예제 #1
0
static PetscErrorCode TaoLineSearchApply_GPCG(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
{
  TaoLineSearch_GPCG *neP = (TaoLineSearch_GPCG *)ls->data;
  PetscErrorCode     ierr;
  PetscInt           i;
  PetscBool          g_computed=PETSC_FALSE; /* to prevent extra gradient computation */
  PetscReal          d1,finit,actred,prered,rho, gdx;

  PetscFunctionBegin;
  /* ls->stepmin - lower bound for step */
  /* ls->stepmax - upper bound for step */
  /* ls->rtol     - relative tolerance for an acceptable step */
  /* ls->ftol     - tolerance for sufficient decrease condition */
  /* ls->gtol     - tolerance for curvature condition */
  /* ls->nfeval   - number of function evaluations */
  /* ls->nfeval   - number of function/gradient evaluations */
  /* ls->max_funcs  - maximum number of function evaluations */

  ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;
  ls->step = ls->initstep;
  if (!neP->W2) {
    ierr = VecDuplicate(x,&neP->W2);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&neP->W1);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&neP->Gold);CHKERRQ(ierr);
    neP->x = x;
    ierr = PetscObjectReference((PetscObject)neP->x);CHKERRQ(ierr);
  } else if (x != neP->x) {
    ierr = VecDestroy(&neP->x);CHKERRQ(ierr);
    ierr = VecDestroy(&neP->W1);CHKERRQ(ierr);
    ierr = VecDestroy(&neP->W2);CHKERRQ(ierr);
    ierr = VecDestroy(&neP->Gold);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&neP->W1);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&neP->W2);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&neP->Gold);CHKERRQ(ierr);
    ierr = PetscObjectDereference((PetscObject)neP->x);CHKERRQ(ierr);
    neP->x = x;
    ierr = PetscObjectReference((PetscObject)neP->x);CHKERRQ(ierr);
  }

  ierr = VecDot(g,s,&gdx);CHKERRQ(ierr);
   if (gdx > 0) {
     ierr = PetscInfo1(ls,"Line search error: search direction is not descent direction. dot(g,s) = %g\n",(double)gdx);CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_FAILED_ASCENT;
    PetscFunctionReturn(0);
  }
  ierr = VecCopy(x,neP->W2);CHKERRQ(ierr);
  ierr = VecCopy(g,neP->Gold);CHKERRQ(ierr);
  if (ls->bounded) {
    /* Compute the smallest steplength that will make one nonbinding variable  equal the bound */
    ierr = VecStepBoundInfo(x,s,ls->lower,ls->upper,&rho,&actred,&d1);CHKERRQ(ierr);
    ls->step = PetscMin(ls->step,d1);
  }
  rho=0; actred=0;

  if (ls->step < 0) {
    ierr = PetscInfo1(ls,"Line search error: initial step parameter %g< 0\n",(double)ls->step);CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_HALTED_OTHER;
    PetscFunctionReturn(0);
  }

  /* Initialization */
  finit = *f;
  for (i=0; i< ls->max_funcs; i++) {
    /* Force the step to be within the bounds */
    ls->step = PetscMax(ls->step,ls->stepmin);
    ls->step = PetscMin(ls->step,ls->stepmax);

    ierr = VecCopy(x,neP->W2);CHKERRQ(ierr);
    ierr = VecAXPY(neP->W2,ls->step,s);CHKERRQ(ierr);
    if (ls->bounded) {
      /* Make sure new vector is numerically within bounds */
      ierr = VecMedian(neP->W2,ls->lower,ls->upper,neP->W2);CHKERRQ(ierr);
    }

