/********************************************************************** Adds a block to the LRU list end. */ UNIV_INLINE void buf_LRU_add_block_to_end_low( /*=========================*/ buf_block_t* block) /* in: control block */ { buf_block_t* last_block; ut_ad(buf_pool); ut_ad(block); ut_ad(mutex_own(&(buf_pool->mutex))); ut_a(block->state == BUF_BLOCK_FILE_PAGE); block->old = TRUE; last_block = UT_LIST_GET_LAST(buf_pool->LRU); if (last_block) { block->LRU_position = last_block->LRU_position; } else { block->LRU_position = buf_pool_clock_tic(); } ut_a(!block->in_LRU_list); UT_LIST_ADD_LAST(LRU, buf_pool->LRU, block); block->in_LRU_list = TRUE; if (srv_use_awe && block->frame) { /* Add to the list of mapped pages */ UT_LIST_ADD_LAST(awe_LRU_free_mapped, buf_pool->awe_LRU_free_mapped, block); } if (UT_LIST_GET_LEN(buf_pool->LRU) >= BUF_LRU_OLD_MIN_LEN) { buf_pool->LRU_old_len++; } if (UT_LIST_GET_LEN(buf_pool->LRU) > BUF_LRU_OLD_MIN_LEN) { ut_ad(buf_pool->LRU_old); /* Adjust the length of the old block list if necessary */ buf_LRU_old_adjust_len(); } else if (UT_LIST_GET_LEN(buf_pool->LRU) == BUF_LRU_OLD_MIN_LEN) { /* The LRU list is now long enough for LRU_old to become defined: init it */ buf_LRU_old_init(); } }
/***************************************************************//** Inserts a created memory heap to the hash table of current allocated memory heaps. */ UNIV_INTERN void mem_hash_insert( /*============*/ mem_heap_t* heap, /*!< in: the created heap */ const char* file_name, /*!< in: file name of creation */ ulint line) /*!< in: line where created */ { mem_hash_node_t* new_node; ulint cell_no ; ut_ad(mem_heap_check(heap)); mutex_enter(&mem_hash_mutex); cell_no = ut_hash_ulint((ulint)heap, MEM_HASH_SIZE); /* Allocate a new node to the list */ new_node = ut_malloc(sizeof(mem_hash_node_t)); new_node->heap = heap; new_node->file_name = file_name; new_node->line = line; new_node->nth_heap = mem_n_created_heaps; /* Insert into lists */ UT_LIST_ADD_FIRST(list, *mem_hash_get_nth_cell(cell_no), new_node); UT_LIST_ADD_LAST(all_list, mem_all_list_base, new_node); mem_n_created_heaps++; mutex_exit(&mem_hash_mutex); }
/****************************************************************//** Inserts the trx handle in the trx system trx list in the right position. The list is sorted on the trx id so that the biggest id is at the list start. This function is used at the database startup to insert incomplete transactions to the list. */ static void trx_list_insert_ordered( /*====================*/ trx_t* trx) /*!< in: trx handle */ { trx_t* trx2; ut_ad(mutex_own(&kernel_mutex)); trx2 = UT_LIST_GET_FIRST(trx_sys->trx_list); while (trx2 != NULL) { if (ut_dulint_cmp(trx->id, trx2->id) >= 0) { ut_ad(ut_dulint_cmp(trx->id, trx2->id) == 1); break; } trx2 = UT_LIST_GET_NEXT(trx_list, trx2); } if (trx2 != NULL) { trx2 = UT_LIST_GET_PREV(trx_list, trx2); if (trx2 == NULL) { UT_LIST_ADD_FIRST(trx_list, trx_sys->trx_list, trx); } else { UT_LIST_INSERT_AFTER(trx_list, trx_sys->trx_list, trx2, trx); } } else { UT_LIST_ADD_LAST(trx_list, trx_sys->trx_list, trx); } }
