overall solving process * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in local branching heuristic; sub-SCIP terminated with code <%d>\n",retcode); } /* print solving statistics of subproblem if we are in SCIP's debug mode */ SCIPdebug( SCIP_CALL( SCIPprintStatistics(subscip, NULL) ) ); heurdata->usednodes += SCIPgetNNodes(subscip); SCIPdebugMessage("local branching used %"SCIP_LONGINT_FORMAT"/%"SCIP_LONGINT_FORMAT" nodes\n", SCIPgetNNodes(subscip), nsubnodes); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &success) ); } if( success ) { SCIPdebugMessage("-> accepted solution of value %g\n", SCIPgetSolOrigObj(subscip, subsols[i])); *result = SCIP_FOUNDSOL; } } /* check the status of the sub-MIP */ switch( SCIPgetStatus(subscip) ) { case SCIP_STATUS_OPTIMAL: case SCIP_STATUS_BESTSOLLIMIT: heurdata->callstatus = WAITFORNEWSOL; /* new solution will immediately be installed at next call */ SCIPdebugMessage(" -> found new solution\n"); break; case SCIP_STATUS_NODELIMIT: case SCIP_STATUS_STALLNODELIMIT: case SCIP_STATUS_TOTALNODELIMIT: heurdata->callstatus = EXECUTE; heurdata->curneighborhoodsize = (heurdata->emptyneighborhoodsize + heurdata->curneighborhoodsize)/2; heurdata->curminnodes *= 2; SCIPdebugMessage(" -> node limit reached: reduced neighborhood to %d, increased minnodes to %d\n", heurdata->curneighborhoodsize, heurdata->curminnodes); if( heurdata->curneighborhoodsize <= heurdata->emptyneighborhoodsize ) { heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> new neighborhood was already proven to be empty: wait for new solution\n"); } break; case SCIP_STATUS_INFEASIBLE: case SCIP_STATUS_INFORUNBD: heurdata->emptyneighborhoodsize = heurdata->curneighborhoodsize; heurdata->curneighborhoodsize += heurdata->curneighborhoodsize/2; heurdata->curneighborhoodsize = MAX(heurdata->curneighborhoodsize, heurdata->emptyneighborhoodsize + 2); heurdata->callstatus = EXECUTE; SCIPdebugMessage(" -> neighborhood is empty: increased neighborhood to %d\n", heurdata->curneighborhoodsize); break; case SCIP_STATUS_UNKNOWN: case SCIP_STATUS_USERINTERRUPT: case SCIP_STATUS_TIMELIMIT: case SCIP_STATUS_MEMLIMIT: case SCIP_STATUS_GAPLIMIT: case SCIP_STATUS_SOLLIMIT: case SCIP_STATUS_UNBOUNDED: default: heurdata->callstatus = WAITFORNEWSOL; SCIPdebugMessage(" -> unexpected sub-MIP status <%d>: waiting for new solution\n", SCIPgetStatus(subscip)); break; } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecOneopt) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; SCIP_SOL* bestsol; /* incumbent solution */ SCIP_SOL* worksol; /* heuristic's working solution */ SCIP_VAR** vars; /* SCIP variables */ SCIP_VAR** shiftcands; /* shiftable variables */ SCIP_ROW** lprows; /* SCIP LP rows */ SCIP_Real* activities; /* row activities for working solution */ SCIP_Real* shiftvals; SCIP_Real lb; SCIP_Real ub; SCIP_Bool localrows; SCIP_Bool valid; int nchgbound; int nbinvars; int nintvars; int nvars; int nlprows; int i; int nshiftcands; int shiftcandssize; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); *result = SCIP_DELAYED; /* we only want to process each solution once */ bestsol = SCIPgetBestSol(scip); if( bestsol == NULL || heurdata->lastsolindex == SCIPsolGetIndex(bestsol) ) return SCIP_OKAY; /* reset the timing mask to its default value (at the root node it could be different) */ if( SCIPgetNNodes(scip) > 1 ) SCIPheurSetTimingmask(heur, HEUR_TIMING); /* get problem variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; /* do not run if there are no discrete variables */ if( nintvars == 0 ) { *result = SCIP_DIDNOTRUN; return SCIP_OKAY; } if( heurtiming == SCIP_HEURTIMING_BEFOREPRESOL ) { SCIP* subscip; /* the subproblem created by zeroobj */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_Real* subsolvals; /* solution values of the subproblem */ SCIP_Real timelimit; /* time