    /* Gradient is not needed here.  Unless there is a separate
       gradient routine, compute it here anyway to prevent recomputing at
       the end of the line search */
    if (ls->hasobjective) {
      ierr = TaoLineSearchComputeObjective(ls,neP->W2,f);CHKERRQ(ierr);
      g_computed=PETSC_FALSE;
    } else if (ls->usegts){
      ierr = TaoLineSearchComputeObjectiveAndGTS(ls,neP->W2,f,&gdx);CHKERRQ(ierr);
      g_computed=PETSC_FALSE;
    } else {
      ierr = TaoLineSearchComputeObjectiveAndGradient(ls,neP->W2,f,g);CHKERRQ(ierr);
      g_computed=PETSC_TRUE;
    }

    if (0 == i) {
        ls->f_fullstep = *f;
    }

    actred = *f - finit;
    ierr = VecCopy(neP->W2,neP->W1);CHKERRQ(ierr);
    ierr = VecAXPY(neP->W1,-1.0,x);CHKERRQ(ierr);    /* W1 = W2 - X */
    ierr = VecDot(neP->W1,neP->Gold,&prered);CHKERRQ(ierr);

    if (fabs(prered)<1.0e-100) prered=1.0e-12;
    rho = actred/prered;

    /*
       If sufficient progress has been obtained, accept the
       point.  Otherwise, backtrack.
    */

    if (actred > 0) {
      ierr = PetscInfo(ls,"Step resulted in ascent, rejecting.\n");CHKERRQ(ierr);
      ls->step = (ls->step)/2;
    } else if (rho > ls->ftol){
      break;
    } else{
      ls->step = (ls->step)/2;
    }

    /* Convergence testing */

    if (ls->step <= ls->stepmin || ls->step >= ls->stepmax) {
      ls->reason = TAOLINESEARCH_HALTED_OTHER;
      ierr = PetscInfo(ls,"Rounding errors may prevent further progress.  May not be a step satisfying\n");CHKERRQ(ierr);
      ierr = PetscInfo(ls,"sufficient decrease and curvature conditions. Tolerances may be too small.\n");CHKERRQ(ierr);
     break;
    }
    if (ls->step == ls->stepmax) {
      ierr = PetscInfo1(ls,"Step is at the upper bound, stepmax (%g)\n",(double)ls->stepmax);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND;
      break;
    }
    if (ls->step == ls->stepmin) {
      ierr = PetscInfo1(ls,"Step is at the lower bound, stepmin (%g)\n",(double)ls->stepmin);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND;
      break;
    }
    if ((ls->nfeval+ls->nfgeval) >= ls->max_funcs) {
      ierr = PetscInfo2(ls,"Number of line search function evals (%D) > maximum (%D)\n",ls->nfeval+ls->nfgeval,ls->max_funcs);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
      break;
    }
    if ((neP->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol*ls->stepmax)){
      ierr = PetscInfo1(ls,"Relative width of interval of uncertainty is at most rtol (%g)\n",(double)ls->rtol);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_RTOL;
      break;
    }
  }
  ierr = PetscInfo2(ls,"%D function evals in line search, step = %g\n",ls->nfeval+ls->nfgeval,(double)ls->step);CHKERRQ(ierr);
  /* set new solution vector and compute gradient if necessary */
  ierr = VecCopy(neP->W2, x);CHKERRQ(ierr);
  if (ls->reason == TAOLINESEARCH_CONTINUE_ITERATING) {
    ls->reason = TAOLINESEARCH_SUCCESS;
  }
  if (!g_computed) {
    ierr = TaoLineSearchComputeGradient(ls,x,g);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
예제 #2
0
static PetscErrorCode TaoLineSearchApply_MT(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
{
  PetscErrorCode   ierr;
  TaoLineSearch_MT *mt;

  PetscReal        xtrapf = 4.0;
  PetscReal        finit, width, width1, dginit, fm, fxm, fym, dgm, dgxm, dgym;
  PetscReal        dgx, dgy, dg, dg2, fx, fy, stx, sty, dgtest;
  PetscReal        ftest1=0.0, ftest2=0.0;
  PetscInt         i, stage1,n1,n2,nn1,nn2;
  PetscReal        bstepmin1, bstepmin2, bstepmax;
  PetscBool        g_computed=PETSC_FALSE; /* to prevent extra gradient computation */

