예제 #1
0
void ff_vp3_idct_add_altivec(uint8_t *dst, int stride, DCTELEM block[64])
{
    LOAD_ZERO;
    vec_u8 t, vdst;
    vec_s16 vdst_16;
    vec_u8 vdst_mask = vec_mergeh(vec_splat_u8(-1), vec_lvsl(0, dst));

    IDCT_START

    IDCT_1D(NOP, NOP)
    TRANSPOSE8(b0, b1, b2, b3, b4, b5, b6, b7);
    IDCT_1D(ADD8, SHIFT4)

#define ADD(a)\
    vdst = vec_ld(0, dst);\
    vdst_16 = (vec_s16)vec_perm(vdst, zero_u8v, vdst_mask);\
    vdst_16 = vec_adds(a, vdst_16);\
    t = vec_packsu(vdst_16, vdst_16);\
    vec_ste((vec_u32)t, 0, (unsigned int *)dst);\
    vec_ste((vec_u32)t, 4, (unsigned int *)dst);

    ADD(b0)     dst += stride;
    ADD(b1)     dst += stride;
    ADD(b2)     dst += stride;
    ADD(b3)     dst += stride;
    ADD(b4)     dst += stride;
    ADD(b5)     dst += stride;
    ADD(b6)     dst += stride;
    ADD(b7)
}
예제 #2
0
void ff_vp3_idct_put_altivec(uint8_t *dst, int stride, DCTELEM block[64])
{
    vec_u8 t;
    IDCT_START

    // pixels are signed; so add 128*16 in addition to the normal 8
    vec_s16 v2048 = vec_sl(vec_splat_s16(1), vec_splat_u16(11));
    eight = vec_add(eight, v2048);

    IDCT_1D(NOP, NOP)
    TRANSPOSE8(b0, b1, b2, b3, b4, b5, b6, b7);
    IDCT_1D(ADD8, SHIFT4)

#define PUT(a)\
    t = vec_packsu(a, a);\
    vec_ste((vec_u32)t, 0, (unsigned int *)dst);\
    vec_ste((vec_u32)t, 4, (unsigned int *)dst);

    PUT(b0)     dst += stride;
    PUT(b1)     dst += stride;
    PUT(b2)     dst += stride;
    PUT(b3)     dst += stride;
    PUT(b4)     dst += stride;
    PUT(b5)     dst += stride;
    PUT(b6)     dst += stride;
    PUT(b7)
}
예제 #3
0
static void ff_h264_idct8_add_altivec( uint8_t *dst, DCTELEM *dct, int stride )
{
    vec_s16 s0, s1, s2, s3, s4, s5, s6, s7;
    vec_s16 d0, d1, d2, d3, d4, d5, d6, d7;
    vec_s16 idct0, idct1, idct2, idct3, idct4, idct5, idct6, idct7;

    vec_u8 perm_ldv = vec_lvsl(0, dst);
    vec_u8 perm_stv = vec_lvsr(8, dst);

    const vec_u16 onev = vec_splat_u16(1);
    const vec_u16 twov = vec_splat_u16(2);
    const vec_u16 sixv = vec_splat_u16(6);

    const vec_u8 sel = (vec_u8)
    {
        0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1
    };
    LOAD_ZERO;

    dct[0] += 32; // rounding for the >>6 at the end

    s0 = vec_ld(0x00, (int16_t *)dct);
    s1 = vec_ld(0x10, (int16_t *)dct);
    s2 = vec_ld(0x20, (int16_t *)dct);
    s3 = vec_ld(0x30, (int16_t *)dct);
    s4 = vec_ld(0x40, (int16_t *)dct);
    s5 = vec_ld(0x50, (int16_t *)dct);
    s6 = vec_ld(0x60, (int16_t *)dct);
    s7 = vec_ld(0x70, (int16_t *)dct);

    IDCT8_1D_ALTIVEC(s0, s1, s2, s3, s4, s5, s6, s7,
                     d0, d1, d2, d3, d4, d5, d6, d7);

