예제 #1
0
/*计算写入block需要的buffer的长度,进行size对齐*/
int __wt_block_write_size(WT_SESSION_IMPL *session, WT_BLOCK *block, size_t *sizep)
{
	WT_UNUSED(session);

	*sizep = (size_t)WT_ALIGN(*sizep + WT_BLOCK_HEADER_BYTE_SIZE, block->allocsize);

	return (*sizep > UINT32_MAX - 1024 ? EINVAL : 0);
}
예제 #2
0
파일: log_auto.c 프로젝트: 3rf/mongo
int
__wt_logrec_alloc(WT_SESSION_IMPL *session, size_t size, WT_ITEM **logrecp)
{
	WT_ITEM *logrec;

	WT_RET(__wt_scr_alloc(session, WT_ALIGN(size + 1, LOG_ALIGN), &logrec));
	WT_CLEAR(*(WT_LOG_RECORD *)logrec->data);
	logrec->size = offsetof(WT_LOG_RECORD, record);

	*logrecp = logrec;
	return (0);
}
예제 #3
0
/*
 * __wt_block_write_size --
 *	Return the buffer size required to write a block.
 */
int
__wt_block_write_size(WT_SESSION_IMPL *session, WT_BLOCK *block, size_t *sizep)
{
	WT_UNUSED(session);

	/*
	 * We write the page size, in bytes, into the block's header as a 4B
	 * unsigned value, and it's possible for the engine to accept an item
	 * we can't write.  For example, a huge key/value where the allocation
	 * size has been set to something large will overflow 4B when it tries
	 * to align the write.  We could make this work (for example, writing
	 * the page size in units of allocation size or something else), but
	 * it's not worth the effort, writing 4GB objects into a btree makes
	 * no sense.  Limit the writes to (4GB - 1KB), it gives us potential
	 * mode bits, and I'm not interested in debugging corner cases anyway.
	 */
	*sizep = (size_t)
	    WT_ALIGN(*sizep + WT_BLOCK_HEADER_BYTE_SIZE, block->allocsize);
	return (*sizep > UINT32_MAX - 1024 ? EINVAL : 0);
}
예제 #4
0
/*
 * __wt_block_write_off --
 *	Write a buffer into a block, returning the block's addr/size and
 * checksum.
 */
int
__wt_block_write_off(WT_SESSION_IMPL *session, WT_BLOCK *block,
    WT_ITEM *buf, off_t *offsetp, uint32_t *sizep, uint32_t *cksump,
    int data_cksum, int locked)
{
	WT_BLOCK_HEADER *blk;
	WT_DECL_RET;
	WT_FH *fh;
	off_t offset;
	uint32_t align_size;

	blk = WT_BLOCK_HEADER_REF(buf->mem);
	fh = block->fh;

	/* Buffers should be aligned for writing. */
	if (!F_ISSET(buf, WT_ITEM_ALIGNED)) {
		WT_ASSERT(session, F_ISSET(buf, WT_ITEM_ALIGNED));
		WT_RET_MSG(session, EINVAL,
		    "direct I/O check: write buffer incorrectly allocated");
	}

	/*
	 * Align the size to an allocation unit.
	 *
	 * The buffer must be big enough for us to zero to the next allocsize
	 * boundary, this is one of the reasons the btree layer must find out
	 * from the block-manager layer the maximum size of the eventual write.
	 */
	align_size = (uint32_t)WT_ALIGN(buf->size, block->allocsize);
	if (align_size > buf->memsize) {
		WT_ASSERT(session, align_size <= buf->memsize);
		WT_RET_MSG(session, EINVAL,
		    "buffer size check: write buffer incorrectly allocated");
	}

	/* Zero out any unused bytes at the end of the buffer. */
	memset((uint8_t *)buf->mem + buf->size, 0, align_size - buf->size);

	/*
	 * Set the disk size so we don't have to incrementally read blocks
	 * during salvage.
	 */
	blk->disk_size = align_size;