  PetscFunctionBegin;
  PetscValidHeaderSpecific(ls,TAOLINESEARCH_CLASSID,1);
  PetscValidHeaderSpecific(x,VEC_CLASSID,2);
  PetscValidScalarPointer(f,3);
  PetscValidHeaderSpecific(g,VEC_CLASSID,4);
  PetscValidHeaderSpecific(s,VEC_CLASSID,5);

  /* comm,type,size checks are done in interface TaoLineSearchApply */
  mt = (TaoLineSearch_MT*)(ls->data);
  ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;

  /* Check work vector */
  if (!mt->work) {
    ierr = VecDuplicate(x,&mt->work);CHKERRQ(ierr);
    mt->x = x;
    ierr = PetscObjectReference((PetscObject)mt->x);CHKERRQ(ierr);
  } else if (x != mt->x) {
    ierr = VecDestroy(&mt->work);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&mt->work);CHKERRQ(ierr);
    ierr = PetscObjectDereference((PetscObject)mt->x);CHKERRQ(ierr);
    mt->x = x;
    ierr = PetscObjectReference((PetscObject)mt->x);CHKERRQ(ierr);
  }

  if (ls->bounded) {
    /* Compute step length needed to make all variables equal a bound */
    /* Compute the smallest steplength that will make one nonbinding variable
     equal the bound */
    ierr = VecGetLocalSize(ls->upper,&n1);CHKERRQ(ierr);
    ierr = VecGetLocalSize(mt->x, &n2);CHKERRQ(ierr);
    ierr = VecGetSize(ls->upper,&nn1);CHKERRQ(ierr);
    ierr = VecGetSize(mt->x,&nn2);CHKERRQ(ierr);
    if (n1 != n2 || nn1 != nn2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Variable vector not compatible with bounds vector");
    ierr = VecScale(s,-1.0);CHKERRQ(ierr);
    ierr = VecBoundGradientProjection(s,x,ls->lower,ls->upper,s);CHKERRQ(ierr);
    ierr = VecScale(s,-1.0);CHKERRQ(ierr);
    ierr = VecStepBoundInfo(x,s,ls->lower,ls->upper,&bstepmin1,&bstepmin2,&bstepmax);CHKERRQ(ierr);
    ls->stepmax = PetscMin(bstepmax,1.0e15);
  }

  ierr = VecDot(g,s,&dginit);CHKERRQ(ierr);
  if (PetscIsInfOrNanReal(dginit)) {
    ierr = PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)dginit);CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_INFORNAN;
    PetscFunctionReturn(0);
  }
  if (dginit >= 0.0) {
    ierr = PetscInfo1(ls,"Initial Line Search step * g is not descent direction (%g)\n",(double)dginit);CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_FAILED_ASCENT;
    PetscFunctionReturn(0);
  }


  /* Initialization */
  mt->bracket = 0;
  stage1 = 1;
  finit = *f;
  dgtest = ls->ftol * dginit;
  width = ls->stepmax - ls->stepmin;
  width1 = width * 2.0;
  ierr = VecCopy(x,mt->work);CHKERRQ(ierr);
  /* Variable dictionary:
   stx, fx, dgx - the step, function, and derivative at the best step
   sty, fy, dgy - the step, function, and derivative at the other endpoint
   of the interval of uncertainty
   step, f, dg - the step, function, and derivative at the current step */

  stx = 0.0;
  fx  = finit;
  dgx = dginit;
  sty = 0.0;
  fy  = finit;
  dgy = dginit;

  ls->step=ls->initstep;
  for (i=0; i< ls->max_funcs; i++) {
    /* Set min and max steps to correspond to the interval of uncertainty */
    if (mt->bracket) {
      ls->stepmin = PetscMin(stx,sty);
      ls->stepmax = PetscMax(stx,sty);
    } else {
      ls->stepmin = stx;
      ls->stepmax = ls->step + xtrapf * (ls->step - stx);
    }