    TRANSPOSE8( d0,  d1,  d2,  d3,  d4,  d5,  d6, d7 );

    IDCT8_1D_ALTIVEC(d0,  d1,  d2,  d3,  d4,  d5,  d6, d7,
                     idct0, idct1, idct2, idct3, idct4, idct5, idct6, idct7);

    ALTIVEC_STORE_SUM_CLIP(&dst[0*stride], idct0, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[1*stride], idct1, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[2*stride], idct2, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[3*stride], idct3, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[4*stride], idct4, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[5*stride], idct5, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[6*stride], idct6, perm_ldv, perm_stv, sel);
    ALTIVEC_STORE_SUM_CLIP(&dst[7*stride], idct7, perm_ldv, perm_stv, sel);
}
예제 #4
0
void ff_vp3_idct_altivec(DCTELEM block[64])
{
    IDCT_START

    IDCT_1D(NOP, NOP)
    TRANSPOSE8(b0, b1, b2, b3, b4, b5, b6, b7);
    IDCT_1D(ADD8, SHIFT4)

    vec_st(b0, 0x00, block);
    vec_st(b1, 0x10, block);
    vec_st(b2, 0x20, block);
    vec_st(b3, 0x30, block);
    vec_st(b4, 0x40, block);
    vec_st(b5, 0x50, block);
    vec_st(b6, 0x60, block);
    vec_st(b7, 0x70, block);
}
예제 #5
0
static void vp3_idct_add_altivec(uint8_t *dst, int stride, int16_t block[64])
{
    LOAD_ZERO;
    vec_u8 t, vdst;
    vec_s16 vdst_16;
    vec_u8 vdst_mask = vec_mergeh(vec_splat_u8(-1), vec_lvsl(0, dst));

    IDCT_START

    IDCT_1D(NOP, NOP)
    TRANSPOSE8(b0, b1, b2, b3, b4, b5, b6, b7);
    IDCT_1D(ADD8, SHIFT4)

#if HAVE_BIGENDIAN
#define GET_VDST16\
    vdst = vec_ld(0, dst);\
    vdst_16 = (vec_s16)vec_perm(vdst, zero_u8v, vdst_mask);
#else
#define GET_VDST16\
    vdst = vec_vsx_ld(0,dst);\
    vdst_16 = (vec_s16)vec_mergeh(vdst, zero_u8v);
#endif

#define ADD(a)\
    GET_VDST16;\
    vdst_16 = vec_adds(a, vdst_16);\
    t = vec_packsu(vdst_16, vdst_16);\
    vec_ste((vec_u32)t, 0, (unsigned int *)dst);\
    vec_ste((vec_u32)t, 4, (unsigned int *)dst);

    ADD(b0)     dst += stride;
    ADD(b1)     dst += stride;
    ADD(b2)     dst += stride;
    ADD(b3)     dst += stride;
    ADD(b4)     dst += stride;
    ADD(b5)     dst += stride;
    ADD(b6)     dst += stride;
    ADD(b7)
    memset(block, 0, sizeof(*block) * 64);
}
예제 #6
0
static int dct_quantize_altivec(MpegEncContext* s,
                         DCTELEM* data, int n,
                         int qscale, int* overflow)
{
    int lastNonZero;
    vector float row0, row1, row2, row3, row4, row5, row6, row7;
    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
    const vector float zero = (const vector float)FOUROF(0.);
    // used after quantize step
    int oldBaseValue = 0;

    // Load the data into the row/alt vectors
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_ld(0, data);
        data1 = vec_ld(16, data);
        data2 = vec_ld(32, data);
        data3 = vec_ld(48, data);
        data4 = vec_ld(64, data);
        data5 = vec_ld(80, data);
        data6 = vec_ld(96, data);
        data7 = vec_ld(112, data);

        // Transpose the data before we start
        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);