limit for zeroobj subproblem */ SCIP_Real memorylimit; /* memory limit for zeroobj subproblem */ SCIP_SOL* startsol; SCIP_SOL** subsols; int nsubsols; if( !heurdata->beforepresol ) return SCIP_OKAY; /* check whether there is enough time and memory left */ timelimit = 0.0; memorylimit = 0.0; SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) return SCIP_OKAY; /* initialize the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); /* copy complete SCIP instance */ valid = FALSE; SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "oneopt", TRUE, FALSE, TRUE, &valid) ); SCIP_CALL( SCIPtransformProb(subscip) ); /* get variable image */ for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]); /* copy the solution */ SCIP_CALL( SCIPallocBufferArray(scip, &subsolvals, nvars) ); SCIP_CALL( SCIPgetSolVals(scip, bestsol, nvars, vars, subsolvals) ); /* create start solution for the subproblem */ SCIP_CALL( SCIPcreateOrigSol(subscip, &startsol, NULL) ); SCIP_CALL( SCIPsetSolVals(subscip, startsol, nvars, subvars, subsolvals) ); /* try to add new solution to sub-SCIP and free it immediately */ valid = FALSE; SCIP_CALL( SCIPtrySolFree(subscip, &startsol, FALSE, FALSE, FALSE, FALSE, &valid) ); SCIPfreeBufferArray(scip, &subsolvals); SCIPhashmapFree(&varmapfw); /* disable statistic timing inside sub SCIP */ SCIP_CALL( SCIPsetBoolParam(subscip, "timing/statistictiming", FALSE) ); /* deactivate basically everything except oneopt in the sub-SCIP */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetHeuristics(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", 1LL) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* if necessary, some of the parameters have to be unfixed first */ if( SCIPisParamFixed(subscip, "lp/solvefreq") ) { SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "lp/solvefreq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "lp/solvefreq", -1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/freq") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/freq in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/freq") ); } SCIP_CALL( SCIPsetIntParam(subscip, "heuristics/oneopt/freq", 1) ); if( SCIPisParamFixed(subscip, "heuristics/oneopt/forcelpconstruction") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/forcelpconstruction in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/forcelpconstruction") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/forcelpconstruction", TRUE) ); /* avoid recursive call, which would lead to an endless loop */ if( SCIPisParamFixed(subscip, "heuristics/oneopt/beforepresol") ) { SCIPwarningMessage(scip, "unfixing parameter heuristics/oneopt/beforepresol in subscip of oneopt heuristic\n"); SCIP_CALL( SCIPunfixParam(subscip, "heuristics/oneopt/beforepresol") ); } SCIP_CALL( SCIPsetBoolParam(subscip, "heuristics/oneopt/beforepresol", FALSE) ); if( valid ) { retcode = SCIPsolve(subscip); /* errors in solving the subproblem should not kill the overall solving process; * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in zeroobj heuristic; sub-SCIP terminated with code <%d>\n",retcode); } #ifdef SCIP_DEBUG SCIP_CALL( SCIPprintStatistics(subscip, NULL) ); #endif } /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); valid = FALSE; for( i = 0; i < nsubsols && !valid; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &valid) ); if( valid ) *result = SCIP_FOUNDSOL; } /* free subproblem */ SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; } /* we can only work on solutions valid in the transformed space */ if( SCIPsolIsOriginal(bestsol) ) return SCIP_OKAY; if( heurtiming == SCIP_HEURTIMING_BEFORENODE && (SCIPhasCurrentNodeLP(scip) || heurdata->forcelpconstruction) ) { SCIP_Bool cutoff; cutoff = FALSE; SCIP_CALL( SCIPconstructLP(scip, &cutoff) ); SCIP_CALL( SCIPflushLP(scip) ); /* get problem