    /* Force the step to be within the bounds */
    ls->step = PetscMax(ls->step,ls->stepmin);
    ls->step = PetscMin(ls->step,ls->stepmax);

    /* If an unusual termination is to occur, then let step be the lowest
     point obtained thus far */
    if ((stx!=0) && (((mt->bracket) && (ls->step <= ls->stepmin || ls->step >= ls->stepmax)) || ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol * ls->stepmax)) ||
                     ((ls->nfeval+ls->nfgeval) >= ls->max_funcs - 1) || (mt->infoc == 0))) {
      ls->step = stx;
    }

    ierr = VecCopy(x,mt->work);CHKERRQ(ierr);
    ierr = VecAXPY(mt->work,ls->step,s);CHKERRQ(ierr);   /* W = X + step*S */

    if (ls->bounded) {
      ierr = VecMedian(ls->lower, mt->work, ls->upper, mt->work);CHKERRQ(ierr);
    }
    if (ls->usegts) {
      ierr = TaoLineSearchComputeObjectiveAndGTS(ls,mt->work,f,&dg);CHKERRQ(ierr);
      g_computed=PETSC_FALSE;
    } else {
      ierr = TaoLineSearchComputeObjectiveAndGradient(ls,mt->work,f,g);CHKERRQ(ierr);
      g_computed=PETSC_TRUE;
      if (ls->bounded) {
        ierr = VecDot(g,x,&dg);CHKERRQ(ierr);
        ierr = VecDot(g,mt->work,&dg2);CHKERRQ(ierr);
        dg = (dg2 - dg)/ls->step;
      } else {
        ierr = VecDot(g,s,&dg);CHKERRQ(ierr);
      }
    }

    if (0 == i) {
      ls->f_fullstep=*f;
    }

    if (PetscIsInfOrNanReal(*f) || PetscIsInfOrNanReal(dg)) {
      /* User provided compute function generated Not-a-Number, assume
       domain violation and set function value and directional
       derivative to infinity. */
      *f = PETSC_INFINITY;
      dg = PETSC_INFINITY;
    }

    ftest1 = finit + ls->step * dgtest;
    if (ls->bounded) {
      ftest2 = finit + ls->step * dgtest * ls->ftol;
    }
    /* Convergence testing */
    if (((*f - ftest1 <= 1.0e-10 * PetscAbsReal(finit)) &&  (PetscAbsReal(dg) + ls->gtol*dginit <= 0.0))) {
      ierr = PetscInfo(ls, "Line search success: Sufficient decrease and directional deriv conditions hold\n");CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_SUCCESS;
      break;
    }

    /* Check Armijo if beyond the first breakpoint */
    if (ls->bounded && (*f <= ftest2) && (ls->step >= bstepmin2)) {
      ierr = PetscInfo(ls,"Line search success: Sufficient decrease.\n");CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_SUCCESS;
      break;
    }

    /* Checks for bad cases */
    if (((mt->bracket) && (ls->step <= ls->stepmin||ls->step >= ls->stepmax)) || (!mt->infoc)) {
      ierr = PetscInfo(ls,"Rounding errors may prevent further progress.  May not be a step satisfying\n");CHKERRQ(ierr);
      ierr = PetscInfo(ls,"sufficient decrease and curvature conditions. Tolerances may be too small.\n");CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_OTHER;
      break;
    }
    if ((ls->step == ls->stepmax) && (*f <= ftest1) && (dg <= dgtest)) {
      ierr = PetscInfo1(ls,"Step is at the upper bound, stepmax (%g)\n",(double)ls->stepmax);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND;
      break;
    }
    if ((ls->step == ls->stepmin) && (*f >= ftest1) && (dg >= dgtest)) {
      ierr = PetscInfo1(ls,"Step is at the lower bound, stepmin (%g)\n",(double)ls->stepmin);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND;
      break;
    }
    if ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol*ls->stepmax)){
      ierr = PetscInfo1(ls,"Relative width of interval of uncertainty is at most rtol (%g)\n",(double)ls->rtol);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_HALTED_RTOL;
      break;
    }

