static void deadlkres(void) { struct proc *p; struct thread *td; void *wchan; int blkticks, i, slpticks, slptype, tryl, tticks; tryl = 0; for (;;) { blkticks = blktime_threshold * hz; slpticks = slptime_threshold * hz; /* * Avoid to sleep on the sx_lock in order to avoid a possible * priority inversion problem leading to starvation. * If the lock can't be held after 100 tries, panic. */ if (!sx_try_slock(&allproc_lock)) { if (tryl > 100) panic("%s: possible deadlock detected on allproc_lock\n", __func__); tryl++; pause("allproc", sleepfreq * hz); continue; } tryl = 0; FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } FOREACH_THREAD_IN_PROC(p, td) { /* * Once a thread is found in "interesting" * state a possible ticks wrap-up needs to be * checked. */ thread_lock(td); if (TD_ON_LOCK(td) && ticks < td->td_blktick) { /* * The thread should be blocked on a * turnstile, simply check if the * turnstile channel is in good state. */ MPASS(td->td_blocked != NULL); tticks = ticks - td->td_blktick; thread_unlock(td); if (tticks > blkticks) { /* * Accordingly with provided * thresholds, this thread is * stuck for too long on a * turnstile. */ PROC_UNLOCK(p); sx_sunlock(&allproc_lock); panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", __func__, td, tticks); } } else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td) && ticks < td->td_blktick) { /* * Check if the thread is sleeping on a * lock, otherwise skip the check. * Drop the thread lock in order to * avoid a LOR with the sleepqueue * spinlock. */ wchan = td->td_wchan; tticks = ticks - td->td_slptick; thread_unlock(td); slptype = sleepq_type(wchan); if ((slptype == SLEEPQ_SX || slptype == SLEEPQ_LK) && tticks > slpticks) { /* * Accordingly with provided * thresholds, this thread is * stuck for too long on a * sleepqueue. * However, being on a * sleepqueue, we might still * check for the blessed * list. */ tryl = 0; for (i = 0; blessed[i] != NULL; i++) { if (!strcmp(blessed[i], td->td_wmesg)) { tryl = 1; break; } } if (tryl != 0) { tryl = 0; continue; } PROC_UNLOCK(p); sx_sunlock(&allproc_lock); panic("%s: possible deadlock detected for %p, blocked for %d ticks\n", __func__, td, tticks); } } else thread_unlock(td); } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); /* Sleep for sleepfreq seconds. */ pause("-", sleepfreq * hz); }
/* * Layout: * - column counts * - header * - single-threaded process * - multi-threaded process * - thread in a MT process * * 1 2 3 4 5 6 7 * 1234567890123456789012345678901234567890123456789012345678901234567890 * pid ppid pgrp uid state wmesg wchan cmd * <pid> <ppi> <pgi> <uid> <stat> < wmesg > < wchan > <name> * <pid> <ppi> <pgi> <uid> <stat> (threaded) <command> * <tid > <stat> < wmesg > < wchan > <name> * * For machines with 64-bit pointers, we expand the wchan field 8 more * characters. */ void db_ps(db_expr_t addr, boolean_t hasaddr, db_expr_t count, char *modif) { volatile struct proc *p, *pp; volatile struct thread *td; struct ucred *cred; struct pgrp *pgrp; char state[9]; int np, rflag, sflag, dflag, lflag, wflag; np = nprocs; if (!LIST_EMPTY(&allproc)) p = LIST_FIRST(&allproc); else p = &proc0; #ifdef __LP64__ db_printf(" pid ppid pgrp uid state wmesg wchan cmd\n"); #else db_printf(" pid ppid pgrp uid state wmesg wchan cmd\n"); #endif while (--np >= 0 && !db_pager_quit) { if (p == NULL) { db_printf("oops, ran out of processes early!