        // load the data into floating point vectors.  We load
        // the high half of each row into the main row vectors
        // and the low half into the alt vectors.
        row0 = vec_ctf(vec_unpackh(data0), 0);
        alt0 = vec_ctf(vec_unpackl(data0), 0);
        row1 = vec_ctf(vec_unpackh(data1), 0);
        alt1 = vec_ctf(vec_unpackl(data1), 0);
        row2 = vec_ctf(vec_unpackh(data2), 0);
        alt2 = vec_ctf(vec_unpackl(data2), 0);
        row3 = vec_ctf(vec_unpackh(data3), 0);
        alt3 = vec_ctf(vec_unpackl(data3), 0);
        row4 = vec_ctf(vec_unpackh(data4), 0);
        alt4 = vec_ctf(vec_unpackl(data4), 0);
        row5 = vec_ctf(vec_unpackh(data5), 0);
        alt5 = vec_ctf(vec_unpackl(data5), 0);
        row6 = vec_ctf(vec_unpackh(data6), 0);
        alt6 = vec_ctf(vec_unpackl(data6), 0);
        row7 = vec_ctf(vec_unpackh(data7), 0);
        alt7 = vec_ctf(vec_unpackl(data7), 0);
    }

    // The following block could exist as a separate an altivec dct
                // function.  However, if we put it inline, the DCT data can remain
                // in the vector local variables, as floats, which we'll use during the
                // quantize step...
    {
        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);


        int whichPass, whichHalf;

        for(whichPass = 1; whichPass<=2; whichPass++) {
            for(whichHalf = 1; whichHalf<=2; whichHalf++) {
                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
                vector float tmp10, tmp11, tmp12, tmp13;
                vector float z1, z2, z3, z4, z5;

                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];

                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;


                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
                row0 = vec_add(tmp10, tmp11);

                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
                row4 = vec_sub(tmp10, tmp11);


                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                //                                CONST_BITS-PASS1_BITS);
                row2 = vec_madd(tmp13, vec_0_765366865, z1);

                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                //                                CONST_BITS-PASS1_BITS);
                row6 = vec_madd(tmp12, vec_1_847759065, z1);

                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
                z3 = vec_madd(z3, vec_1_961570560, z5);

                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
                z4 = vec_madd(z4, vec_0_390180644, z5);

                // The following adds are rolled into the multiplies above
                // z3 = vec_add(z3, z5);  // z3 += z5;
                // z4 = vec_add(z4, z5);  // z4 += z5;

                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
                // Wow!  It's actually more efficient to roll this multiply
                // into the adds below, even thought the multiply gets done twice!
                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
                // Same with this one...
                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));

                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));

                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));

                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));

                // Swap the row values with the alts.  If this is the first half,
                // this sets up the low values to be acted on in the second half.
                // If this is the second half, it puts the high values back in
                // the row values where they are expected to be when we're done.
                SWAP(row0, alt0);
                SWAP(row1, alt1);
                SWAP(row2, alt2);
                SWAP(row3, alt3);
                SWAP(row4, alt4);
                SWAP(row5, alt5);
                SWAP(row6, alt6);
                SWAP(row7, alt7);
            }

            if (whichPass == 1) {
                // transpose the data for the second pass

                // First, block transpose the upper right with lower left.
                SWAP(row4, alt0);
                SWAP(row5, alt1);
                SWAP(row6, alt2);
                SWAP(row7, alt3);

                // Now, transpose each block of four
                TRANSPOSE4(row0, row1, row2, row3);
                TRANSPOSE4(row4, row5, row6, row7);
                TRANSPOSE4(alt0, alt1, alt2, alt3);
                TRANSPOSE4(alt4, alt5, alt6, alt7);
            }
        }
    }

    // perform the quantize step, using the floating point data
    // still in the row/alt registers
    {
        const int* biasAddr;
        const vector signed int* qmat;
        vector float bias, negBias;

        if (s->mb_intra) {
            vector signed int baseVector;

