예제 #1
0
 void ParanoidSolver::knownProviders(int p) const {
   GRelation r(1);
   r.add(Tuple({p}));
   GRelation providers = r.timesULeft(1).intersect(provides_.glb());
   cout << "the providers " << providers << endl;
 }
예제 #2
0
파일: main.cpp 프로젝트: CCJY/coliru
 inline constexpr Tuple go(index_sequence<Is...>, Ts... args) const noexcept
 {
     return Tuple((some_kinda_structure[args] + Is)...);
 }
예제 #3
0
 bool ParanoidSolver::packageInstalled(int p) const {
   GRelation r(1);
   r.add(Tuple({p}));
   return r.subsetEq(install_.glb());
 }
예제 #4
0
파일: parser.cpp 프로젝트: maximecb/bjrn
/**
Implements the parsing of expressions that are part of the core language

The core language supports:
- Functions (but not closures)
- Integer literals (decimal only)
- String literals
- Tuple literals [a,b]
- If-else expressions
- Sequencing blocks with {a;b}
- Function calls fun(a,b)
*/
Tuple coreParseExpr(Input* input)
{
    // Consume whitespace
    input->eatWS();

    // Numerical constant
    if (isdigit(input->peekCh()))
    {
        return parseInt(input);
    }

    // String literal
    if (input->matchCh('\''))
    {
        return parseStringLit(input, '\'');
    }
    if (input->matchCh('\"'))
    {
        return parseStringLit(input, '\"');
    }

    // Tuple expression
    if (input->matchCh('['))
    {
        return Tuple{
            Tuple("tuple"),
            parseExprList(input, ']')
        };
    }

    // Block/sequence expression (i.e { a; b; c }
    if (input->matchCh('{'))
    {
        return parseBlockExpr(input, '}');
    }

    // Keywords
    if (isalnum(input->peekCh()))
    {
        // If expression
        if (input->matchStr("if"))
            return parseIfExpr(input);

        // Let expression
        if (input->matchStr("let"))
            return parseLetExpr(input);

        // Function definition expression
        if (input->matchStr("fun"))
            return parseFunExpr(input);

        // Function call expression
        if (input->matchStr("call"))
            return parseCallExpr(input);
    }

    // Host/magic constants
    if (input->matchCh('$'))
    {
        return parseHostRef(input);
    }

    // Variable references
    if (input->peekCh() == '_' || isalpha(input->peekCh()))
    {
        return parseIdent(input);
    }

    // Parsing failed
    throw ParseError(input, "failed to parse expression");
}
 Tuple Sequence::asTuple() const
 {
     return Tuple(NewReference(PySequence_Tuple(mPtr)));
 }
예제 #6
0
Field DataTypeTuple::getDefault() const
{
    return Tuple(ext::map<TupleBackend>(elems, [] (const DataTypePtr & elem) { return elem->getDefault(); }));
}
예제 #7
0
PowerUp::PowerUp (Tuple pos) : Movable (&pos) {

  this->setDir (Tuple (1,0));
  
}
예제 #8
0
TokenBase* calculator::calculate(const TokenQueue_t& rpn, TokenMap scope,
                                 const opMap_t& opMap) {
  evaluationData data(rpn, scope, opMap);

  // Evaluate the expression in RPN form.
  std::stack<TokenBase*> evaluation;
  while (!data.rpn.empty()) {
    TokenBase* base = data.rpn.front()->clone();
    data.rpn.pop();

    // Operator:
    if (base->type == OP) {
      data.op = static_cast<Token<std::string>*>(base)->val;
      delete base;

      /* * * * * Resolve operands Values and References: * * * * */

      if (evaluation.size() < 2) {
        cleanStack(evaluation);
        throw std::domain_error("Invalid equation.");
      }
      TokenBase* b_right = evaluation.top(); evaluation.pop();
      TokenBase* b_left  = evaluation.top(); evaluation.pop();

      if (b_right->type == VAR) {
        std::string var_name = static_cast<Token<std::string>*>(b_right)->val;
        delete b_right;
        delete resolve_reference(b_left);
        cleanStack(evaluation);
        throw std::domain_error("Unable to find the variable '" + var_name + "'.");
      } else {
        b_right = resolve_reference(b_right, &data.scope);
      }

      packToken r_left;
      packToken m_left;
      if (b_left->type & REF) {
        RefToken* left = static_cast<RefToken*>(b_left);
        r_left = left->key;
        m_left = left->source;
        b_left = resolve_reference(left, &data.scope);
      } else if (b_left->type == VAR) {
        r_left = static_cast<Token<std::string>*>(b_left)->val;
      }

      /* * * * * Resolve Asign Operation * * * * */

      if (!data.op.compare("=")) {
        delete b_left;

