예제 #1
0
long double
__x2y2m1l (long double x, long double y)
{
  long double vals[4];
  SET_RESTORE_ROUNDL (FE_TONEAREST);
  mul_split (&vals[1], &vals[0], x, x);
  mul_split (&vals[3], &vals[2], y, y);
  if (x >= 0.75L)
    vals[1] -= 1.0L;
  else
    {
      vals[1] -= 0.5L;
      vals[3] -= 0.5L;
    }
  qsort (vals, 4, sizeof (long double), compare);
  /* Add up the values so that each element of VALS has absolute value
     at most equal to the last set bit of the next nonzero
     element.  */
  for (size_t i = 0; i <= 2; i++)
    {
      add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]);
      qsort (vals + i + 1, 3 - i, sizeof (long double), compare);
    }
  /* Now any error from this addition will be small.  */
  return vals[3] + vals[2] + vals[1] + vals[0];
}
예제 #2
0
long double
__lgamma_negl (long double x, int *signgamp)
{
  /* Determine the half-integer region X lies in, handle exact
     integers and determine the sign of the result.  */
  int i = floorl (-2 * x);
  if ((i & 1) == 0 && i == -2 * x)
    return 1.0L / 0.0L;
  long double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
  i -= 4;
  *signgamp = ((i & 2) == 0 ? -1 : 1);

  SET_RESTORE_ROUNDL (FE_TONEAREST);

  /* Expand around the zero X0 = X0_HI + X0_LO.  */
  long double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
  long double xdiff = x - x0_hi - x0_lo;

  /* For arguments in the range -3 to -2, use polynomial
     approximations to an adjusted version of the gamma function.  */
  if (i < 2)
    {
      int j = floorl (-8 * x) - 16;
      long double xm = (-33 - 2 * j) * 0.0625L;
      long double x_adj = x - xm;
      size_t deg = poly_deg[j];
      size_t end = poly_end[j];
      long double g = poly_coeff[end];
      for (size_t j = 1; j <= deg; j++)
	g = g * x_adj + poly_coeff[end - j];
      return __log1pl (g * xdiff / (x - xn));
    }

  /* The result we want is log (sinpi (X0) / sinpi (X))
     + log (gamma (1 - X0) / gamma (1 - X)).  */
  long double x_idiff = fabsl (xn - x), x0_idiff = fabsl (xn - x0_hi - x0_lo);
  long double log_sinpi_ratio;
  if (x0_idiff < x_idiff * 0.5L)
    /* Use log not log1p to avoid inaccuracy from log1p of arguments
       close to -1.  */
    log_sinpi_ratio = __ieee754_logl (lg_sinpi (x0_idiff)
				      / lg_sinpi (x_idiff));
  else
    {
      /* Use log1p not log to avoid inaccuracy from log of arguments
	 close to 1.  X0DIFF2 has positive sign if X0 is further from
	 XN than X is from XN, negative sign otherwise.  */
      long double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5L;
      long double sx0d2 = lg_sinpi (x0diff2);
      long double cx0d2 = lg_cospi (x0diff2);
      log_sinpi_ratio = __log1pl (2 * sx0d2
				  * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
    }

  long double log_gamma_ratio;
  long double y0 = 1 - x0_hi;
  long double y0_eps = -x0_hi + (1 - y0) - x0_lo;
  long double y = 1 - x;
  long double y_eps = -x + (1 - y);
  /* We now wish to compute LOG_GAMMA_RATIO
     = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)).  XDIFF
     accurately approximates the difference Y0 + Y0_EPS - Y -
     Y_EPS.  Use Stirling's approximation.  First, we may need to
     adjust into the range where Stirling's approximation is
     sufficiently accurate.  */
  long double log_gamma_adj = 0;
  if (i < 18)
    {
      int n_up = (19 - i) / 2;
      long double ny0, ny0_eps, ny, ny_eps;
      ny0 = y0 + n_up;
      ny0_eps = y0 - (ny0 - n_up) + y0_eps;
      y0 = ny0;
      y0_eps = ny0_eps;
      ny = y + n_up;
      ny_eps = y - (ny - n_up) + y_eps;
      y = ny;
      y_eps = ny_eps;
      long double prodm1 = __lgamma_productl (xdiff, y - n_up, y_eps, n_up);
      log_gamma_adj = -__log1pl (prodm1);
    }
  long double log_gamma_high
    = (xdiff * __log1pl ((y0 - e_hi - e_lo + y0_eps) / e_hi)
       + (y - 0.5L + y_eps) * __log1pl (xdiff / y) + log_gamma_adj);
  /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)).  */
  long double y0r = 1 / y0, yr = 1 / y;
  long double y0r2 = y0r * y0r, yr2 = yr * yr;
  long double rdiff = -xdiff / (y * y0);
  long double bterm[NCOEFF];
  long double dlast = rdiff, elast = rdiff * yr * (yr + y0r);
  bterm[0] = dlast * lgamma_coeff[0];
  for (size_t j = 1; j < NCOEFF; j++)
    {
      long double dnext = dlast * y0r2 + elast;
      long double enext = elast * yr2;
      bterm[j] = dnext * lgamma_coeff[j];
      dlast = dnext;
      elast = enext;
    }
  long double log_gamma_low = 0;
  for (size_t j = 0; j < NCOEFF; j++)
    log_gamma_low += bterm[NCOEFF - 1 - j];
  log_gamma_ratio = log_gamma_high + log_gamma_low;