    /* In the first stage, we seek a step for which the modified function
     has a nonpositive value and nonnegative derivative */
    if ((stage1) && (*f <= ftest1) && (dg >= dginit * PetscMin(ls->ftol, ls->gtol))) {
      stage1 = 0;
    }

    /* A modified function is used to predict the step only if we
     have not obtained a step for which the modified function has a
     nonpositive function value and nonnegative derivative, and if a
     lower function value has been obtained but the decrease is not
     sufficient */

    if ((stage1) && (*f <= fx) && (*f > ftest1)) {
      fm   = *f - ls->step * dgtest;    /* Define modified function */
      fxm  = fx - stx * dgtest;         /* and derivatives */
      fym  = fy - sty * dgtest;
      dgm  = dg - dgtest;
      dgxm = dgx - dgtest;
      dgym = dgy - dgtest;

      /* if (dgxm * (ls->step - stx) >= 0.0) */
      /* Update the interval of uncertainty and compute the new step */
      ierr = Tao_mcstep(ls,&stx,&fxm,&dgxm,&sty,&fym,&dgym,&ls->step,&fm,&dgm);CHKERRQ(ierr);

      fx  = fxm + stx * dgtest; /* Reset the function and */
      fy  = fym + sty * dgtest; /* gradient values */
      dgx = dgxm + dgtest;
      dgy = dgym + dgtest;
    } else {
      /* Update the interval of uncertainty and compute the new step */
      ierr = Tao_mcstep(ls,&stx,&fx,&dgx,&sty,&fy,&dgy,&ls->step,f,&dg);CHKERRQ(ierr);
    }

    /* Force a sufficient decrease in the interval of uncertainty */
    if (mt->bracket) {
      if (PetscAbsReal(sty - stx) >= 0.66 * width1) ls->step = stx + 0.5*(sty - stx);
      width1 = width;
      width = PetscAbsReal(sty - stx);
    }
  }
  if ((ls->nfeval+ls->nfgeval) > ls->max_funcs) {
    ierr = PetscInfo2(ls,"Number of line search function evals (%D) > maximum (%D)\n",(ls->nfeval+ls->nfgeval),ls->max_funcs);CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
  }

  /* Finish computations */
  ierr = PetscInfo2(ls,"%D function evals in line search, step = %g\n",(ls->nfeval+ls->nfgeval),(double)ls->step);CHKERRQ(ierr);

  /* Set new solution vector and compute gradient if needed */
  ierr = VecCopy(mt->work,x);CHKERRQ(ierr);
  if (!g_computed) {
    ierr = TaoLineSearchComputeGradient(ls,mt->work,g);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
예제 #3
0
파일: owarmijo.c 프로젝트: 00liujj/petsc
/* @ TaoApply_OWArmijo - This routine performs a linesearch. It
   backtracks until the (nonmonotone) OWArmijo conditions are satisfied.

   Input Parameters:
+  tao - TAO_SOLVER context
.  X - current iterate (on output X contains new iterate, X + step*S)
.  S - search direction
.  f - merit function evaluated at X
.  G - gradient of merit function evaluated at X
.  W - work vector
-  step - initial estimate of step length

   Output parameters:
+  f - merit function evaluated at new iterate, X + step*S
.  G - gradient of merit function evaluated at new iterate, X + step*S
.  X - new iterate
-  step - final step length

   Info is set to one of:
.   0 - the line search succeeds; the sufficient decrease
   condition and the directional derivative condition hold

   negative number if an input parameter is invalid
-   -1 -  step < 0

   positive number > 1 if the line search otherwise terminates
+    1 -  Step is at the lower bound, stepmin.
@ */
static PetscErrorCode TaoLineSearchApply_OWArmijo(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
{
  TaoLineSearch_OWARMIJO *armP = (TaoLineSearch_OWARMIJO *)ls->data;
  PetscErrorCode         ierr;
  PetscInt               i;
  PetscReal              fact, ref, gdx;
  PetscInt               idx;
  PetscBool              g_computed=PETSC_FALSE; /* to prevent extra gradient computation */
  Vec                    g_old;
  PetscReal              owlqn_minstep=0.005;
  PetscReal              partgdx;
  MPI_Comm               comm;