            // We must cache element 0 in the intra case
            // (it needs special handling).
            baseVector = vec_cts(vec_splat(row0, 0), 0);
            vec_ste(baseVector, 0, &oldBaseValue);

            qmat = (vector signed int*)s->q_intra_matrix[qscale];
            biasAddr = &(s->intra_quant_bias);
        } else {
            qmat = (vector signed int*)s->q_inter_matrix[qscale];
            biasAddr = &(s->inter_quant_bias);
        }

        // Load the bias vector (We add 0.5 to the bias so that we're
                                // rounding when we convert to int, instead of flooring.)
        {
            vector signed int biasInt;
            const vector float negOneFloat = (vector float)FOUROF(-1.0f);
            LOAD4(biasInt, biasAddr);
            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
            negBias = vec_madd(bias, negOneFloat, zero);
        }

        {
            vector float q0, q1, q2, q3, q4, q5, q6, q7;

            q0 = vec_ctf(qmat[0], QMAT_SHIFT);
            q1 = vec_ctf(qmat[2], QMAT_SHIFT);
            q2 = vec_ctf(qmat[4], QMAT_SHIFT);
            q3 = vec_ctf(qmat[6], QMAT_SHIFT);
            q4 = vec_ctf(qmat[8], QMAT_SHIFT);
            q5 = vec_ctf(qmat[10], QMAT_SHIFT);
            q6 = vec_ctf(qmat[12], QMAT_SHIFT);
            q7 = vec_ctf(qmat[14], QMAT_SHIFT);

            row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
                    vec_cmpgt(row0, zero));
            row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
                    vec_cmpgt(row1, zero));
            row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
                    vec_cmpgt(row2, zero));
            row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
                    vec_cmpgt(row3, zero));
            row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
                    vec_cmpgt(row4, zero));
            row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
                    vec_cmpgt(row5, zero));
            row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
                    vec_cmpgt(row6, zero));
            row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
                    vec_cmpgt(row7, zero));

            q0 = vec_ctf(qmat[1], QMAT_SHIFT);
            q1 = vec_ctf(qmat[3], QMAT_SHIFT);
            q2 = vec_ctf(qmat[5], QMAT_SHIFT);
            q3 = vec_ctf(qmat[7], QMAT_SHIFT);
            q4 = vec_ctf(qmat[9], QMAT_SHIFT);
            q5 = vec_ctf(qmat[11], QMAT_SHIFT);
            q6 = vec_ctf(qmat[13], QMAT_SHIFT);
            q7 = vec_ctf(qmat[15], QMAT_SHIFT);

            alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
                    vec_cmpgt(alt0, zero));
            alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
                    vec_cmpgt(alt1, zero));
            alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
                    vec_cmpgt(alt2, zero));
            alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
                    vec_cmpgt(alt3, zero));
            alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
                    vec_cmpgt(alt4, zero));
            alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
                    vec_cmpgt(alt5, zero));
            alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
                    vec_cmpgt(alt6, zero));
            alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
                    vec_cmpgt(alt7, zero));
        }


    }

    // Store the data back into the original block
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
        data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
        data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
        data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
        data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
        data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
        data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
        data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));

        {
            // Clamp for overflow
            vector signed int max_q_int, min_q_int;
            vector signed short max_q, min_q;

            LOAD4(max_q_int, &(s->max_qcoeff));
            LOAD4(min_q_int, &(s->min_qcoeff));

            max_q = vec_pack(max_q_int, max_q_int);
            min_q = vec_pack(min_q_int, min_q_int);

            data0 = vec_max(vec_min(data0, max_q), min_q);
            data1 = vec_max(vec_min(data1, max_q), min_q);
            data2 = vec_max(vec_min(data2, max_q), min_q);
            data4 = vec_max(vec_min(data4, max_q), min_q);
            data5 = vec_max(vec_min(data5, max_q), min_q);
            data6 = vec_max(vec_min(data6, max_q), min_q);
            data7 = vec_max(vec_min(data7, max_q), min_q);
        }