  return log_sinpi_ratio + log_gamma_ratio;
}
예제 #3
0
long double
__ieee754_gammal_r (long double x, int *signgamp)
{
  int64_t hx;
  u_int64_t lx;
  long double ret;

  GET_LDOUBLE_WORDS64 (hx, lx, x);

  if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
    {
      /* Return value for x == 0 is Inf with divide by zero exception.  */
      *signgamp = 0;
      return 1.0 / x;
    }
  if (hx < 0 && (u_int64_t) hx < 0xffff000000000000ULL && __rintl (x) == x)
    {
      /* Return value for integer x < 0 is NaN with invalid exception.  */
      *signgamp = 0;
      return (x - x) / (x - x);
    }
  if (hx == 0xffff000000000000ULL && lx == 0)
    {
      /* x == -Inf.  According to ISO this is NaN.  */
      *signgamp = 0;
      return x - x;
    }
  if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
    {
      /* Positive infinity (return positive infinity) or NaN (return
	 NaN).  */
      *signgamp = 0;
      return x + x;
    }

  if (x >= 1756.0L)
    {
      /* Overflow.  */
      *signgamp = 0;
      return LDBL_MAX * LDBL_MAX;
    }
  else
    {
      SET_RESTORE_ROUNDL (FE_TONEAREST);
      if (x > 0.0L)
	{
	  *signgamp = 0;
	  int exp2_adj;
	  ret = gammal_positive (x, &exp2_adj);
	  ret = __scalbnl (ret, exp2_adj);
	}
      else if (x >= -LDBL_EPSILON / 4.0L)
	{
	  *signgamp = 0;
	  ret = 1.0L / x;
	}
      else
	{
	  long double tx = __truncl (x);
	  *signgamp = (tx == 2.0L * __truncl (tx / 2.0L)) ? -1 : 1;
	  if (x <= -1775.0L)
	    /* Underflow.  */
	    ret = LDBL_MIN * LDBL_MIN;
	  else
	    {
	      long double frac = tx - x;
	      if (frac > 0.5L)
		frac = 1.0L - frac;
	      long double sinpix = (frac <= 0.25L
				    ? __sinl (M_PIl * frac)
				    : __cosl (M_PIl * (0.5L - frac)));
	      int exp2_adj;
	      ret = M_PIl / (-x * sinpix
			     * gammal_positive (-x, &exp2_adj));
	      ret = __scalbnl (ret, -exp2_adj);
	    }
	}
    }
  if (isinf (ret) && x != 0)
    {
      if (*signgamp < 0)
	return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX);
      else
	return __copysignl (LDBL_MAX, ret) * LDBL_MAX;
    }
  else if (ret == 0)
    {
      if (*signgamp < 0)
	return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN);
      else
	return __copysignl (LDBL_MIN, ret) * LDBL_MIN;
    }
  else
    return ret;
}
예제 #4
0
파일: e_j1l.c 프로젝트: KubaKaszycki/kklibc
long double
__ieee754_y1l (long double x)
{
  long double xx, xinv, z, p, q, c, s, cc, ss;

  if (! isfinite (x))
    {
      if (x != x)
	return x;
      else
	return 0.0L;
    }
  if (x <= 0.0L)
    {
      if (x < 0.0L)
	return (zero / (zero * x));
      return -HUGE_VALL + x;
    }
  xx = fabsl (x);
  if (xx <= 0x1p-114)
    {
      z = -TWOOPI / x;
      if (isinf (z))
	__set_errno (ERANGE);
      return z;
    }
  if (xx <= 2.0L)
    {
      /* 0 <= x <= 2 */
      SET_RESTORE_ROUNDL (FE_TONEAREST);
      z = xx * xx;
      p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
      p = -TWOOPI / xx + p;
      p = TWOOPI * __ieee754_logl (x) * __ieee754_j1l (x) + p;
      return p;
    }