        // If the left operand has a variable name:
        if (r_left->type == STR) {
          if (m_left->type == MAP) {
            TokenMap& map = m_left.asMap();
            std::string& key = r_left.asString();
            map[key] = packToken(b_right->clone());
          } else {
            TokenMap* map = data.scope.findMap(r_left.asString());
            if (!map || *map == TokenMap::default_global()) {
              // Assign on the local scope.
              // The user should not be able to implicitly overwrite
              // variables he did not declare, since it's error prone.
              data.scope[r_left.asString()] = packToken(b_right->clone());
            } else {
              (*map)[r_left.asString()] = packToken(b_right->clone());
            }
          }

          evaluation.push(b_right);
        // If the left operand has an index number:
        } else if (r_left->type & NUM) {
          if (m_left->type == LIST) {
            TokenList& list = m_left.asList();
            size_t index = r_left.asInt();
            list[index] = packToken(b_right->clone());
          } else {
            delete b_right;
            cleanStack(evaluation);
            throw std::domain_error("Left operand of assignment is not a list!");
          }

          evaluation.push(b_right);
        } else {
          packToken p_right(b_right->clone());
          delete b_right;

          cleanStack(evaluation);
          throw undefined_operation(data.op, r_left, p_right);
        }
      } else if (b_left->type == FUNC && data.op == "()") {
        Function* f_left = static_cast<Function*>(b_left);

        if (!data.op.compare("()")) {
          // Collect the parameter tuple:
          Tuple right;
          if (b_right->type == TUPLE) {
            right = *static_cast<Tuple*>(b_right);
          } else {
            right = Tuple(b_right);
          }
          delete b_right;

          packToken _this;
          if (m_left->type != NONE) {
            _this = m_left;
          } else {
            _this = data.scope;
          }

          // Execute the function:
          packToken ret;
          try {
            ret = Function::call(_this, f_left, &right, data.scope);
          } catch (...) {
            cleanStack(evaluation);
            delete f_left;
            throw;
          }

          delete f_left;

          evaluation.push(ret->clone());
        } else {
          packToken p_right(b_right->clone());
          packToken p_left(b_left->clone());
          delete b_right;

          cleanStack(evaluation);
          throw undefined_operation(data.op, p_left, p_right);
        }
      } else {
        data.opID = Operation::build_mask(b_left->type, b_right->type);
        packToken p_left(b_left);
        packToken p_right(b_right);
        TokenBase* result = 0;

        try {
          // Resolve the operation:
          result = exec_operation(p_left, p_right, &data, data.op);
          if (!result) {
            result = exec_operation(p_left, p_right, &data, ANY_OP);
          }
        } catch (...) {
          cleanStack(evaluation);
          throw;
        }

        if (result) {
          evaluation.push(result);
        } else {
          cleanStack(evaluation);
          throw undefined_operation(data.op, p_left, p_right);
        }
      }
    } else if (base->type == VAR) {  // Variable
      packToken* value = NULL;
      std::string key = static_cast<Token<std::string>*>(base)->val;

      value = data.scope.find(key);

      if (value) {
        TokenBase* copy = (*value)->clone();
        evaluation.push(new RefToken(key, copy));
        delete base;
      } else {
        evaluation.push(base);
      }
    } else {
      evaluation.push(base);
    }
  }

  return evaluation.top();
}
 operator Tuple() { return Tuple(real, imag); }
Func opticalFlow_estimate (Func stBasis, uint8_t nAngle, uint8_t * orders, \
                           Expr filterthreshold, Expr divisionthreshold,\
                           Expr divisionthreshold2) {
// This function estimates components of optical flow fields as well as its speed and direction of movement
// basis: from spatio-temporal filters, angle: number of considered angles
    // orders: x (spatial index), y ( spatial index ), t (time index) and s ?
// ColorMgather function in MATLAB
// Pipeline:
// 1. Compute oriented filter basis at a particular angle
// {
//     basis -> X
//           -> Y
//           -> T
//           -> Xrg
//           -> Yrg
//           -> Trg
//           -> Xk
//           -> Yk
//           -> Tk
// }
    // Expr M0,M1,M2,M3,temp_a,temp_b,Tkd;
    // Expr M0 = cast<float>(0.0f);
    // Expr M1 = cast<float>(0.0f);
    // Expr M2 = cast<float>(0.0f);
    // Expr M3 = cast<float>(0.0f);
    // Expr temp_a = cast<float>(0.0f);
    // Expr temp_b = cast<float>(0.0f);
    // Expr Tkd = cast<float>(0.0f);

    // Expr D0 = cast<float>(0.0f);
    // Expr D1 = cast<float>(0.0f);
    // Expr D2 = cast<float>(0.0f);
    // Expr D3 = cast<float>(0.0f);
    // Expr N0 = cast<float>(0.0f);
    // Expr N1 = cast<float>(0.0f);
    // Expr N2 = cast<float>(0.0f);
    // Expr N3 = cast<float>(0.0f);
    // Expr A0 = cast<float>(0.0f);
    // Expr A1 = cast<float>(0.0f);
    // Expr A2 = cast<float>(0.0f);
    // Expr A3 = cast<float>(0.0f);
    Func Tkd;
    Func fA0; fA0(x,y,t) = Expr(0.0f);
    Func fA1; fA1(x,y,t) = Expr(0.0f);
    Func fA2; fA2(x,y,t) = Expr(0.0f);
    Func fA3; fA3(x,y,t) = Expr(0.0f);
    Func fD0; fD0(x,y,t) = Expr(0.0f);
    Func fD1; fD1(x,y,t) = Expr(0.0f);
    Func fD2; fD2(x,y,t) = Expr(0.0f);
    Func fD3; fD3(x,y,t) = Expr(0.0f);
    Func fN0; fN0(x,y,t) = Expr(0.0f);
    Func fN1; fN1(x,y,t) = Expr(0.0f);
    Func fN2; fN2(x,y,t) = Expr(0.0f);
    Func fN3; fN3(x,y,t) = Expr(0.0f);

    // std::vector<Expr> basisAtAngleExpr(5,cast<float>(0.0f));
    // Tuple basisAtAngle = Tuple(basisAtAngleExpr);
    Func basisAtAngle[nAngle/2];