variables again, SCIPconstructLP() might have added new variables */ SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); nintvars += nbinvars; } /* we need an LP */ if( SCIPgetNLPRows(scip) == 0 ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; nchgbound = 0; /* initialize data */ nshiftcands = 0; shiftcandssize = 8; heurdata->lastsolindex = SCIPsolGetIndex(bestsol); SCIP_CALL( SCIPcreateSolCopy(scip, &worksol, bestsol) ); SCIPsolSetHeur(worksol,heur); SCIPdebugMessage("Starting bound adjustment in 1-opt heuristic\n"); /* maybe change solution values due to global bound changes first */ for( i = nvars - 1; i >= 0; --i ) { SCIP_VAR* var; SCIP_Real solval; var = vars[i]; lb = SCIPvarGetLbGlobal(var); ub = SCIPvarGetUbGlobal(var); solval = SCIPgetSolVal(scip, bestsol,var); /* old solution value is smaller than the actual lower bound */ if( SCIPisFeasLT(scip, solval, lb) ) { /* set the solution value to the global lower bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, lb) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to lb %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, lb); } /* old solution value is greater than the actual upper bound */ else if( SCIPisFeasGT(scip, solval, SCIPvarGetUbGlobal(var)) ) { /* set the solution value to the global upper bound */ SCIP_CALL( SCIPsetSolVal(scip, worksol, var, ub) ); ++nchgbound; SCIPdebugMessage("var <%s> type %d, old solval %g now fixed to ub %g\n", SCIPvarGetName(var), SCIPvarGetType(var), solval, ub); } } SCIPdebugMessage("number of bound changes (due to global bounds) = %d\n", nchgbound); SCIP_CALL( SCIPgetLPRowsData(scip, &lprows, &nlprows) ); SCIP_CALL( SCIPallocBufferArray(scip, &activities, nlprows) ); localrows = FALSE; valid = TRUE; /* initialize activities */ for( i = 0; i < nlprows; ++i ) { SCIP_ROW* row; row = lprows[i]; assert(SCIProwGetLPPos(row) == i); if( !SCIProwIsLocal(row) ) { activities[i] = SCIPgetRowSolActivity(scip, row, worksol); SCIPdebugMessage("Row <%s> has activity %g\n", SCIProwGetName(row), activities[i]); if( SCIPisFeasLT(scip, activities[i], SCIProwGetLhs(row)) || SCIPisFeasGT(scip, activities[i], SCIProwGetRhs(row)) ) { valid = FALSE; SCIPdebug( SCIP_CALL( SCIPprintRow(scip, row, NULL) ) ); SCIPdebugMessage("row <%s> activity %g violates bounds, lhs = %g, rhs = %g\n", SCIProwGetName(row), activities[i], SCIProwGetLhs(row), SCIProwGetRhs(row)); break; } } else localrows = TRUE; } if( !valid ) { /** @todo try to correct lp rows */ SCIPdebugMessage("Some global bound changes were not valid in lp rows.\n"); goto TERMINATE; } SCIP_CALL( SCIPallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPallocBufferArray(scip, &shiftvals, shiftcandssize) ); SCIPdebugMessage("Starting 1-opt heuristic\n"); /* enumerate all integer variables and find out which of them are shiftable */ for( i = 0; i < nintvars; i++ ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_Real shiftval; SCIP_Real solval; /* find out whether the variable can be shifted */ solval = SCIPgetSolVal(scip, worksol, vars[i]); shiftval = calcShiftVal(scip, vars[i], solval, activities); /* insert the variable into the list of shifting candidates */ if( !SCIPisFeasZero(scip, shiftval) ) { SCIPdebugMessage(" -> Variable <%s> can be shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); if( nshiftcands == shiftcandssize) { shiftcandssize *= 8; SCIP_CALL( SCIPreallocBufferArray(scip, &shiftcands, shiftcandssize) ); SCIP_CALL( SCIPreallocBufferArray(scip, &shiftvals, shiftcandssize) ); } shiftcands[nshiftcands] = vars[i]; shiftvals[nshiftcands] = shiftval; nshiftcands++; } } } /* if at least one variable can be shifted, shift variables sorted by their objective */ if( nshiftcands > 0 ) { SCIP_Real shiftval; SCIP_Real solval; SCIP_VAR* var; /* the case that exactly one variable can be shifted is slightly easier */ if( nshiftcands == 1 ) { var = shiftcands[0]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = shiftvals[0]; assert(!SCIPisFeasZero(scip,shiftval)); SCIPdebugMessage(" Only one shiftcand found, var <%s>, which is now shifted by<%1.1f> \n", SCIPvarGetName(var), shiftval); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); } else { SCIP_Real* objcoeffs; SCIP_CALL( SCIPallocBufferArray(scip, &objcoeffs, nshiftcands) ); SCIPdebugMessage(" %d shiftcands found \n", nshiftcands); /* sort the variables by their objective, optionally weighted with the shiftval */ if( heurdata->weightedobj ) { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i])*shiftvals[i]; } else { for( i = 0; i < nshiftcands; ++i ) objcoeffs[i] = SCIPvarGetObj(shiftcands[i]); } /* sort arrays with respect to the first one */ SCIPsortRealPtr(objcoeffs, (void**)shiftcands, nshiftcands); /* try to shift each variable -> Activities have to be updated */ for( i = 0; i < nshiftcands; ++i ) { var = shiftcands[i]; assert(var != NULL); solval = SCIPgetSolVal(scip, worksol, var); shiftval = calcShiftVal(scip, var, solval, activities); SCIPdebugMessage(" -> Variable <%s> is now shifted by <%1.1f> \n", SCIPvarGetName(vars[i]), shiftval); assert(i > 0 || !SCIPisFeasZero(scip, shiftval)); assert(SCIPisFeasGE(scip, solval+shiftval, SCIPvarGetLbGlobal(var)) && SCIPisFeasLE(scip, solval+shiftval, SCIPvarGetUbGlobal(var))); SCIP_CALL( SCIPsetSolVal(scip, worksol, var, solval+shiftval) ); SCIP_CALL( updateRowActivities(scip, activities, var, shiftval) ); } SCIPfreeBufferArray(scip, &objcoeffs); } /* if the problem is a pure IP, try to install the solution, if it is a MIP, solve LP again to set the continuous * variables to the best possible value */ if( nvars == nintvars || !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* since we ignore local rows, we cannot guarantee their feasibility and have to set the checklprows flag to * TRUE if local rows are present */ SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, localrows, &success) ); if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } else { SCIP_Bool lperror; #ifdef NDEBUG SCIP_RETCODE retstat; #endif SCIPdebugMessage("shifted solution should be feasible -> solve LP to fix continuous variables to best values\n"); /* start diving to calculate the LP relaxation */ SCIP_CALL( SCIPstartDive(scip) ); /* set the bounds of the variables: fixed for integers, global bounds for continuous */ for( i = 0; i < nvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], SCIPvarGetLbGlobal(vars[i])) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], SCIPvarGetUbGlobal(vars[i])) ); } } /* apply this after global bounds to not cause an error with intermediate empty domains */ for( i = 0; i < nintvars; ++i ) { if( SCIPvarGetStatus(vars[i]) == SCIP_VARSTATUS_COLUMN ) { solval = SCIPgetSolVal(scip, worksol, vars[i]); SCIP_CALL( SCIPchgVarLbDive(scip, vars[i], solval) ); SCIP_CALL( SCIPchgVarUbDive(scip, vars[i], solval) ); } } /* solve LP */ SCIPdebugMessage(" -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); /**@todo in case of an MINLP, if SCIPisNLPConstructed() is TRUE, say, rather solve the NLP instead of the LP */ /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic. * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ #ifdef NDEBUG retstat = SCIPsolveDiveLP(scip, -1, &lperror, NULL); if( retstat != SCIP_OKAY ) { SCIPwarningMessage(scip, "Error while solving LP in Oneopt heuristic; LP solve terminated with code <%d>\n",retstat); } #else SCIP_CALL( SCIPsolveDiveLP(scip, -1, &lperror, NULL) ); #endif SCIPdebugMessage(" -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip)); SCIPdebugMessage(" -> error=%u, status=%d\n", lperror, SCIPgetLPSolstat(scip)); /* check if this is a feasible solution */ if( !lperror && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_OPTIMAL ) { SCIP_Bool success; /* copy the current LP solution to the working solution */ SCIP_CALL( SCIPlinkLPSol(scip, worksol) ); SCIP_CALL( SCIPtrySol(scip, worksol, FALSE, FALSE, FALSE, FALSE, &success) ); /* check solution for feasibility */ if( success ) { SCIPdebugMessage("found feasible shifted solution:\n"); SCIPdebug( SCIP_CALL( SCIPprintSol(scip, worksol, NULL, FALSE) ) ); heurdata->lastsolindex = SCIPsolGetIndex(bestsol); *result = SCIP_FOUNDSOL; } } /* terminate the diving */ SCIP_CALL( SCIPendDive(scip) ); } } SCIPdebugMessage("Finished 1-opt heuristic\n"); SCIPfreeBufferArray(scip, &shiftvals); SCIPfreeBufferArray(scip, &shiftcands); TERMINATE: SCIPfreeBufferArray(scip, &activities); SCIP_CALL( SCIPfreeSol(scip, &worksol) ); return SCIP_OKAY; }
/** execution method of primal heuristic */ static SCIP_DECL_HEUREXEC(heurExecCrossover) { /*lint --e{715}*/ SCIP_HEURDATA* heurdata; /* primal heuristic data */ SCIP* subscip; /* the subproblem created by crossover */ SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */ SCIP_VAR** vars; /* original problem's variables */ SCIP_VAR** subvars; /* subproblem's variables */ SCIP_SOL** sols; SCIP_Real memorylimit; /* memory limit for the subproblem */ SCIP_Real timelimit; /* time limit for the subproblem */ SCIP_Real cutoff; /* objective cutoff for the subproblem */ SCIP_Real upperbound; SCIP_Bool success; SCIP_Longint nstallnodes; /* node limit for the subproblem */ int* selection; /* pool of solutions crossover uses */ int nvars; /* number of original problem's variables */ int nbinvars; int nintvars; int nusedsols; int i; SCIP_RETCODE retcode; assert(heur != NULL); assert(scip != NULL); assert(result != NULL); /* get heuristic's data */ heurdata = SCIPheurGetData(heur); assert(heurdata != NULL); nusedsols = heurdata->nusedsols; *result = SCIP_DELAYED; /* only call heuristic, if enough solutions are at hand */ if( SCIPgetNSols(scip) < nusedsols ) return SCIP_OKAY; sols = SCIPgetSols(scip); assert(sols != NULL); /* if one good solution was found, heuristic should not be delayed any longer */ if( sols[nusedsols-1] != heurdata->prevlastsol ) { heurdata->nextnodenumber = SCIPgetNNodes(scip); if( sols[0] != heurdata->prevbestsol ) heurdata->nfailures = 0; } /* in nonrandomized mode: only recall heuristic, if at least one new good solution was found in the meantime */ else if( !heurdata->randomization ) return SCIP_OKAY; /* if heuristic should be delayed, wait until certain number of nodes is reached */ if( SCIPgetNNodes(scip) < heurdata->nextnodenumber ) return SCIP_OKAY; /* only call heuristic, if enough nodes were processed since last incumbent */ if( SCIPgetNNodes(scip) - SCIPgetSolNodenum(scip,SCIPgetBestSol(scip)) < heurdata->nwaitingnodes && (SCIPgetDepth(scip) > 0 || !heurdata->dontwaitatroot) ) return SCIP_OKAY; *result = SCIP_DIDNOTRUN; /* calculate the maximal number of branching nodes until heuristic is aborted */ nstallnodes = (SCIP_Longint)(heurdata->nodesquot * SCIPgetNNodes(scip)); /* reward Crossover if it succeeded often */ nstallnodes = (SCIP_Longint) (nstallnodes * (1.0 + 2.0*(SCIPheurGetNBestSolsFound(heur)+1.0)/(SCIPheurGetNCalls(heur)+1.0))); /* count the setup costs for the sub-MIP as 100 nodes */ nstallnodes -= 100 * SCIPheurGetNCalls(heur); nstallnodes += heurdata->nodesofs; /* determine the node limit for the current process */ nstallnodes -= heurdata->usednodes; nstallnodes = MIN(nstallnodes, heurdata->maxnodes); /* check whether we have enough nodes left to call subproblem solving */ if( nstallnodes < heurdata->minnodes ) return SCIP_OKAY; if( SCIPisStopped(scip) ) return SCIP_OKAY; *result = SCIP_DIDNOTFIND; SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) ); assert(nvars > 0); /* check whether discrete variables are available */ if( nbinvars == 0 && nintvars == 0 ) return