/******************************************************************//** Adds an identifier to a symbol table. @return symbol table node */ UNIV_INTERN sym_node_t* sym_tab_add_id( /*===========*/ sym_tab_t* sym_tab, /*!< in: symbol table */ byte* name, /*!< in: identifier name */ ulint len) /*!< in: identifier length */ { sym_node_t* node; node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t)); node->common.type = QUE_NODE_SYMBOL; node->resolved = FALSE; node->indirection = NULL; node->name = mem_heap_strdupl(sym_tab->heap, (char*) name, len); node->name_len = len; UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node); dfield_set_null(&node->common.val); node->common.val_buf_size = 0; node->prefetch_buf = NULL; node->cursor_def = NULL; node->sym_table = sym_tab; return(node); }
que_thr_t* que_thr_create( /*===========*/ /* out, own: query thread node */ que_fork_t* parent, /* in: parent node, i.e., a fork node */ mem_heap_t* heap) /* in: memory heap where created */ { que_thr_t* thr; ut_ad(parent && heap); thr = mem_heap_alloc(heap, sizeof(que_thr_t)); thr->common.type = QUE_NODE_THR; thr->common.parent = parent; thr->magic_n = QUE_THR_MAGIC_N; thr->graph = parent->graph; thr->state = QUE_THR_COMMAND_WAIT; thr->is_active = FALSE; thr->run_node = NULL; thr->resource = 0; thr->lock_state = QUE_THR_LOCK_NOLOCK; UT_LIST_ADD_LAST(thrs, parent->thrs, thr); return(thr); }
/******************************************************************//** Adds an SQL null literal to a symbol table. @return symbol table node */ UNIV_INTERN sym_node_t* sym_tab_add_null_lit( /*=================*/ sym_tab_t* sym_tab) /*!< in: symbol table */ { sym_node_t* node; node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t)); node->common.type = QUE_NODE_SYMBOL; node->resolved = TRUE; node->token_type = SYM_LIT; node->indirection = NULL; dfield_get_type(&node->common.val)->mtype = DATA_ERROR; dfield_set_null(&node->common.val); node->common.val_buf_size = 0; node->prefetch_buf = NULL; node->cursor_def = NULL; UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node); node->sym_table = sym_tab; return(node); }
/******************************************************************//** Add a bound identifier to a symbol table. @return symbol table node */ UNIV_INTERN sym_node_t* sym_tab_add_bound_id( /*===========*/ sym_tab_t* sym_tab, /*!< in: symbol table */ const char* name) /*!< in: name of bound id */ { sym_node_t* node; pars_bound_id_t* bid; bid = pars_info_get_bound_id(sym_tab->info, name); ut_a(bid); node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t)); node->common.type = QUE_NODE_SYMBOL; node->resolved = FALSE; node->indirection = NULL; node->name = mem_heap_strdup(sym_tab->heap, bid->id); node->name_len = strlen(node->name); UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node); dfield_set_null(&node->common.val); node->common.val_buf_size = 0; node->prefetch_buf = NULL; node->cursor_def = NULL; node->sym_table = sym_tab; return(node); }
/************************************************************//** Adds a new block to a dyn array. @return created block */ UNIV_INTERN dyn_block_t* dyn_array_add_block( /*================*/ dyn_array_t* arr) /*!< in: dyn array */ { mem_heap_t* heap; dyn_block_t* block; ut_ad(arr); ut_ad(arr->magic_n == DYN_BLOCK_MAGIC_N); if (arr->heap == NULL) { UT_LIST_INIT(arr->base); UT_LIST_ADD_FIRST(list, arr->base, arr); arr->heap = mem_heap_create(sizeof(dyn_block_t)); } block = dyn_array_get_last_block(arr); block->used = block->used | DYN_BLOCK_FULL_FLAG; heap = arr->heap; block = mem_heap_alloc(heap, sizeof(dyn_block_t)); block->used = 0; UT_LIST_ADD_LAST(list, arr->base, block); return(block); }