// Compute spatial-temporal basis
    for (int iA = 0; iA <= nAngle / 2 - 1; iA++) {
        float aAngle = 2*iA*M_PI/nAngle;
        basisAtAngle[iA] = ColorMgather(stBasis, aAngle, orders, filterthreshold,
                                        divisionthreshold, divisionthreshold2);
        basisAtAngle[iA].compute_root();

        Expr M0,M1,M2,M3;
        M0 = basisAtAngle[iA](x,y,t)[0]; M1 = basisAtAngle[iA](x,y,t)[1];
        M2 = basisAtAngle[iA](x,y,t)[2]; M3 = basisAtAngle[iA](x,y,t)[3];

        fD0(x,y,t) += M0 * M0;
        fD1(x,y,t) += M0 * M2;
        fD2(x,y,t) += M2 * M0;
        fD3(x,y,t) += M2 * M2;
        fN0(x,y,t) += M1 * M0;
        fN1(x,y,t) += M1 * M2;
        fN2(x,y,t) += M3 * M0;
        fN3(x,y,t) += M3 * M2;
        // temp_a = abs(M0) * M1;
        // temp_b = abs(M2) * M3;
        Expr cosaAngle((float) cos(aAngle));
        Expr sinaAngle((float) sin(aAngle));
        // A0  += temp_a  * cosaAngle;
        // A1  += temp_b  * sinaAngle;
        // A2  += temp_a  * sinaAngle;
        // A3  += temp_b  * cosaAngle;
        // fA0(x,y,c,t) += abs(M0) * M1 * cosaAngle;
        fA0(x,y,t) += abs(M0) * M1 * cosaAngle;
        fA1(x,y,t) += abs(M2) * M3 * sinaAngle;
        fA2(x,y,t) += abs(M0) * M1 * sinaAngle;
        fA3(x,y,t) += abs(M2) * M3 * cosaAngle;
    }

    Tkd(x,y,t) = basisAtAngle[nAngle/2-1](x,y,t)[4];
    // return basisAtAngle[0]; // 4 debug
    // // Schedule basis
    // for (int iA = 0; iA <= nAngle / 2 - 1; iA++) {
    //     fD0.update(iA);
    //     fD1.update(iA);
    //     fD2.update(iA);
    //     fD3.update(iA);
    //     fN0.update(iA);
    //     fN1.update(iA);
    //     fN2.update(iA);
    //     fN3.update(iA);
    //     fA0.update(iA);
    //     fA1.update(iA);
    //     fA2.update(iA);
    //     fA3.update(iA);
    // }

    fD0.compute_root();
    fD1.compute_root();
    fD2.compute_root();
    fD3.compute_root();
    fN0.compute_root();
    fN1.compute_root();
    fN2.compute_root();
    fN3.compute_root();
    fA0.compute_root();
    fA1.compute_root();
    fA2.compute_root();
    fA3.compute_root();
    Tkd.compute_root();

    Func top_func;
    Func bottom_func;
    Expr speed0;
    Expr speed1;

// Polar fig ?
    top_func(x,y,t) = fN0(x,y,t) * fN3(x,y,t) - fN1(x,y,t) * fN2(x,y,t);
    top_func.compute_root();
    bottom_func(x,y,t) = fD0(x,y,t)  * fD3(x,y,t)  - fD1(x,y,t)  * fD2(x,y,t);
    bottom_func.compute_root();

    speed0 = sqrt(sqrt(abs(Mdefdiv(top_func(x,y,t) , bottom_func(x,y,t), Expr(0.0f)))));
    speed1 = Manglecalc(fA0(x,y,t) , fA1(x,y,t) , fA2(x,y,t) , fA3(x,y,t));
// Display the results ?
    speed0 = select(abs(Tkd(x,y,t)) > filterthreshold,speed0,Expr(0.0f));
    speed1 = select(abs(Tkd(x,y,t)) > filterthreshold,speed1,Expr(0.0f));

    Func speed("speed"); speed(x,y,t) = Tuple(speed0,speed1);
    return speed;

//Bimg = [T0n speed0 speed1] ?
//    Func img = outputvelocity(T0n,Func(speed0),Func(speed1),16, speedthreshold, filterthreshold);
}
Func ColorMgather(Func stBasis, float angle, uint8_t * orders, Expr filterthreshold, Expr divisionthreshold, Expr divisionthreshold2) {
    uint8_t x_order = orders[0];
    uint8_t y_order = orders[1];
    uint8_t t_order = orders[2];
    uint8_t c_order = orders[3];

    Func X("X"),Y("Y"),T("T"),Xrg("Xrg"),Yrg("Yrg"),Trg("Trg");
    uint8_t max_order = x_order;
    // std::vector<Expr>Xk_expr (max_order,cast<float>(0.0f));
    // std::vector<Expr>Yk_expr (max_order,cast<float>(0.0f));
    // std::vector<Expr>Tk_expr (max_order,cast<float>(0.0f));

    uint8_t Xk_uI[max_order];
    uint8_t Yk_uI[max_order];
    uint8_t Tk_uI[max_order];
    Func Xk[max_order]; Func Yk[max_order]; Func Tk[max_order];