  PetscFunctionBegin;
  ierr = PetscObjectGetComm((PetscObject)ls,&comm);CHKERRQ(ierr);
  fact = 0.0;
  ls->nfeval=0;
  ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;
  if (!armP->work) {
    ierr = VecDuplicate(x,&armP->work);CHKERRQ(ierr);
    armP->x = x;
    ierr = PetscObjectReference((PetscObject)armP->x);CHKERRQ(ierr);
  } else if (x != armP->x) {
    ierr = VecDestroy(&armP->work);CHKERRQ(ierr);
    ierr = VecDuplicate(x,&armP->work);CHKERRQ(ierr);
    ierr = PetscObjectDereference((PetscObject)armP->x);CHKERRQ(ierr);
    armP->x = x;
    ierr = PetscObjectReference((PetscObject)armP->x);CHKERRQ(ierr);
  }

  /* Check linesearch parameters */
  if (armP->alpha < 1) {
    ierr = PetscInfo1(ls,"OWArmijo line search error: alpha (%g) < 1\n", (double)armP->alpha);CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if ((armP->beta <= 0) || (armP->beta >= 1)) {
    ierr = PetscInfo1(ls,"OWArmijo line search error: beta (%g) invalid\n", (double)armP->beta);CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if ((armP->beta_inf <= 0) || (armP->beta_inf >= 1)) {
    ierr = PetscInfo1(ls,"OWArmijo line search error: beta_inf (%g) invalid\n", (double)armP->beta_inf);CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if ((armP->sigma <= 0) || (armP->sigma >= 0.5)) {
    ierr = PetscInfo1(ls,"OWArmijo line search error: sigma (%g) invalid\n", (double)armP->sigma);CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if (armP->memorySize < 1) {
    ierr = PetscInfo1(ls,"OWArmijo line search error: memory_size (%D) < 1\n", armP->memorySize);CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  }  else if ((armP->referencePolicy != REFERENCE_MAX) && (armP->referencePolicy != REFERENCE_AVE) && (armP->referencePolicy != REFERENCE_MEAN)) {
    ierr = PetscInfo(ls,"OWArmijo line search error: reference_policy invalid\n");CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if ((armP->replacementPolicy != REPLACE_FIFO) && (armP->replacementPolicy != REPLACE_MRU)) {
    ierr = PetscInfo(ls,"OWArmijo line search error: replacement_policy invalid\n");CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if (PetscIsInfOrNanReal(*f)) {
    ierr = PetscInfo(ls,"OWArmijo line search error: initial function inf or nan\n");CHKERRQ(ierr);
    ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
  }

  if (ls->reason != TAOLINESEARCH_CONTINUE_ITERATING) PetscFunctionReturn(0);

  /* Check to see of the memory has been allocated.  If not, allocate
     the historical array and populate it with the initial function
     values. */
  if (!armP->memory) {
    ierr = PetscMalloc1(armP->memorySize, &armP->memory );CHKERRQ(ierr);
  }

  if (!armP->memorySetup) {
    for (i = 0; i < armP->memorySize; i++) {
      armP->memory[i] = armP->alpha*(*f);
    }
    armP->current = 0;
    armP->lastReference = armP->memory[0];
    armP->memorySetup=PETSC_TRUE;
  }