/***********************************************************************//** Adds a query graph to the session's list of graphs. */ UNIV_INTERN void que_graph_publish( /*==============*/ que_t* graph, /*!< in: graph */ sess_t* sess) /*!< in: session */ { ut_ad(mutex_own(&kernel_mutex)); UT_LIST_ADD_LAST(graphs, sess->graphs, graph); }
void que_graph_publish( /*==============*/ que_t* graph, /* in: graph */ sess_t* sess) /* in: session */ { #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&kernel_mutex)); #endif /* UNIV_SYNC_DEBUG */ UT_LIST_ADD_LAST(graphs, sess->graphs, graph); }
/**********************************************************************//** Enqueues a task to server task queue and releases a worker thread, if there is a suspended one. */ UNIV_INTERN void srv_que_task_enqueue_low( /*=====================*/ que_thr_t* thr) /*!< in: query thread */ { ut_ad(thr); ut_ad(mutex_own(&kernel_mutex)); UT_LIST_ADD_LAST(queue, srv_sys->tasks, thr); srv_release_threads(SRV_WORKER, 1); }
/*******************************************************************//** Creates a named savepoint. If the transaction is not yet started, starts it. If there is already a savepoint of the same name, this call erases that old savepoint and replaces it with a new. Savepoints are deleted in a transaction commit or rollback. @return always DB_SUCCESS */ UNIV_INTERN ulint trx_savepoint_for_mysql( /*====================*/ trx_t* trx, /*!< in: transaction handle */ const char* savepoint_name, /*!< in: savepoint name */ ib_int64_t binlog_cache_pos) /*!< in: MySQL binlog cache position corresponding to this connection at the time of the savepoint */ { trx_named_savept_t* savep; ut_a(trx); ut_a(savepoint_name); trx_start_if_not_started(trx); savep = UT_LIST_GET_FIRST(trx->trx_savepoints); while (savep != NULL) { if (0 == ut_strcmp(savep->name, savepoint_name)) { /* Found */ break; } savep = UT_LIST_GET_NEXT(trx_savepoints, savep); } if (savep) { /* There is a savepoint with the same name: free that */ UT_LIST_REMOVE(trx_savepoints, trx->trx_savepoints, savep); mem_free(savep->name); mem_free(savep); } /* Create a new savepoint and add it as the last in the list */ savep = mem_alloc(sizeof(trx_named_savept_t)); savep->name = mem_strdup(savepoint_name); savep->savept = trx_savept_take(trx); savep->mysql_binlog_cache_pos = binlog_cache_pos; UT_LIST_ADD_LAST(trx_savepoints, trx->trx_savepoints, savep); return(DB_SUCCESS); }
/******************************************************************//** Adds a string literal to a symbol table. @return symbol table node */ UNIV_INTERN sym_node_t* sym_tab_add_str_lit( /*================*/ sym_tab_t* sym_tab, /*!< in: symbol table */ byte* str, /*!< in: string with no quotes around it */ ulint len) /*!< in: string length */ { sym_node_t* node; byte* data; node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t)); node->common.type = QUE_NODE_SYMBOL; node->resolved = TRUE; node->token_type = SYM_LIT; node->indirection = NULL; dtype_set(dfield_get_type(&node->common.val), DATA_VARCHAR, DATA_ENGLISH, 0); if (len) { data = mem_heap_alloc(sym_tab->heap, len); ut_memcpy(data, str, len); } else { data = NULL; } dfield_set_data(&(node->common.val), data, len); node->common.val_buf_size = 0; node->prefetch_buf = NULL; node->cursor_def = NULL; UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node); node->sym_table = sym_tab; return(node); }