\n"); break; } pp = p->p_pptr; if (pp == NULL) pp = p; cred = p->p_ucred; pgrp = p->p_pgrp; db_printf("%5d %5d %5d %5d ", p->p_pid, pp->p_pid, pgrp != NULL ? pgrp->pg_id : 0, cred != NULL ? cred->cr_ruid : 0); /* Determine our primary process state. */ switch (p->p_state) { case PRS_NORMAL: if (P_SHOULDSTOP(p)) state[0] = 'T'; else { /* * One of D, L, R, S, W. For a * multithreaded process we will use * the state of the thread with the * highest precedence. The * precendence order from high to low * is R, L, D, S, W. If no thread is * in a sane state we use '?' for our * primary state. */ rflag = sflag = dflag = lflag = wflag = 0; FOREACH_THREAD_IN_PROC(p, td) { if (td->td_state == TDS_RUNNING || td->td_state == TDS_RUNQ || td->td_state == TDS_CAN_RUN) rflag++; if (TD_ON_LOCK(td)) lflag++; if (TD_IS_SLEEPING(td)) { if (!(td->td_flags & TDF_SINTR)) dflag++; else sflag++; } if (TD_AWAITING_INTR(td)) wflag++; } if (rflag) state[0] = 'R'; else if (lflag) state[0] = 'L'; else if (dflag) state[0] = 'D'; else if (sflag) state[0] = 'S'; else if (wflag) state[0] = 'W'; else state[0] = '?'; } break; case PRS_NEW: state[0] = 'N'; break; case PRS_ZOMBIE: state[0] = 'Z'; break; default: state[0] = 'U'; break; } state[1] = '\0'; /* Additional process state flags. */ if (!(p->p_flag & P_INMEM)) strlcat(state, "W", sizeof(state)); if (p->p_flag & P_TRACED) strlcat(state, "X", sizeof(state)); if (p->p_flag & P_WEXIT && p->p_state != PRS_ZOMBIE) strlcat(state, "E", sizeof(state)); if (p->p_flag & P_PPWAIT) strlcat(state, "V", sizeof(state)); if (p->p_flag & P_SYSTEM || p->p_lock > 0) strlcat(state, "L", sizeof(state)); if (p->p_session != NULL && SESS_LEADER(p)) strlcat(state, "s", sizeof(state)); /* Cheated here and didn't compare pgid's. */ if (p->p_flag & P_CONTROLT) strlcat(state, "+", sizeof(state)); if (cred != NULL && jailed(cred)) strlcat(state, "J", sizeof(state)); db_printf(" %-6.6s ", state); if (p->p_flag & P_HADTHREADS) { #ifdef __LP64__ db_printf(" (threaded) "); #else db_printf(" (threaded) "); #endif if (p->p_flag & P_SYSTEM) db_printf("["); db_printf("%s", p->p_comm); if (p->p_flag & P_SYSTEM) db_printf("]"); db_printf("\n"); } FOREACH_THREAD_IN_PROC(p, td) { dumpthread(p, td, p->p_flag & P_HADTHREADS); if (db_pager_quit) break; } p = LIST_NEXT(p, p_list); if (p == NULL && np > 0) p = LIST_FIRST(&zombproc); }
/* * Read proc's from memory file into buffer bp, which has space to hold * at most maxcnt procs. */ static int kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, struct kinfo_proc *bp, int maxcnt) { int cnt = 0; struct kinfo_proc kinfo_proc, *kp; struct pgrp pgrp; struct session sess; struct cdev t_cdev; struct tty tty; struct vmspace vmspace; struct sigacts sigacts; #if 0 struct pstats pstats; #endif struct ucred ucred; struct prison pr; struct thread mtd; struct proc proc; struct proc pproc; struct sysentvec sysent; char svname[KI_EMULNAMELEN]; kp = &kinfo_proc; kp->ki_structsize = sizeof(kinfo_proc); /* * Loop on the processes. this is completely broken because we need to be * able to loop on the threads and merge the ones that are the same process some how. */ for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { memset(kp, 0, sizeof *kp); if (KREAD(kd, (u_long)p, &proc)) { _kvm_err(kd, kd->program, "can't read proc at %p", p); return (-1); } if (proc.p_state == PRS_NEW) continue; if (proc.p_state != PRS_ZOMBIE) { if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), &mtd)) { _kvm_err(kd, kd->program, "can't read thread at %p", TAILQ_FIRST(&proc.p_threads)); return (-1); } } if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { kp->ki_ruid = ucred.cr_ruid; kp->ki_svuid = ucred.cr_svuid; kp->ki_rgid = ucred.cr_rgid; kp->ki_svgid = ucred.cr_svgid; kp->ki_cr_flags = ucred.cr_flags; if (ucred.cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = ucred.cr_ngroups; kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_uid = ucred.cr_uid; if (ucred.cr_prison != NULL) { if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { _kvm_err(kd, kd->program, "can't read prison at %p", ucred.cr_prison); return (-1); } kp->ki_jid = pr.pr_id; } } switch(what & ~KERN_PROC_INC_THREAD) { case KERN_PROC_GID: if (kp->ki_groups[0] != (gid_t)arg) continue; break; case KERN_PROC_PID: if (proc.p_pid != (pid_t)arg) continue; break; case KERN_PROC_RGID: if (kp->ki_rgid != (gid_t)arg) continue; break; case KERN_PROC_UID: if (kp->ki_uid != (uid_t)arg) continue; break; case KERN_PROC_RUID: if (kp->ki_ruid != (uid_t)arg) continue; break; } /* * We're going to add another proc to the set. If this * will overflow the buffer, assume the reason is because * nprocs (or the proc list) is corrupt and declare an error. */ if (cnt >= maxcnt) { _kvm_err(kd, kd->program, "nprocs corrupt"); return (-1); } /* * gather kinfo_proc */ kp->ki_paddr = p; kp->ki_addr = 0; /* XXX uarea */ /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ kp->ki_args = proc.p_args; kp->ki_tracep = proc.p_tracevp; kp->ki_textvp = proc.p_textvp; kp->ki_fd = proc.p_fd; kp->ki_vmspace = proc.p_vmspace; if (proc.p_sigacts != NULL) { if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { _kvm_err(kd, kd->program, "can't read sigacts at %p", proc.p_sigacts); return (-1); } kp->ki_sigignore = sigacts.ps_sigignore; kp->ki_sigcatch = sigacts.ps_sigcatch; } #if 0 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { _kvm_err(kd, kd->program, "can't read stats at %x", proc.p_stats); return (-1); } kp->ki_start = pstats.p_start; /* * XXX: The times here are probably zero and need * to be calculated from the raw data in p_rux and * p_crux. */ kp->ki_rusage = pstats.p_ru; kp->ki_childstime = pstats.p_cru.ru_stime; kp->ki_childutime = pstats.p_cru.ru_utime; /* Some callers want child-times in a single value */ timeradd(&kp->ki_childstime, &kp->ki_childutime, &kp->ki_childtime); } #endif if (proc.p_oppid) kp->ki_ppid = proc.p_oppid; else if (proc.p_pptr) { if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { _kvm_err(kd, kd->program, "can't read pproc at %p", proc.p_pptr); return (-1); } kp->ki_ppid = pproc.p_pid; } else kp->ki_ppid = 0; if (proc.p_pgrp == NULL) goto nopgrp; if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read pgrp at %p", proc.p_pgrp); return (-1); } kp->ki_pgid = pgrp.pg_id; kp->ki_jobc = pgrp.pg_jobc; if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %p", pgrp.pg_session); return (-1); } kp->ki_sid = sess.s_sid; (void)memcpy(kp->ki_login, sess.s_login, sizeof(kp->ki_login)); kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; if (sess.s_leader == p) kp->ki_kiflag |= KI_SLEADER; if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { _kvm_err(kd, kd->program, "can't read tty at %p", sess.s_ttyp); return (-1); } if (tty.t_dev != NULL) { if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { _kvm_err(kd, kd->program, "can't read cdev at %p", tty.t_dev); return (-1); } #if 0 kp->ki_tdev = t_cdev.si_udev; #else kp->ki_tdev = NODEV; #endif } if (tty.t_pgrp != NULL) { if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { _kvm_err(kd, kd->program, "can't read tpgrp at %p", tty.t_pgrp); return (-1); } kp->ki_tpgid = pgrp.pg_id; } else kp->ki_tpgid = -1; if (tty.t_session != NULL) { if (KREAD(kd, (u_long)tty.t_session, &sess)) { _kvm_err(kd, kd->program, "can't read session at %p", tty.t_session); return (-1); } kp->ki_tsid = sess.s_sid; } } else { nopgrp: kp->ki_tdev = NODEV; } if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) (void)kvm_read(kd, (u_long)mtd.td_wmesg, kp->ki_wmesg, WMESGLEN); (void)kvm_read(kd, (u_long)proc.p_vmspace, (char *)&vmspace, sizeof(vmspace)); kp->ki_size = vmspace.vm_map.size; /* * Approximate the kernel's method of calculating * this field. */ #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); kp->ki_swrss = vmspace.vm_swrss; kp->ki_tsize = vmspace.vm_tsize; kp->ki_dsize = vmspace.vm_dsize; kp->ki_ssize = vmspace.vm_ssize; switch (what & ~KERN_PROC_INC_THREAD) { case KERN_PROC_PGRP: if (kp->ki_pgid != (pid_t)arg) continue; break; case KERN_PROC_SESSION: if (kp->ki_sid != (pid_t)arg) continue; break; case KERN_PROC_TTY: if ((proc.p_flag & P_CONTROLT) == 0 || kp->ki_tdev != (dev_t)arg) continue; break; } if (proc.p_comm[0] != 0) strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, sizeof(sysent)); (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, sizeof(svname)); if (svname[0] != 0) strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); if ((proc.p_state != PRS_ZOMBIE) && (mtd.td_blocked != 0)) { kp->ki_kiflag |= KI_LOCKBLOCK; if (mtd.td_lockname) (void)kvm_read(kd, (u_long)mtd.td_lockname, kp->ki_lockname, LOCKNAMELEN); kp->ki_lockname[LOCKNAMELEN] = 0; } kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); kp->ki_pid = proc.p_pid; kp->ki_siglist = proc.p_siglist; SIGSETOR(kp->ki_siglist, mtd.td_siglist); kp->ki_sigmask = mtd.td_sigmask; kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig); kp->ki_acflag = proc.p_acflag; kp->ki_lock = proc.p_lock; if (proc.p_state != PRS_ZOMBIE) { kp->ki_swtime = (ticks - proc.p_swtick) / hz; kp->ki_flag = proc.p_flag; kp->ki_sflag = 0; kp->ki_nice = proc.p_nice; kp->ki_traceflag = proc.p_traceflag; if (proc.p_state == PRS_NORMAL) { if (TD_ON_RUNQ(&mtd) || TD_CAN_RUN(&mtd) || TD_IS_RUNNING(&mtd)) { kp->ki_stat = SRUN; } else if (mtd.td_state == TDS_INHIBITED) { if (P_SHOULDSTOP(&proc)) { kp->ki_stat = SSTOP; } else if ( TD_IS_SLEEPING(&mtd)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(&mtd)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } } else { kp->ki_stat = SIDL; } /* Stuff from the thread */ kp->ki_pri.pri_level = mtd.td_priority; kp->ki_pri.pri_native = mtd.td_base_pri; kp->ki_lastcpu = mtd.td_lastcpu; kp->ki_wchan = mtd.td_wchan; kp->ki_oncpu = mtd.td_oncpu; if (mtd.td_name[0] != '\0') strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname)); kp->ki_pctcpu = 0; kp->ki_rqindex = 0; /* * Note: legacy fields; wraps at NO_CPU_OLD or the * old max CPU value as appropriate */ if (mtd.td_lastcpu == NOCPU) kp->ki_lastcpu_old = NOCPU_OLD; else if (mtd.td_lastcpu > MAXCPU_OLD) kp->ki_lastcpu_old = MAXCPU_OLD; else kp->ki_lastcpu_old = mtd.td_lastcpu; if (mtd.td_oncpu == NOCPU) kp->ki_oncpu_old = NOCPU_OLD; else if (mtd.td_oncpu > MAXCPU_OLD) kp->ki_oncpu_old = MAXCPU_OLD; else kp->ki_oncpu_old = mtd.td_oncpu; } else { kp->ki_stat = SZOMB; } kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); ++bp; ++cnt; } return (cnt); }