    // Expr Xk[max_order],Yk[max_order],Tk[max_order];

    for (int iO=0; iO < x_order; iO++) {
        Xk[iO](x,y,t) = Expr(0.0f);
        Yk[iO](x,y,t) = Expr(0.0f);
        Tk[iO](x,y,t) = Expr(0.0f);
        Xk_uI[iO] = 0;
        Yk_uI[iO] = 0;
        Tk_uI[iO] = 0;
    }

    int k = 0;
    for (int iXo = 0; iXo < x_order; iXo++) // x_order
        for (int iYo = 0; iYo < y_order; iYo++) // y_oder
            for (int iTo = 0; iTo < t_order; iTo++) // t_order
                for (int iCo = 0; iCo < c_order; iCo ++ ) // c_order: index of color channel
                {
                    if ((iYo+iTo+iCo == 0 || iYo+iTo+iCo == 1)
                        && ((iXo+iYo+iTo+iCo+1) < (x_order + 1))) {
                        X = ColorMgetfilter(stBasis, angle, iXo+1, iYo, iTo, iCo);
                        Y = ColorMgetfilter(stBasis, angle, iXo, iYo+1, iTo, iCo);
                        T = ColorMgetfilter(stBasis, angle, iXo, iYo, iTo+1, iCo);

                        Xrg = ColorMgetfilter(stBasis, angle, iXo+1, iYo, iTo, iCo+1);
                        Yrg = ColorMgetfilter(stBasis, angle, iXo, iYo+1, iTo, iCo+1);
                        Trg = ColorMgetfilter(stBasis, angle, iXo, iYo, iTo+1, iCo+1);

                        k = iXo + iYo + iTo + iCo;
                        Xk[k](x,y,t) += X(x,y,t) + Xrg(x,y,t);
                        Yk[k](x,y,t) += Y(x,y,t) + Yrg(x,y,t);
                        Tk[k](x,y,t) += T(x,y,t) + Trg(x,y,t);

                        Xk[k].update(Xk_uI[k]); Xk_uI[k]++;
                        Yk[k].update(Yk_uI[k]); Yk_uI[k]++;
                        Tk[k].update(Tk_uI[k]); Tk_uI[k]++;
                    }
                }

    // Scheduling
    for (int iO = 0; iO <= k; iO++) {
        Xk[iO].compute_root();
        Yk[iO].compute_root();
        Tk[iO].compute_root();
    }

    std::vector<Expr> st_expr(6,cast<float>(0.0f));
    for (int iK=0; iK <= k; iK++) {
        st_expr[0] += Xk[iK](x,y,t)*Tk[iK](x,y,t);
        st_expr[1] += Tk[iK](x,y,t)*Tk[iK](x,y,t);
        st_expr[2] += Xk[iK](x,y,t)*Xk[iK](x,y,t);
        st_expr[3] += Yk[iK](x,y,t)*Tk[iK](x,y,t);
        st_expr[4] += Yk[iK](x,y,t)*Yk[iK](x,y,t);
        st_expr[5] += Xk[iK](x,y,t)*Yk[iK](x,y,t);
    }

    Func st("st"); st(x,y,t) = Tuple(st_expr);
    st.compute_root();

    Expr x_clamped = clamp(x,0,width-1);
    Expr y_clamped = clamp(y,0,height-1);
    Func st_clamped("st_clamped"); st_clamped(x,y,t) = st(x_clamped,y_clamped,t);

    // float win = 7.0;
    // Image<float> meanfilter(7,7,"meanfilter_data");
    // meanfilter(x,y) = Expr(1.0f/(win*win));

    // RDom rMF(meanfilter);
    uint8_t win = 7;
    RDom rMF(0,win,0,win);

    Func st_filtered[6];
    for (uint8_t iPc=0; iPc<6; iPc++) {
    // iPc: index of product component
        // Apply average filter
        st_filtered[iPc](x,y,t) = sum(rMF,st_clamped(x + rMF.x,y + rMF.y,t)[iPc]/Expr(float(win*win)),"mean_filter");
        st_filtered[iPc].compute_root();
    }
    // Tuple st_tuple = Tuple(st_expr);

    // 4 debug
    // Func tmpOut("tmpOut"); tmpOut(x,y,t) = Tuple(st_filtered[0](x,y,t),st_filtered[1](x,y,t),st_filtered[2](x,y,t),st_filtered[3](x,y,t),st_filtered[4](x,y,t),st_filtered[5](x,y,t));
    // return tmpOut;

    Tuple pbx = Tuple(st_filtered[2](x,y,t),st_filtered[5](x,y,t),st_filtered[0](x,y,t));
    Tuple pby = Tuple(st_filtered[5](x,y,t),st_filtered[4](x,y,t),st_filtered[3](x,y,t));
    Tuple pbt = Tuple(st_filtered[0](x,y,t),st_filtered[3](x,y,t),st_filtered[1](x,y,t));

    Func pbxy("pbxy"); pbxy = cross(pby,pbx); pbxy.compute_root();
    Func pbxt("pbxt"); pbxt = cross(pbx,pbt); pbxt.compute_root();
    Func pbyt("pbyt"); pbyt = cross(pby,pbt); pbyt.compute_root();

    Func pbxyd("pbxyd"); pbxyd = dot(pby,pbx); pbxyd.compute_root();
    Func pbxtd("pbxtd"); pbxtd = dot(pbx,pbt); pbxtd.compute_root();
    Func pbytd("pbytd"); pbytd = dot(pby,pbt); pbytd.compute_root();