/******************************************************************//** Adds an integer literal to a symbol table. @return symbol table node */ UNIV_INTERN sym_node_t* sym_tab_add_int_lit( /*================*/ sym_tab_t* sym_tab, /*!< in: symbol table */ ulint val) /*!< in: integer value */ { sym_node_t* node; byte* data; node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t)); node->common.type = QUE_NODE_SYMBOL; node->resolved = TRUE; node->token_type = SYM_LIT; node->indirection = NULL; dtype_set(dfield_get_type(&node->common.val), DATA_INT, 0, 4); data = mem_heap_alloc(sym_tab->heap, 4); mach_write_to_4(data, val); dfield_set_data(&(node->common.val), data, 4); node->common.val_buf_size = 0; node->prefetch_buf = NULL; node->cursor_def = NULL; UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node); node->sym_table = sym_tab; return(node); }
/****************************************************************//** Sends a signal to a trx object. */ UNIV_INTERN void trx_sig_send( /*=========*/ trx_t* trx, /*!< in: trx handle */ ulint type, /*!< in: signal type */ ulint sender, /*!< in: TRX_SIG_SELF or TRX_SIG_OTHER_SESS */ que_thr_t* receiver_thr, /*!< in: query thread which wants the reply, or NULL; if type is TRX_SIG_END_WAIT, this must be NULL */ trx_savept_t* savept, /*!< in: possible rollback savepoint, or NULL */ que_thr_t** next_thr) /*!< in/out: next query thread to run; if the value which is passed in is a pointer to a NULL pointer, then the calling function can start running a new query thread; if the parameter is NULL, it is ignored */ { trx_sig_t* sig; trx_t* receiver_trx; ut_ad(trx); ut_ad(mutex_own(&kernel_mutex)); if (!trx_sig_is_compatible(trx, type, sender)) { /* The signal is not compatible with the other signals in the queue: die */ ut_error; } /* Queue the signal object */ if (UT_LIST_GET_LEN(trx->signals) == 0) { /* The signal list is empty: the 'sig' slot must be unused (we improve performance a bit by avoiding mem_alloc) */ sig = &(trx->sig); } else { /* It might be that the 'sig' slot is unused also in this case, but we choose the easy way of using mem_alloc */ sig = mem_alloc(sizeof(trx_sig_t)); } UT_LIST_ADD_LAST(signals, trx->signals, sig); sig->type = type; sig->sender = sender; sig->receiver = receiver_thr; if (savept) { sig->savept = *savept; } if (receiver_thr) { receiver_trx = thr_get_trx(receiver_thr); UT_LIST_ADD_LAST(reply_signals, receiver_trx->reply_signals, sig); } if (trx->sess->state == SESS_ERROR) { trx_sig_reply_wait_to_suspended(trx); } if ((sender != TRX_SIG_SELF) || (type == TRX_SIG_BREAK_EXECUTION)) { ut_error; } /* If there were no other signals ahead in the queue, try to start handling of the signal */ if (UT_LIST_GET_FIRST(trx->signals) == sig) { trx_sig_start_handle(trx, next_thr); } }