SCIP_OKAY; /* initializing the subproblem */ SCIP_CALL( SCIPcreate(&subscip) ); /* create the variable mapping hash map */ SCIP_CALL( SCIPhashmapCreate(&varmapfw, SCIPblkmem(subscip), SCIPcalcHashtableSize(5 * nvars)) ); success = FALSE; if( heurdata->uselprows ) { char probname[SCIP_MAXSTRLEN]; /* copy all plugins */ SCIP_CALL( SCIPincludeDefaultPlugins(subscip) ); /* get name of the original problem and add the string "_crossoversub" */ (void) SCIPsnprintf(probname, SCIP_MAXSTRLEN, "%s_crossoversub", SCIPgetProbName(scip)); /* create the subproblem */ SCIP_CALL( SCIPcreateProb(subscip, probname, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ); /* copy all variables */ SCIP_CALL( SCIPcopyVars(scip, subscip, varmapfw, NULL, TRUE) ); } else { SCIP_CALL( SCIPcopy(scip, subscip, varmapfw, NULL, "crossover", TRUE, FALSE, TRUE, &success) ); if( heurdata->copycuts ) { /** copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */ SCIP_CALL( SCIPcopyCuts(scip, subscip, varmapfw, NULL, TRUE, NULL) ); } } SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) ); SCIP_CALL( SCIPallocBufferArray(scip, &selection, nusedsols) ); for( i = 0; i < nvars; i++ ) subvars[i] = (SCIP_VAR*) (size_t) SCIPhashmapGetImage(varmapfw, vars[i]); /* free hash map */ SCIPhashmapFree(&varmapfw); success = FALSE; /* create a new problem, which fixes variables with same value in a certain set of solutions */ SCIP_CALL( setupSubproblem(scip, subscip, subvars, selection, heurdata, &success) ); heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = sols[heurdata->nusedsols-1]; /* if creation of sub-SCIP was aborted (e.g. due to number of fixings), free sub-SCIP and abort */ if( !success ) { *result = SCIP_DIDNOTRUN; /* this run will be counted as a failure since no new solution tuple could be generated or the neighborhood of the * solution was not fruitful in the sense that it was too big */ updateFailureStatistic(scip, heurdata); goto TERMINATE; } /* do not abort subproblem on CTRL-C */ SCIP_CALL( SCIPsetBoolParam(subscip, "misc/catchctrlc", FALSE) ); /* disable output to console */ SCIP_CALL( SCIPsetIntParam(subscip, "display/verblevel", 0) ); /* check whether there is enough time and memory left */ SCIP_CALL( SCIPgetRealParam(scip, "limits/time", &timelimit) ); if( !SCIPisInfinity(scip, timelimit) ) timelimit -= SCIPgetSolvingTime(scip); SCIP_CALL( SCIPgetRealParam(scip, "limits/memory", &memorylimit) ); /* substract the memory already used by the main SCIP and the estimated memory usage of external software */ if( !SCIPisInfinity(scip, memorylimit) ) { memorylimit -= SCIPgetMemUsed(scip)/1048576.0; memorylimit -= SCIPgetMemExternEstim(scip)/1048576.0; } /* abort if no time is left or not enough memory to create a copy of SCIP, including external memory usage */ if( timelimit <= 0.0 || memorylimit <= 2.0*SCIPgetMemExternEstim(scip)/1048576.0 ) goto TERMINATE; /* set limits for the subproblem */ SCIP_CALL( SCIPsetLongintParam(subscip, "limits/nodes", nstallnodes) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/time", timelimit) ); SCIP_CALL( SCIPsetRealParam(subscip, "limits/memory", memorylimit) ); /* forbid recursive call of heuristics and separators solving subMIPs */ SCIP_CALL( SCIPsetSubscipsOff(subscip, TRUE) ); /* disable cutting plane separation */ SCIP_CALL( SCIPsetSeparating(subscip, SCIP_PARAMSETTING_OFF, TRUE) ); /* disable expensive presolving */ SCIP_CALL( SCIPsetPresolving(subscip, SCIP_PARAMSETTING_FAST, TRUE) ); /* use best estimate node selection */ if( SCIPfindNodesel(subscip, "estimate") != NULL && !SCIPisParamFixed(subscip, "nodeselection/estimate/stdpriority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "nodeselection/estimate/stdpriority", INT_MAX/4) ); } /* use inference branching */ if( SCIPfindBranchrule(subscip, "inference") != NULL && !SCIPisParamFixed(subscip, "branching/inference/priority") ) { SCIP_CALL( SCIPsetIntParam(subscip, "branching/inference/priority", INT_MAX/4) ); } /* disable conflict analysis */ if( !SCIPisParamFixed(subscip, "conflict/useprop") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useprop", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useinflp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useinflp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/useboundlp") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/useboundlp", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usesb") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usesb", FALSE) ); } if( !SCIPisParamFixed(subscip, "conflict/usepseudo") ) { SCIP_CALL( SCIPsetBoolParam(subscip, "conflict/usepseudo", FALSE) ); } /* add an objective cutoff */ cutoff = SCIPinfinity(scip); assert(!SCIPisInfinity(scip, SCIPgetUpperbound(scip))); upperbound = SCIPgetUpperbound(scip) - SCIPsumepsilon(scip); if( !SCIPisInfinity(scip,-1.0*SCIPgetLowerbound(scip)) ) { cutoff = (1-heurdata->minimprove)*SCIPgetUpperbound(scip) + heurdata->minimprove*SCIPgetLowerbound(scip); } else { if( SCIPgetUpperbound ( scip ) >= 0 ) cutoff = ( 1 - heurdata->minimprove ) * SCIPgetUpperbound ( scip ); else cutoff = ( 1 + heurdata->minimprove ) * SCIPgetUpperbound ( scip ); } cutoff = MIN(upperbound, cutoff ); SCIP_CALL( SCIPsetObjlimit(subscip, cutoff) ); /* permute the subproblem to increase diversification */ if( heurdata->permute ) { SCIP_CALL( SCIPpermuteProb(subscip, (unsigned int) SCIPheurGetNCalls(heur), TRUE, TRUE, TRUE, TRUE, TRUE) ); } /* solve the subproblem */ SCIPdebugMessage("Solve Crossover subMIP\n"); retcode = SCIPsolve(subscip); /* Errors in solving the subproblem should not kill the overall solving process. * Hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */ if( retcode != SCIP_OKAY ) { #ifndef NDEBUG SCIP_CALL( retcode ); #endif SCIPwarningMessage(scip, "Error while solving subproblem in Crossover heuristic; sub-SCIP terminated with code <%d>\n", retcode); } heurdata->usednodes += SCIPgetNNodes(subscip); /* check, whether a solution was found */ if( SCIPgetNSols(subscip) > 0 ) { SCIP_SOL** subsols; int nsubsols; int solindex; /* index of the solution created by crossover */ /* check, whether a solution was found; * due to numerics, it might happen that not all solutions are feasible -> try all solutions until one was accepted */ nsubsols = SCIPgetNSols(subscip); subsols = SCIPgetSols(subscip); success = FALSE; solindex = -1; for( i = 0; i < nsubsols && !success; ++i ) { SCIP_CALL( createNewSol(scip, subscip, subvars, heur, subsols[i], &solindex, &success) ); } if( success ) { int tmp; assert(solindex != -1); *result = SCIP_FOUNDSOL; /* insert all crossings of the new solution and (nusedsols-1) of its parents into the hashtable * in order to avoid incest ;) */ for( i = 0; i < nusedsols; i++ ) { SOLTUPLE* elem; tmp = selection[i]; selection[i] = solindex; SCIP_CALL( createSolTuple(scip, &elem, selection, nusedsols, heurdata) ); SCIP_CALL( SCIPhashtableInsert(heurdata->hashtable, elem) ); selection[i] = tmp; } /* if solution was among the best ones, crossover should not be called until another good solution was found */ if( !heurdata->randomization ) { heurdata->prevbestsol = SCIPgetBestSol(scip); heurdata->prevlastsol = SCIPgetSols(scip)[heurdata->nusedsols-1]; } } /* if solution is not better then incumbent or could not be added to problem => run is counted as a failure */ if( !success || solindex != SCIPsolGetIndex(SCIPgetBestSol(scip)) ) updateFailureStatistic(scip, heurdata); } else { /* if no new solution was found, run was a failure */ updateFailureStatistic(scip, heurdata); } TERMINATE: /* free subproblem */ SCIPfreeBufferArray(scip, &selection); SCIPfreeBufferArray(scip, &subvars); SCIP_CALL( SCIPfree(&subscip) ); return SCIP_OKAY; }