        {
        vector bool char zero_01, zero_23, zero_45, zero_67;
        vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
        vector signed char negOne = vec_splat_s8(-1);
        vector signed char* scanPtr =
                (vector signed char*)(s->intra_scantable.inverse);
        signed char lastNonZeroChar;

        // Determine the largest non-zero index.
        zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
                vec_cmpeq(data1, (vector signed short)zero));
        zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
                vec_cmpeq(data3, (vector signed short)zero));
        zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
                vec_cmpeq(data5, (vector signed short)zero));
        zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
                vec_cmpeq(data7, (vector signed short)zero));

        // 64 biggest values
        scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
        scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
        scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
        scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);

        // 32 largest values
        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
        scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);

        // 16 largest values
        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);

        // 8 largest values
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        // 4 largest values
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        // 2 largest values
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        // largest value
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
                vec_mergel(scanIndexes_01, negOne));

        scanIndexes_01 = vec_splat(scanIndexes_01, 0);


        vec_ste(scanIndexes_01, 0, &lastNonZeroChar);

        lastNonZero = lastNonZeroChar;

        // While the data is still in vectors we check for the transpose IDCT permute
        // and handle it using the vector unit if we can.  This is the permute used
        // by the altivec idct, so it is common when using the altivec dct.

        if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
            TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
        }

        vec_st(data0, 0, data);
        vec_st(data1, 16, data);
        vec_st(data2, 32, data);
        vec_st(data3, 48, data);
        vec_st(data4, 64, data);
        vec_st(data5, 80, data);
        vec_st(data6, 96, data);
        vec_st(data7, 112, data);
        }
    }

    // special handling of block[0]
    if (s->mb_intra) {
        if (!s->h263_aic) {
            if (n < 4)
                oldBaseValue /= s->y_dc_scale;
            else
                oldBaseValue /= s->c_dc_scale;
        }

        // Divide by 8, rounding the result
        data[0] = (oldBaseValue + 4) >> 3;
    }

    // We handled the transpose permutation above and we don't
    // need to permute the "no" permutation case.
    if ((lastNonZero > 0) &&
        (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
        (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
        ff_block_permute(data, s->dsp.idct_permutation,
                s->intra_scantable.scantable, lastNonZero);
    }

    return lastNonZero;
}
예제 #7
0
/** Do inverse transform on 8x4 part of block
*/
static void vc1_inv_trans_8x4_altivec(uint8_t *dest, int stride, int16_t *block)
{
    vector signed short src0, src1, src2, src3, src4, src5, src6, src7;
    vector signed int s0, s1, s2, s3, s4, s5, s6, s7;
    vector signed int s8, s9, sA, sB, sC, sD, sE, sF;
    vector signed int t0, t1, t2, t3, t4, t5, t6, t7;
    const vector signed int vec_64 = vec_sl(vec_splat_s32(4), vec_splat_u32(4));
    const vector unsigned int vec_7 = vec_splat_u32(7);
    const vector unsigned int vec_5 = vec_splat_u32(5);
    const vector unsigned int vec_4 = vec_splat_u32(4);
    const vector  signed int vec_4s = vec_splat_s32(4);
    const vector unsigned int vec_3 = vec_splat_u32(3);
    const vector unsigned int vec_2 = vec_splat_u32(2);
    const vector unsigned int vec_1 = vec_splat_u32(1);
    vector unsigned char tmp;
    vector signed short tmp2, tmp3;
    vector unsigned char perm0, perm1, p0, p1, p;

    src0 = vec_ld(  0, block);
    src1 = vec_ld( 16, block);
    src2 = vec_ld( 32, block);
    src3 = vec_ld( 48, block);
    src4 = vec_ld( 64, block);
    src5 = vec_ld( 80, block);
    src6 = vec_ld( 96, block);
    src7 = vec_ld(112, block);