/*************************************************************************** Creates and initializes a rollback segment object. The values for the fields are read from the header. The object is inserted to the rseg list of the trx system object and a pointer is inserted in the rseg array in the trx system object. @return own: rollback segment object */ static trx_rseg_t* trx_rseg_mem_create( /*================*/ ulint id, /*!< in: rollback segment id */ ulint space, /*!< in: space where the segment placed */ ulint zip_size, /*!< in: compressed page size in bytes or 0 for uncompressed pages */ ulint page_no, /*!< in: page number of the segment header */ mtr_t* mtr) /*!< in: mtr */ { ulint len; trx_rseg_t* rseg; fil_addr_t node_addr; trx_rsegf_t* rseg_header; trx_ulogf_t* undo_log_hdr; ulint sum_of_undo_sizes; ut_ad(mutex_own(&kernel_mutex)); rseg = mem_zalloc(sizeof(trx_rseg_t)); rseg->id = id; rseg->space = space; rseg->zip_size = zip_size; rseg->page_no = page_no; mutex_create(rseg_mutex_key, &rseg->mutex, SYNC_RSEG); UT_LIST_ADD_LAST(rseg_list, trx_sys->rseg_list, rseg); trx_sys_set_nth_rseg(trx_sys, id, rseg); rseg_header = trx_rsegf_get_new(space, zip_size, page_no, mtr); rseg->max_size = mtr_read_ulint(rseg_header + TRX_RSEG_MAX_SIZE, MLOG_4BYTES, mtr); /* Initialize the undo log lists according to the rseg header */ sum_of_undo_sizes = trx_undo_lists_init(rseg); rseg->curr_size = mtr_read_ulint(rseg_header + TRX_RSEG_HISTORY_SIZE, MLOG_4BYTES, mtr) + 1 + sum_of_undo_sizes; len = flst_get_len(rseg_header + TRX_RSEG_HISTORY, mtr); if (len > 0) { trx_sys->rseg_history_len += len; node_addr = trx_purge_get_log_from_hist( flst_get_last(rseg_header + TRX_RSEG_HISTORY, mtr)); rseg->last_page_no = node_addr.page; rseg->last_offset = node_addr.boffset; undo_log_hdr = trx_undo_page_get(rseg->space, rseg->zip_size, node_addr.page, mtr) + node_addr.boffset; rseg->last_trx_no = mtr_read_dulint( undo_log_hdr + TRX_UNDO_TRX_NO, mtr); rseg->last_del_marks = mtr_read_ulint( undo_log_hdr + TRX_UNDO_DEL_MARKS, MLOG_2BYTES, mtr); } else { rseg->last_page_no = FIL_NULL; } return(rseg); }
read_view_t* read_view_oldest_copy_or_open_new( /*==============================*/ /* out, own: read view struct */ dulint cr_trx_id, /* in: trx_id of creating transaction, or (0, 0) used in purge*/ mem_heap_t* heap) /* in: memory heap from which allocated */ { read_view_t* old_view; read_view_t* view_copy; ibool needs_insert = TRUE; ulint insert_done = 0; ulint n; ulint i; ut_ad(mutex_own(&kernel_mutex)); old_view = UT_LIST_GET_LAST(trx_sys->view_list); if (old_view == NULL) { return(read_view_open_now(cr_trx_id, heap)); } n = old_view->n_trx_ids; if (ut_dulint_cmp(old_view->creator_trx_id, ut_dulint_create(0,0)) != 0) { n++; } else { needs_insert = FALSE; } view_copy = read_view_create_low(n, heap); /* Insert the id of the creator in the right place of the descending array of ids, if needs_insert is TRUE: */ i = 0; while (i < n) { if (needs_insert && (i >= old_view->n_trx_ids || ut_dulint_cmp(old_view->creator_trx_id, read_view_get_nth_trx_id(old_view, i)) > 0)) { read_view_set_nth_trx_id(view_copy, i, old_view->creator_trx_id); needs_insert = FALSE; insert_done = 1; } else { read_view_set_nth_trx_id(view_copy, i, read_view_get_nth_trx_id( old_view, i - insert_done)); } i++; } view_copy->creator_trx_id = cr_trx_id; view_copy->low_limit_no = old_view->low_limit_no; view_copy->low_limit_id = old_view->low_limit_id; if (n > 0) { /* The last active transaction has the smallest id: */ view_copy->up_limit_id = read_view_get_nth_trx_id( view_copy, n - 1); } else { view_copy->up_limit_id = old_view->up_limit_id; } UT_LIST_ADD_LAST(view_list, trx_sys->view_list, view_copy); return(view_copy); }