  /* X = x - 3 pi/4
     cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
     = 1/sqrt(2) * (-cos(x) + sin(x))
     sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
     = -1/sqrt(2) * (sin(x) + cos(x))
     cf. Fdlibm.  */
  __sincosl (xx, &s, &c);
  ss = -s - c;
  cc = s - c;
  if (xx <= LDBL_MAX / 2.0L)
    {
      z = __cosl (xx + xx);
      if ((s * c) > 0)
	cc = z / ss;
      else
	ss = z / cc;
    }

  if (xx > 0x1p256L)
    return ONEOSQPI * ss / __ieee754_sqrtl (xx);

  xinv = 1.0L / xx;
  z = xinv * xinv;
  if (xinv <= 0.25)
    {
      if (xinv <= 0.125)
	{
	  if (xinv <= 0.0625)
	    {
	      p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
	      q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
	    }
	  else
	    {
	      p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
	      q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
	    }
	}
      else if (xinv <= 0.1875)
	{
	  p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
	  q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
	}
      else
	{
	  p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
	  q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
	}
    }				/* .25 */
  else /* if (xinv <= 0.5) */
    {
      if (xinv <= 0.375)
	{
	  if (xinv <= 0.3125)
	    {
	      p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
	      q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
	    }
	  else
	    {
	      p = neval (z, P2r7_3r2N, NP2r7_3r2N)
		  / deval (z, P2r7_3r2D, NP2r7_3r2D);
	      q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
		  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
	    }
	}
      else if (xinv <= 0.4375)
	{
	  p = neval (z, P2r3_2r7N, NP2r3_2r7N)
	      / deval (z, P2r3_2r7D, NP2r3_2r7D);
	  q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
	      / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
	}
      else
	{
	  p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
	  q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
	}
    }
  p = 1.0L + z * p;
  q = z * q;
  q = q * xinv + 0.375L * xinv;
  z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (xx);
  return z;
}
예제 #5
0
long double
__ieee754_gammal_r (long double x, int *signgamp)
{
  u_int32_t es, hx, lx;
  long double ret;

  GET_LDOUBLE_WORDS (es, hx, lx, x);

  if (__glibc_unlikely (((es & 0x7fff) | hx | lx) == 0))
    {
      /* Return value for x == 0 is Inf with divide by zero exception.  */
      *signgamp = 0;
      return 1.0 / x;
    }
  if (__glibc_unlikely (es == 0xffffffff && ((hx & 0x7fffffff) | lx) == 0))
    {
      /* x == -Inf.  According to ISO this is NaN.  */
      *signgamp = 0;
      return x - x;
    }
  if (__glibc_unlikely ((es & 0x7fff) == 0x7fff))
    {
      /* Positive infinity (return positive infinity) or NaN (return
	 NaN).  */
      *signgamp = 0;
      return x + x;
    }
  if (__builtin_expect ((es & 0x8000) != 0, 0) && __rintl (x) == x)
    {
      /* Return value for integer x < 0 is NaN with invalid exception.  */
      *signgamp = 0;
      return (x - x) / (x - x);
    }

  if (x >= 1756.0L)
    {
      /* Overflow.  */
      *signgamp = 0;
      return LDBL_MAX * LDBL_MAX;
    }
  else
    {
      SET_RESTORE_ROUNDL (FE_TONEAREST);
      if (x > 0.0L)
	{
	  *signgamp = 0;
	  int exp2_adj;
	  ret = gammal_positive (x, &exp2_adj);
	  ret = __scalbnl (ret, exp2_adj);
	}
      else if (x >= -LDBL_EPSILON / 4.0L)
	{
	  *signgamp = 0;
	  ret = 1.0L / x;
	}
      else
	{
	  long double tx = __truncl (x);
	  *signgamp = (tx == 2.0L * __truncl (tx / 2.0L)) ? -1 : 1;
	  if (x <= -1766.0L)
	    /* Underflow.  */
	    ret = LDBL_MIN * LDBL_MIN;
	  else
	    {
	      long double frac = tx - x;
	      if (frac > 0.5L)
		frac = 1.0L - frac;
	      long double sinpix = (frac <= 0.25L
				    ? __sinl (M_PIl * frac)
				    : __cosl (M_PIl * (0.5L - frac)));
	      int exp2_adj;
	      ret = M_PIl / (-x * sinpix
			     * gammal_positive (-x, &exp2_adj));
	      ret = __scalbnl (ret, -exp2_adj);
	      math_check_force_underflow_nonneg (ret);
	    }
	}
    }
  if (isinf (ret) && x != 0)
    {
      if (*signgamp < 0)
	return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX);
      else
	return __copysignl (LDBL_MAX, ret) * LDBL_MAX;
    }
  else if (ret == 0)
    {
      if (*signgamp < 0)
	return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN);
      else
	return __copysignl (LDBL_MIN, ret) * LDBL_MIN;
    }
  else
    return ret;
}