    // 4 debug
    // Func tmpOut("tmpOut"); tmpOut(x,y,t) = Tuple(pbxy(x,y,t)[0],pbxt(x,y,t)[0],pbyt(x,y,t)[0],pbxyd(x,y,t),pbxtd(x,y,t),pbytd(x,y,t));
    // return tmpOut;

    Func yt_xy("yt_xy"); yt_xy = dot(pbyt(x,y,t),pbxy(x,y,t)); yt_xy.compute_root();
    Func xt_yt("xt_yt"); xt_yt = dot(pbxt(x,y,t),pbyt(x,y,t)); xt_yt.compute_root();
    Func xt_xy("xt_xy"); xt_xy = dot(pbxt(x,y,t),pbxy(x,y,t)); xt_xy.compute_root();
    Func yt_yt("yt_yt"); yt_yt = dot(pbyt(x,y,t),pbyt(x,y,t)); yt_yt.compute_root();
    Func xt_xt("xt_xt"); xt_xt = dot(pbxt(x,y,t),pbxt(x,y,t)); xt_xt.compute_root();
    Func xy_xy("xy_xy"); xy_xy = dot(pbxy(x,y,t),pbxy(x,y,t)); xy_xy.compute_root();

    Tuple Tk_tuple = Tuple(Tk[0](x,y,t),Tk[1](x,y,t),Tk[2](x,y,t),
                           Tk[3](x,y,t),Tk[4](x,y,t));
    Func Tkd("Tkd"); Tkd = dot(Tk_tuple,Tk_tuple); Tkd.compute_root();

    // Expr Dimen = pbxyd/xy_xy;
    Expr kill(1.0f);

    Func Oxy; Oxy(x,y,t) = Mdefdiv(st_filtered[5](x,y,t) - Mdefdivang(yt_xy(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*st_filtered[3](x,y,t)*kill,st_filtered[4](x,y,t),divisionthreshold);
    Oxy.compute_root();

    Func Oyx; Oyx(x,y,t) = Mdefdiv(st_filtered[5](x,y,t) + Mdefdivang(xt_xy(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*st_filtered[0](x,y,t)*kill,st_filtered[2](x,y,t),divisionthreshold);
    Oyx.compute_root();

    Func C0; C0(x,y,t) = st_filtered[3](x,y,t) * Mdefdivang(Expr(-1.0f)*xt_yt(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C0.compute_root();

    Func M0; M0(x,y,t) = Mdefdiv(st_filtered[0](x,y,t) + C0(x,y,t), st_filtered[1](x,y,t)*pow(Mdefdivang(xt_yt(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f)),divisionthreshold);
    M0.compute_root();

    Func C1; C1(x,y,t) = st_filtered[5](x,y,t) * Mdefdivang(Expr(-1.0f)*xt_xy(x,y,t),xy_xy(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C1.compute_root();

    Func P1; P1(x,y,t) = pow(Mdefdivang(xt_yt(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f))*kill + 1.0f;
    P1.compute_root();

    // 4 debug
    // Func tmpOut("tmpOut"); tmpOut(x,y,t) = Tuple(Oxy(x,y,t),Oyx(x,y,t),C0(x,y,t),M0(x,y,t),C1(x,y,t),P1(x,y,t));
    // return tmpOut;


    Func Q1; Q1(x,y,t) = st_filtered[2](x,y,t) * (pow(Oyx(x,y,t),Expr(2.0f))+Expr(1.0f));
    Q1.compute_root();

    Func M1; M1(x,y,t) = Mdefdiv(((st_filtered[0](x,y,t)-C1(x,y,t))*P1(x,y,t)),Q1(x,y,t),divisionthreshold);
    M1.compute_root();

    Func C2; C2(x,y,t) = st_filtered[0](x,y,t) * Mdefdivang(Expr(-1.0f)*xt_yt(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C2.compute_root();

    Func M2; M2(x,y,t) = Mdefdiv(st_filtered[3](x,y,t)+C2(x,y,t),st_filtered[1](x,y,t)*(pow(Mdefdivang(xt_yt(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f))*kill+Expr(1.0f)),divisionthreshold);
    M2.compute_root();

    Func C3; C3(x,y,t) = st_filtered[5](x,y,t) * Mdefdivang(yt_xy(x,y,t),xy_xy(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C3.compute_root();

    Func P3; P3(x,y,t) = pow(Mdefdivang(xt_yt(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f))*kill + Expr(1.0f);
    P3.compute_root();

    Func Q3; Q3(x,y,t) = st_filtered[4](x,y,t) * (pow(Oxy(x,y,t),Expr(2.0f))+Expr(1.0f));
    Q3.compute_root();

    Func M3; M3(x,y,t) = Mdefdiv(((st_filtered[3](x,y,t)-C3(x,y,t))*P3(x,y,t)),Q3(x,y,t),divisionthreshold);
    M3.compute_root();

    Func basisAtAngle;
    basisAtAngle(x,y,t) = Tuple(M0(x,y,t),M1(x,y,t),M2(x,y,t),M3(x,y,t),Tkd(x,y,t));

    return basisAtAngle;

// Func hsv2rgb(Func colorImage) { // Took this function
//     Var x, y, c, t;
//     Func output;
//     output(x,y,c,t) = cast <float> (0.0f);
//     Expr fR, fG, fB; // R,G & B values
//     Expr fH = (colorImage(x,y,0,t)); //H value [0-360)
//     Expr fS = (colorImage(x,y,1,t)); //S value
//     Expr fV = (colorImage(x,y,2,t)); //V value