    TRANSPOSE8(src0, src1, src2, src3, src4, src5, src6, src7);
    s0 = vec_unpackl(src0);
    s1 = vec_unpackl(src1);
    s2 = vec_unpackl(src2);
    s3 = vec_unpackl(src3);
    s4 = vec_unpackl(src4);
    s5 = vec_unpackl(src5);
    s6 = vec_unpackl(src6);
    s7 = vec_unpackl(src7);
    s8 = vec_unpackh(src0);
    s9 = vec_unpackh(src1);
    sA = vec_unpackh(src2);
    sB = vec_unpackh(src3);
    sC = vec_unpackh(src4);
    sD = vec_unpackh(src5);
    sE = vec_unpackh(src6);
    sF = vec_unpackh(src7);
    STEP8(s0, s1, s2, s3, s4, s5, s6, s7, vec_4s);
    SHIFT_HOR8(s0, s1, s2, s3, s4, s5, s6, s7);
    STEP8(s8, s9, sA, sB, sC, sD, sE, sF, vec_4s);
    SHIFT_HOR8(s8, s9, sA, sB, sC, sD, sE, sF);
    src0 = vec_pack(s8, s0);
    src1 = vec_pack(s9, s1);
    src2 = vec_pack(sA, s2);
    src3 = vec_pack(sB, s3);
    src4 = vec_pack(sC, s4);
    src5 = vec_pack(sD, s5);
    src6 = vec_pack(sE, s6);
    src7 = vec_pack(sF, s7);
    TRANSPOSE8(src0, src1, src2, src3, src4, src5, src6, src7);

    s0 = vec_unpackh(src0);
    s1 = vec_unpackh(src1);
    s2 = vec_unpackh(src2);
    s3 = vec_unpackh(src3);
    s8 = vec_unpackl(src0);
    s9 = vec_unpackl(src1);
    sA = vec_unpackl(src2);
    sB = vec_unpackl(src3);
    STEP4(s0, s1, s2, s3, vec_64);
    SHIFT_VERT4(s0, s1, s2, s3);
    STEP4(s8, s9, sA, sB, vec_64);
    SHIFT_VERT4(s8, s9, sA, sB);
    src0 = vec_pack(s0, s8);
    src1 = vec_pack(s1, s9);
    src2 = vec_pack(s2, sA);
    src3 = vec_pack(s3, sB);

    p0 = vec_lvsl (0, dest);
    p1 = vec_lvsl (stride, dest);
    p = vec_splat_u8 (-1);
    perm0 = vec_mergeh (p, p0);
    perm1 = vec_mergeh (p, p1);

#define ADD(dest,src,perm)                                              \
    /* *(uint64_t *)&tmp = *(uint64_t *)dest; */                        \
    tmp = vec_ld (0, dest);                                             \
    tmp2 = (vector signed short)vec_perm (tmp, vec_splat_u8(0), perm);  \
    tmp3 = vec_adds (tmp2, src);                                        \
    tmp = vec_packsu (tmp3, tmp3);                                      \
    vec_ste ((vector unsigned int)tmp, 0, (unsigned int *)dest);        \
    vec_ste ((vector unsigned int)tmp, 4, (unsigned int *)dest);

    ADD (dest, src0, perm0)      dest += stride;
    ADD (dest, src1, perm1)      dest += stride;
    ADD (dest, src2, perm0)      dest += stride;
    ADD (dest, src3, perm1)
}
예제 #8
0
/** Do inverse transform on 8x8 block
*/
static void vc1_inv_trans_8x8_altivec(int16_t block[64])
{
    vector signed short src0, src1, src2, src3, src4, src5, src6, src7;
    vector signed int s0, s1, s2, s3, s4, s5, s6, s7;
    vector signed int s8, s9, sA, sB, sC, sD, sE, sF;
    vector signed int t0, t1, t2, t3, t4, t5, t6, t7;
    const vector signed int vec_64 = vec_sl(vec_splat_s32(4), vec_splat_u32(4));
    const vector unsigned int vec_7 = vec_splat_u32(7);
    const vector unsigned int vec_4 = vec_splat_u32(4);
    const vector  signed int vec_4s = vec_splat_s32(4);
    const vector unsigned int vec_3 = vec_splat_u32(3);
    const vector unsigned int vec_2 = vec_splat_u32(2);
    const vector  signed int vec_1s = vec_splat_s32(1);
    const vector unsigned int vec_1 = vec_splat_u32(1);