/******************************************************************//** Add a bound literal to a symbol table. @return symbol table node */ UNIV_INTERN sym_node_t* sym_tab_add_bound_lit( /*==================*/ sym_tab_t* sym_tab, /*!< in: symbol table */ const char* name, /*!< in: name of bound literal */ ulint* lit_type) /*!< out: type of literal (PARS_*_LIT) */ { sym_node_t* node; pars_bound_lit_t* blit; ulint len = 0; blit = pars_info_get_bound_lit(sym_tab->info, name); ut_a(blit); node = mem_heap_alloc(sym_tab->heap, sizeof(sym_node_t)); node->common.type = QUE_NODE_SYMBOL; node->resolved = TRUE; node->token_type = SYM_LIT; node->indirection = NULL; switch (blit->type) { case DATA_FIXBINARY: len = blit->length; *lit_type = PARS_FIXBINARY_LIT; break; case DATA_BLOB: *lit_type = PARS_BLOB_LIT; break; case DATA_VARCHAR: *lit_type = PARS_STR_LIT; break; case DATA_CHAR: ut_a(blit->length > 0); len = blit->length; *lit_type = PARS_STR_LIT; break; case DATA_INT: ut_a(blit->length > 0); ut_a(blit->length <= 8); len = blit->length; *lit_type = PARS_INT_LIT; break; default: ut_error; } dtype_set(dfield_get_type(&node->common.val), blit->type, blit->prtype, len); dfield_set_data(&(node->common.val), blit->address, blit->length); node->common.val_buf_size = 0; node->prefetch_buf = NULL; node->cursor_def = NULL; UT_LIST_ADD_LAST(sym_list, sym_tab->sym_list, node); node->sym_table = sym_tab; return(node); }
/***************************************************************//** Creates a memory heap block where data can be allocated. @return own: memory heap block, NULL if did not succeed (only possible for MEM_HEAP_BTR_SEARCH type heaps) */ UNIV_INTERN mem_block_t* mem_heap_create_block( /*==================*/ mem_heap_t* heap, /*!< in: memory heap or NULL if first block should be created */ ulint n, /*!< in: number of bytes needed for user data */ ulint type, /*!< in: type of heap: MEM_HEAP_DYNAMIC or MEM_HEAP_BUFFER */ const char* file_name,/*!< in: file name where created */ ulint line) /*!< in: line where created */ { #ifndef UNIV_HOTBACKUP buf_block_t* buf_block = NULL; #endif /* !UNIV_HOTBACKUP */ mem_block_t* block; ulint len; ut_ad((type == MEM_HEAP_DYNAMIC) || (type == MEM_HEAP_BUFFER) || (type == MEM_HEAP_BUFFER + MEM_HEAP_BTR_SEARCH)); if (heap && heap->magic_n != MEM_BLOCK_MAGIC_N) { mem_analyze_corruption(heap); } /* In dynamic allocation, calculate the size: block header + data. */ len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n); #ifndef UNIV_HOTBACKUP if (type == MEM_HEAP_DYNAMIC || len < UNIV_PAGE_SIZE / 2) { ut_ad(type == MEM_HEAP_DYNAMIC || n <= MEM_MAX_ALLOC_IN_BUF); block = mem_area_alloc(&len, mem_comm_pool); } else { len = UNIV_PAGE_SIZE; if ((type & MEM_HEAP_BTR_SEARCH) && heap) { /* We cannot allocate the block from the buffer pool, but must get the free block from the heap header free block field */ buf_block = heap->free_block; heap->free_block = NULL; if (UNIV_UNLIKELY(!buf_block)) { return(NULL); } } else { buf_block = buf_block_alloc(NULL, 0); } block = (mem_block_t*) buf_block->frame; } ut_ad(block); block->buf_block = buf_block; block->free_block = NULL; #else /* !UNIV_HOTBACKUP */ len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n); block = ut_malloc(len); ut_ad(block); #endif /* !UNIV_HOTBACKUP */ block->magic_n = MEM_BLOCK_MAGIC_N; ut_strlcpy_rev(block->file_name, file_name, sizeof(block->file_name)); block->line = line; #ifdef MEM_PERIODIC_CHECK mem_pool_mutex_enter(); if (!mem_block_list_inited) { mem_block_list_inited = TRUE; UT_LIST_INIT(mem_block_list); } UT_LIST_ADD_LAST(mem_block_list, mem_block_list, block); mem_pool_mutex_exit(); #endif mem_block_set_len(block, len); mem_block_set_type(block, type); mem_block_set_free(block, MEM_BLOCK_HEADER_SIZE); mem_block_set_start(block, MEM_BLOCK_HEADER_SIZE); if (UNIV_UNLIKELY(heap == NULL)) { /* This is the first block of the heap. The field total_size should be initialized here */ block->total_size = len; } else { /* Not the first allocation for the heap. This block's total_length field should be set to undefined. */ ut_d(block->total_size = ULINT_UNDEFINED); UNIV_MEM_INVALID(&block->total_size, sizeof block->total_size); heap->total_size += len; } ut_ad((ulint)MEM_BLOCK_HEADER_SIZE < len); return(block); }
mem_block_t* mem_heap_create_block( /*==================*/ /* out, own: memory heap block, NULL if did not succeed */ mem_heap_t* heap, /* in: memory heap or NULL if first block should be created */ ulint n, /* in: number of bytes needed for user data, or if init_block is not NULL, its size in bytes */ void* init_block, /* in: init block in fast create, type must be MEM_HEAP_DYNAMIC */ ulint type, /* in: type of heap: MEM_HEAP_DYNAMIC or MEM_HEAP_BUFFER */ const char* file_name,/* in: file name where created */ ulint line) /* in: line where created */ { mem_block_t* block; ulint len; ut_ad((type == MEM_HEAP_DYNAMIC) || (type == MEM_HEAP_BUFFER) || (type == MEM_HEAP_BUFFER + MEM_HEAP_BTR_SEARCH)); if (heap && heap->magic_n != MEM_BLOCK_MAGIC_N) { mem_analyze_corruption((byte*)heap); } /* In dynamic allocation, calculate the size: block header + data. */ if (init_block != NULL) { ut_ad(type == MEM_HEAP_DYNAMIC); ut_ad(n > MEM_BLOCK_START_SIZE + MEM_BLOCK_HEADER_SIZE); len = n; block = init_block; } else if (type == MEM_HEAP_DYNAMIC) { len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n); block = mem_area_alloc(len, mem_comm_pool); } else { ut_ad(n <= MEM_MAX_ALLOC_IN_BUF); len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n); if (len < UNIV_PAGE_SIZE / 2) { block = mem_area_alloc(len, mem_comm_pool); } else { len = UNIV_PAGE_SIZE; if ((type & MEM_HEAP_BTR_SEARCH) && heap) { /* We cannot allocate the block from the buffer pool, but must get the free block from the heap header free block field */ block = (mem_block_t*)heap->free_block; heap->free_block = NULL; } else { block = (mem_block_t*)buf_frame_alloc(); } } } if (block == NULL) { return(NULL); } block->magic_n = MEM_BLOCK_MAGIC_N; ut_strlcpy_rev(block->file_name, file_name, sizeof(block->file_name)); block->line = line; #ifdef MEM_PERIODIC_CHECK mem_pool_mutex_enter(); if (!mem_block_list_inited) { mem_block_list_inited = TRUE; UT_LIST_INIT(mem_block_list); } UT_LIST_ADD_LAST(mem_block_list, mem_block_list, block); mem_pool_mutex_exit(); #endif mem_block_set_len(block, len); mem_block_set_type(block, type); mem_block_set_free(block, MEM_BLOCK_HEADER_SIZE); mem_block_set_start(block, MEM_BLOCK_HEADER_SIZE); block->free_block = NULL; block->init_block = (init_block != NULL); ut_ad((ulint)MEM_BLOCK_HEADER_SIZE < len); return(block); }