// //Conversion (I took the one on Wikipedia)
//     // https://fr.wikipedia.org/wiki/Teinte_Saturation_Valeur#Conversion_de_TSV_vers_RVB
//     Expr fHi = floor(fH / Expr(60.0f));
//     Expr fF = fH / 60.0f - fHi;
//     Expr fL = fV * (1 - fS);
//     Expr fM = fV * (1 - fF * fS) ;
//     Expr fN = fV * (1 - (1 - fF) * fS);

//     fR = select((0 == fHi),fV,
//                 (1 == fHi),fM,
//                 (2 == fHi),fL,
//                 (3 == fHi),fL,
//                 (4 == fHi),fN,
//                 (5 == fHi),fV,
//                 0.0f);

//     fG = select((0 == fHi),fN,
//                 (1 == fHi),fV,
//                 (2 == fHi),fV,
//                 (3 == fHi),fM,
//                 (4 == fHi),fL,
//                 (5 == fHi),fL,
//                 0.0f);

//     fB = select((0 == fHi),fL,
//                 (1 == fHi),fL,
//                 (2 == fHi),fN,
//                 (3 == fHi),fV,
//                 (4 == fHi),fV,
//                 (5 == fHi),fM,
//                 0.0f);

//     output(x,y,0,t) = fR;
//     output(x,y,1,t) = fG;
//     output(x,y,2,t) = fB;
//     return output;

// }

// Func angle2rgb (Func v) {
//     Var x, y, c, t;
//     Func ov, a;
//     ov(x,y,c,t) = cast <float> (0.0f);
//     Expr pi2(2*M_PI);
//     a(x,y,c,t) = v(x,y,c,t) / pi2;
//     ov(x,y,0,t) = a(x,y,c,t);
//     ov(x,y,1,t) = 1;
//     ov(x,y,2,t) = 1;
//     return ov;
// }

// Func outputvelocity(Func Blur, Func Speed, Func Angle, int border, Expr speedthreshold, Expr filterthreshold) {
//     extern Expr width;
//     extern Expr height;

//     Func Blur3, Speed3;
//     Blur3(x,y,c,t) = cast <float> (0.0f);
//     Speed3(x,y,c,t) = cast <float> (0.0f);

// //Scale the grey level images
//     Blur(x,y,0,t) = (Blur(x,y,0,t) - minimum(Blur(x,y,0,t))) / (maximum(Blur(x,y,0,t)) - minimum(Blur(x,y,0,t)));
//     //Concatenation along the third dimension
//     Blur3(x,y,0,t) = Blur(x,y,0,t);
//     Blur3(x,y,1,t) = Blur(x,y,0,t);
//     Blur3(x,y,2,t) = Blur(x,y,0,t);

// //Speed scaled to 1
//     //Concatenation along the third dimension
//     Speed3(x,y,1,t) = Speed(x,y,0,t);
//     Speed3(x,y,2,t) = Speed(x,y,0,t);

// //Use the log speed to visualise speed
//     Func LogSpeed;
//     LogSpeed(x,y,c,t) = fast_log(Speed3(x,y,c,t) + Expr(0.0000001f))/fast_log(Expr(10.0f));
//     LogSpeed(x,y,c,t) = (LogSpeed(x,y,c,t) - minimum(LogSpeed(x,y,c,t))) / (maximum(LogSpeed(x,y,c,t)) - minimum(LogSpeed(x,y,c,t)));

// //Make a colour image
//     // uint16_t rows = height;
//     // uint16_t cols = width;
//     // int depth = Angle.channels();

// //Do it the HSV way
//     Func colorImage;
//     colorImage(x,y,0,t) = Angle(x,y,0,t);

// //Do hsv to rgb
//     Func colorImage1;
//     colorImage1 = hsv2rgb(colorImage);

// // Assume the border equals to the size of spatial filter
// //Make the border
//     // int bir = rows + 2 * border;
//     // int bic = cols + 2 * border;
//     Expr orows = height / Expr(2);
//     Expr ocols = width / Expr(2);

// //Rotation matrix
//     int ph = 0;
//     Func mb, sb;
//    // if (rx < border - 1 || rx >= rows+border -1 || ry < border - 1 || ry >= cols+border - 1) {
//     Expr co1 = x - orows;
//     Expr co2 = - (y - ocols);
//     Expr cosPh(cos(ph));
//     Expr sinPh(sin(ph));
//     Expr rco1 = cosPh * co1 - sinPh * co2; //Using rotation matrix
//     Expr rco2 = sinPh * co1 + cosPh * co2;
//     // Expr justPi (M_PI);
//     mb(x,y,c,t) =
//         select (((x < (border - 1)) ||
//                   (x >= (height+border -1)) ||
//                   (y < (border - 1)) ||
//                   (y >= (width+border - 1))),
//                 atan2(rco1,rco2) + Expr(M_PI),mb(x,y,c,t));
//     sb(x,y,c,t) =
//          select (((x < (border - 1)) ||
//                   (x >= (height+border -1)) ||
//                   (y < (border - 1) ) ||
//                   (y >= (width+border - 1))),
//                   1, sb (x,y,c,t));

//     Func cb;
//     cb = angle2rgb(mb);