    src0 = vec_ld(  0, block);
    src1 = vec_ld( 16, block);
    src2 = vec_ld( 32, block);
    src3 = vec_ld( 48, block);
    src4 = vec_ld( 64, block);
    src5 = vec_ld( 80, block);
    src6 = vec_ld( 96, block);
    src7 = vec_ld(112, block);

    s0 = vec_unpackl(src0);
    s1 = vec_unpackl(src1);
    s2 = vec_unpackl(src2);
    s3 = vec_unpackl(src3);
    s4 = vec_unpackl(src4);
    s5 = vec_unpackl(src5);
    s6 = vec_unpackl(src6);
    s7 = vec_unpackl(src7);
    s8 = vec_unpackh(src0);
    s9 = vec_unpackh(src1);
    sA = vec_unpackh(src2);
    sB = vec_unpackh(src3);
    sC = vec_unpackh(src4);
    sD = vec_unpackh(src5);
    sE = vec_unpackh(src6);
    sF = vec_unpackh(src7);
    STEP8(s0, s1, s2, s3, s4, s5, s6, s7, vec_4s);
    SHIFT_HOR8(s0, s1, s2, s3, s4, s5, s6, s7);
    STEP8(s8, s9, sA, sB, sC, sD, sE, sF, vec_4s);
    SHIFT_HOR8(s8, s9, sA, sB, sC, sD, sE, sF);
    src0 = vec_pack(s8, s0);
    src1 = vec_pack(s9, s1);
    src2 = vec_pack(sA, s2);
    src3 = vec_pack(sB, s3);
    src4 = vec_pack(sC, s4);
    src5 = vec_pack(sD, s5);
    src6 = vec_pack(sE, s6);
    src7 = vec_pack(sF, s7);
    TRANSPOSE8(src0, src1, src2, src3, src4, src5, src6, src7);

    s0 = vec_unpackl(src0);
    s1 = vec_unpackl(src1);
    s2 = vec_unpackl(src2);
    s3 = vec_unpackl(src3);
    s4 = vec_unpackl(src4);
    s5 = vec_unpackl(src5);
    s6 = vec_unpackl(src6);
    s7 = vec_unpackl(src7);
    s8 = vec_unpackh(src0);
    s9 = vec_unpackh(src1);
    sA = vec_unpackh(src2);
    sB = vec_unpackh(src3);
    sC = vec_unpackh(src4);
    sD = vec_unpackh(src5);
    sE = vec_unpackh(src6);
    sF = vec_unpackh(src7);
    STEP8(s0, s1, s2, s3, s4, s5, s6, s7, vec_64);
    SHIFT_VERT8(s0, s1, s2, s3, s4, s5, s6, s7);
    STEP8(s8, s9, sA, sB, sC, sD, sE, sF, vec_64);
    SHIFT_VERT8(s8, s9, sA, sB, sC, sD, sE, sF);
    src0 = vec_pack(s8, s0);
    src1 = vec_pack(s9, s1);
    src2 = vec_pack(sA, s2);
    src3 = vec_pack(sB, s3);
    src4 = vec_pack(sC, s4);
    src5 = vec_pack(sD, s5);
    src6 = vec_pack(sE, s6);
    src7 = vec_pack(sF, s7);

    vec_st(src0,  0, block);
    vec_st(src1, 16, block);
    vec_st(src2, 32, block);
    vec_st(src3, 48, block);
    vec_st(src4, 64, block);
    vec_st(src5, 80, block);
    vec_st(src6, 96, block);
    vec_st(src7,112, block);
}