  /* Calculate reference value (MAX) */
  ref = armP->memory[0];
  idx = 0;

  for (i = 1; i < armP->memorySize; i++) {
    if (armP->memory[i] > ref) {
      ref = armP->memory[i];
      idx = i;
    }
  }

  if (armP->referencePolicy == REFERENCE_AVE) {
    ref = 0;
    for (i = 0; i < armP->memorySize; i++) {
      ref += armP->memory[i];
    }
    ref = ref / armP->memorySize;
    ref = PetscMax(ref, armP->memory[armP->current]);
  } else if (armP->referencePolicy == REFERENCE_MEAN) {
    ref = PetscMin(ref, 0.5*(armP->lastReference + armP->memory[armP->current]));
  }

  if (armP->nondescending) {
    fact = armP->sigma;
  }

  ierr = VecDuplicate(g,&g_old);CHKERRQ(ierr);
  ierr = VecCopy(g,g_old);CHKERRQ(ierr);

  ls->step = ls->initstep;
  while (ls->step >= owlqn_minstep && ls->nfeval < ls->max_funcs) {
    /* Calculate iterate */
    ierr = VecCopy(x,armP->work);CHKERRQ(ierr);
    ierr = VecAXPY(armP->work,ls->step,s);CHKERRQ(ierr);

    partgdx=0.0;
    ierr = ProjWork_OWLQN(armP->work,x,g_old,&partgdx);
    ierr = MPI_Allreduce(&partgdx,&gdx,1,MPIU_REAL,MPIU_SUM,comm);CHKERRQ(ierr);

    /* Check the condition of gdx */
    if (PetscIsInfOrNanReal(gdx)) {
      ierr = PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)gdx);CHKERRQ(ierr);
      ls->reason=TAOLINESEARCH_FAILED_INFORNAN;
      PetscFunctionReturn(0);
    }
    if (gdx >= 0.0) {
      ierr = PetscInfo1(ls,"Initial Line Search step is not descent direction (g's=%g)\n",(double)gdx);CHKERRQ(ierr);
      ls->reason = TAOLINESEARCH_FAILED_ASCENT;
      PetscFunctionReturn(0);
    }

    /* Calculate function at new iterate */
    ierr = TaoLineSearchComputeObjectiveAndGradient(ls,armP->work,f,g);CHKERRQ(ierr);
    g_computed=PETSC_TRUE;

    if (ls->step == ls->initstep) {
      ls->f_fullstep = *f;
    }

    if (PetscIsInfOrNanReal(*f)) {
      ls->step *= armP->beta_inf;
    } else {
      /* Check descent condition */
      if (armP->nondescending && *f <= ref - ls->step*fact*ref) break;
      if (!armP->nondescending && *f <= ref + armP->sigma * gdx) break;
      ls->step *= armP->beta;
    }
  }
  ierr = VecDestroy(&g_old);CHKERRQ(ierr);

  /* Check termination */
  if (PetscIsInfOrNanReal(*f)) {
    ierr = PetscInfo(ls, "Function is inf or nan.\n");CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_FAILED_BADPARAMETER;
  } else if (ls->step < owlqn_minstep) {
    ierr = PetscInfo(ls, "Step length is below tolerance.\n");CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_HALTED_RTOL;
  } else if (ls->nfeval >= ls->max_funcs) {
    ierr = PetscInfo2(ls, "Number of line search function evals (%D) > maximum allowed (%D)\n",ls->nfeval, ls->max_funcs);CHKERRQ(ierr);
    ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
  }
  if (ls->reason) PetscFunctionReturn(0);

  /* Successful termination, update memory */
  armP->lastReference = ref;
  if (armP->replacementPolicy == REPLACE_FIFO) {
    armP->memory[armP->current++] = *f;
    if (armP->current >= armP->memorySize) {
      armP->current = 0;
    }
  } else {
    armP->current = idx;
    armP->memory[idx] = *f;
  }

  /* Update iterate and compute gradient */
  ierr = VecCopy(armP->work,x);CHKERRQ(ierr);
  if (!g_computed) {
    ierr = TaoLineSearchComputeGradient(ls, x, g);CHKERRQ(ierr);
  }
  ierr = PetscInfo2(ls, "%D function evals in line search, step = %10.4f\n",ls->nfeval, (double)ls->step);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}