// //Get the old data
//     // Expr pi2(2*M_PI);
//     colorImage1(x,y,0,t)=colorImage(x,y,0,t) * Expr(2*M_PI);
//     colorImage1=angle2rgb(colorImage1);
//     colorImage1(x,y,c,t)=select(abs(Speed3(x,y,c,t))<speedthreshold,Expr(0.0f),colorImage1(x,y,c,t));
//     Func colorImage2;
//     colorImage2(x,y,c,t) = colorImage1(x,y,c,t) * Speed(x,y,c,t);

// //Put the data in the border
//     RDom bordx (border,rows + border);
//     RDom bordy (border,cols + border);
//     Func ang1, ang2;
//     ang1 (x,y,c,t) = cast <float> (0.0f);
//     ang2 (x,y,c,t) = cast <float> (0.0f);

//     cb(bordx, bordy,c,t) = colorImage1(x,y,c,t);
//     ang1 = cb;
//     cb(bordx, bordy,c,t) = colorImage2(x,y,c,t);
//     ang2 = cb;
//     sb(bordx, bordy,c,t) = Speed3(x,y,c,t);
//     Speed3 = sb;
//     sb(bordx, bordy,c,t) = Blur3(x,y,c,t);
//     Blur3 = sb;

//     // Func I;
//     // I (x,y,c,t) = Blur3(x,y,c,t) + Speed3(x,y - height,c,t) + ang1(x - width,y,c,t) + ang2(x - width,y - height,c,t);
//     //I = cat(2,cat(1,Blur,Speed),cat(1,ang1,ang2));
//     return I;
// }
}
예제 #12
0
void
ArgSemExtAtom::retrieve(const Query& query, Answer& answer) throw (PluginError)
{
  assert(query.input.size() == 6);

  RegistryPtr reg = getRegistry();

  // check if pspoil is true
  {
    // id of constant of saturate/spoil predicate
    ID saturate_pred = query.input[4];

    // get id of 0-ary atom
    OrdinaryAtom saturate_oatom(ID::MAINKIND_ATOM | ID::SUBKIND_ATOM_ORDINARYG);
    saturate_oatom.tuple.push_back(saturate_pred);
    ID saturate_atom = reg->storeOrdinaryGAtom(saturate_oatom);
    DBGLOG(DBG,"got saturate_pred=" << saturate_pred << " and saturate_atom=" << saturate_atom);

    // check if atom <saturate_pred> is true in interpretation
    bool saturate = query.interpretation->getFact(saturate_atom.address);
    LOG(DBG,"ArgSemExtAtom called with pos saturate=" << saturate);

    if( saturate )
    {
      // always return true
      answer.get().push_back(Tuple());
      return;
    }
  }

  // check if nspoil is true
  {
    // id of constant of saturate/spoil predicate
    ID saturate_pred = query.input[5];

    // get id of 0-ary atom
    OrdinaryAtom saturate_oatom(ID::MAINKIND_ATOM | ID::SUBKIND_ATOM_ORDINARYG);
    saturate_oatom.tuple.push_back(saturate_pred);
    ID saturate_atom = reg->storeOrdinaryGAtom(saturate_oatom);
    DBGLOG(DBG,"got saturate_pred=" << saturate_pred << " and saturate_atom=" << saturate_atom);

    // check if atom <saturate_pred> is true in interpretation
    bool saturate = query.interpretation->getFact(saturate_atom.address);
    LOG(DBG,"ArgSemExtAtom called with neg saturate=" << saturate);

    if( saturate )
    {
      // always return false
      answer.use();
      return;
    }
  }

  // get arguments
  const std::string& semantics = reg->getTermStringByID(query.input[0]);
  ID argRelId = query.input[1];
  ID attRelId = query.input[2];
  ID extRelId = query.input[3];

  // assemble facts from input
  std::stringstream s;
  {
    // add argumentation framework (att, arg) as predicates att/2 and arg/1
    // (ignore predicate name of given atoms)

    // TODO: we could do this more efficiently using extctx.edb->setFact(...); and not by parsing

    // arguments
    {
      PredicateMask& argMask = getPredicateMask(argRelId, reg);
      argMask.updateMask();
      InterpretationPtr argInt(new Interpretation(*query.interpretation));
      argInt->bit_and(*argMask.mask());
      for(auto begend = argInt->trueBits(); begend.first != begend.second; ++begend.first++)
      {
        auto bit_it = begend.first;
        const OrdinaryAtom& atom = argInt->getAtomToBit(bit_it);
        assert(atom.tuple.size() == 2);
        s << "arg(" << printToString<RawPrinter>(atom.tuple[1], reg) << ").\n";
      }
    }

    // attacks
    {
      PredicateMask& attMask = getPredicateMask(attRelId, reg);
      attMask.updateMask();
      InterpretationPtr attInt(new Interpretation(*query.interpretation));
      attInt->bit_and(*attMask.mask());
      for(auto begend = attInt->trueBits(); begend.first != begend.second; ++begend.first++)
      {
        auto bit_it = begend.first;
        const OrdinaryAtom& atom = attInt->getAtomToBit(bit_it);
        assert(atom.tuple.size() == 3);
        s << "att(" << printToString<RawPrinter>(atom.tuple[1], reg) << "," << printToString<RawPrinter>(atom.tuple[2], reg) << ").\n";
      }
    }

    // extension to check
    {
      PredicateMask& extMask = getPredicateMask(extRelId, reg);
      extMask.updateMask();
      InterpretationPtr extInt(new Interpretation(*query.interpretation));
      extInt->bit_and(*extMask.mask());
      for(auto begend = extInt->trueBits(); begend.first != begend.second; ++begend.first++)
      {
        auto bit_it = begend.first;
        const OrdinaryAtom& atom = extInt->getAtomToBit(bit_it);
        assert(atom.tuple.size() == 2);
        s << "ext(" << printToString<RawPrinter>(atom.tuple[1], reg) << ").\n";
      }
    }

    // add check
    s << "%% check if ext/1 is an extension\n"
         ":- arg(X), ext(X), out(X).\n"
         ":- arg(X), not ext(X), in(X).\n";
  }

  // build program
  InputProviderPtr input(new InputProvider);
  input->addStringInput(s.str(),"facts_from_predicate_input");
  input->addFileInput(semantics + ".encoding");

  #if 0
  // we use an extra registry for an external program
  ProgramCtx extctx;
  extctx.setupRegistry(RegistryPtr(new Registry));

  // parse
  ModuleHexParser parser;
  parser.parse(input, extctx);

  DBGLOG(DBG,"after parsing input: idb and edb are" << std::endl << std::endl <<
      printManyToString<RawPrinter>(extctx.idb,"\n",extctx.registry()) << std::endl <<
      *extctx.edb << std::endl);

  // check if there is one answer set, if yes return true, false otherwise
  {
    typedef ASPSolverManager::SoftwareConfiguration<ASPSolver::DLVSoftware> DLVConfiguration;
    DLVConfiguration dlv;
    OrdinaryASPProgram program(extctx.registry(), extctx.idb, extctx.edb, extctx.maxint);
    ASPSolverManager mgr;
    ASPSolverManager::ResultsPtr res = mgr.solve(dlv, program);
    AnswerSet::Ptr firstAnswerSet = res->getNextAnswerSet();
    if( firstAnswerSet != 0 )
    {
      LOG(DBG,"got answer set " << *firstAnswerSet->interpretation);
      // true
      answer.get().push_back(Tuple());
    }
    else
    {
      LOG(DBG,"got no answer set!");
      // false (-> mark as used)
      answer.use();
    }
  }
  #else
  ProgramCtx subctx = ctx;
  subctx.changeRegistry(RegistryPtr(new Registry));
  subctx.edb.reset(new Interpretation(subctx.registry()));

  subctx.inputProvider = input;
  input.reset();

  // parse into subctx, but do not call converters
  if( !subctx.parser )
  {
    subctx.parser.reset(new ModuleHexParser);
  }
  subctx.parser->parse(subctx.inputProvider, subctx);

  std::vector<InterpretationPtr> subas =
    ctx.evaluateSubprogram(subctx, false);
  if( !subas.empty() )
  {
    LOG(DBG,"got answer set " << *subas.front());
    // true
    answer.get().push_back(Tuple());
  }
  else
  {
    LOG(DBG,"got no answer set!");
    // false (-> mark as used)
    answer.use();
  }
  #endif
}
예제 #13
0
파일: System.cpp 프로젝트: EnacheB/Gravity
System::System() : playerShip(Tuple(0,0)) {
    spawnWave();
}
예제 #14
0
파일: Tuple.cpp 프로젝트: damianfral/Halide
 Tuple operator,(const Expr &a, const Expr &b) {
     return Tuple(a, b);
 }
예제 #15
0
 Tuple& operator=(Tuple&& t) {
     Tuple(t).Swap(*this);
     return *this;
 }
예제 #16
0
 Complex(FuncRefExpr f) : real(Tuple(f)[0]), imag(Tuple(f)[1]) {}
예제 #17
0
 Tuple& operator=(const Tuple& t) {
     Tuple(t).Swap(*this);
     return *this;       
 }
예제 #18
0
파일: parser.cpp 프로젝트: maximecb/bjrn
/**
Parse a function expression
fun (x,y,z) <body_expr>
*/
Tuple parseFunExpr(Input* input)
{
    // Optional function name
    Tuple name;

    // Try to parse parse the optional function name
    try
    {
        input->eatWS();
        name = parseIdentStr(input);
    }
    catch (ParseError e)
    {
        name = Tuple("");
    }

    // If there is no parameter list
    input->eatWS();
    if (!input->matchCh('('))
    {
        throw ParseError(
            input,
            "expected parameter list in function expression"
        );
    }

    // Allocate an array for the parameter declarations
    std::vector<Value> params;

    // Until the end of the list
    for (;;)
    {
        // Read whitespace
        input->eatWS();

        // If this is the end of the list
        if (input->matchCh(')'))
            break;

        // Parse an identifier
        params.push_back(parseIdentStr(input));

        // Read whitespace
        input->eatWS();

        // If this is the end of the list
        if (input->matchCh(')'))
            break;

        // If this is not the first element, there must be a separator
        if (!input->matchCh(','))
        {
            throw ParseError(input, "expected comma separator in parameter list");
        }
    }

    // Parse the function body
    auto bodyExpr = parseExpr(input);

    return Tuple{
        Tuple("fun"),
        name,
        Tuple(params),
        bodyExpr
    };
}
예제 #19
0
파일: Browser.cpp 프로젝트: waqarphd/RPCDCS
	DipPub(char ** names, int *types, int count)
	{
		for (int i = 0; i < count; i++){
			fieldMap.push_back(Tuple(names[i], types[i]));
		}
	}
예제 #20
0
Func constant_exterior(const Func &source, Expr value,
                       const std::vector<std::pair<Expr, Expr>> &bounds) {
    return constant_exterior(source, Tuple({value}), bounds);
}