	/*
	 * Update the block's checksum: if our caller specifies, checksum the
	 * complete data, otherwise checksum the leading WT_BLOCK_COMPRESS_SKIP
	 * bytes.  The assumption is applications with good compression support
	 * turn off checksums and assume corrupted blocks won't decompress
	 * correctly.  However, if compression failed to shrink the block, the
	 * block wasn't compressed, in which case our caller will tell us to
	 * checksum the data to detect corruption.   If compression succeeded,
	 * we still need to checksum the first WT_BLOCK_COMPRESS_SKIP bytes
	 * because they're not compressed, both to give salvage a quick test
	 * of whether a block is useful and to give us a test so we don't lose
	 * the first WT_BLOCK_COMPRESS_SKIP bytes without noticing.
	 */
	blk->flags = 0;
	if (data_cksum)
		F_SET(blk, WT_BLOCK_DATA_CKSUM);
	blk->cksum = 0;
	blk->cksum = __wt_cksum(
	    buf->mem, data_cksum ? align_size : WT_BLOCK_COMPRESS_SKIP);

	if (!locked)
		__wt_spin_lock(session, &block->live_lock);
	ret = __wt_block_alloc(session, block, &offset, (off_t)align_size);
	if (!locked)
		__wt_spin_unlock(session, &block->live_lock);
	WT_RET(ret);

#if defined(HAVE_POSIX_FALLOCATE) || defined(HAVE_FTRUNCATE)
	/*
	 * Extend the file in chunks.  We aren't holding a lock and we'd prefer
	 * to limit the number of threads extending the file at the same time,
	 * so choose the one thread that's crossing the extended boundary.  We
	 * don't extend newly created files, and it's theoretically possible we
	 * might wait so long our extension of the file is passed by another
	 * thread writing single blocks, that's why there's a check in case the
	 * extended file size becomes too small: if the file size catches up,
	 * every thread will try to extend it.
	 */
	if (fh->extend_len != 0 &&
	    (fh->extend_size <= fh->size ||
	    (offset + fh->extend_len <= fh->extend_size &&
	    offset + fh->extend_len + align_size >= fh->extend_size))) {
		fh->extend_size = offset + fh->extend_len * 2;
#if defined(HAVE_POSIX_FALLOCATE)
		if ((ret =
		    posix_fallocate(fh->fd, offset, fh->extend_len * 2)) != 0)
			WT_RET_MSG(
			    session, ret, "%s: posix_fallocate", fh->name);
#elif defined(HAVE_FTRUNCATE)
		if ((ret = ftruncate(fh->fd, fh->extend_size)) != 0)
			WT_RET_MSG(session, ret, "%s: ftruncate", fh->name);
#endif
	}
#endif
	if ((ret =
	    __wt_write(session, fh, offset, align_size, buf->mem)) != 0) {
		if (!locked)
			__wt_spin_lock(session, &block->live_lock);
		WT_TRET(
		    __wt_block_off_free(session, block, offset, align_size));
		if (!locked)
			__wt_spin_unlock(session, &block->live_lock);
		WT_RET(ret);
	}

#ifdef HAVE_SYNC_FILE_RANGE
	/*
	 * Optionally schedule writes for dirty pages in the system buffer
	 * cache.
	 */
	if (block->os_cache_dirty_max != 0 &&
	    (block->os_cache_dirty += align_size) > block->os_cache_dirty_max) {
		block->os_cache_dirty = 0;
		if ((ret = sync_file_range(fh->fd,
		    (off64_t)0, (off64_t)0, SYNC_FILE_RANGE_WRITE)) != 0)
			WT_RET_MSG(
			    session, ret, "%s: sync_file_range", block->name);
	}
#endif
#ifdef HAVE_POSIX_FADVISE
	/* Optionally discard blocks from the system buffer cache. */
	if (block->os_cache_max != 0 &&
	    (block->os_cache += align_size) > block->os_cache_max) {
		block->os_cache = 0;
		if ((ret = posix_fadvise(fh->fd,
		    (off_t)0, (off_t)0, POSIX_FADV_DONTNEED)) != 0)
			WT_RET_MSG(
			    session, ret, "%s: posix_fadvise", block->name);
	}
#endif
	WT_CSTAT_INCR(session, block_write);
	WT_CSTAT_INCRV(session, block_byte_write, align_size);

	WT_VERBOSE_RET(session, write,
	    "off %" PRIuMAX ", size %" PRIu32 ", cksum %" PRIu32,
	    (uintmax_t)offset, align_size, blk->cksum);

	*offsetp = offset;
	*sizep = align_size;
	*cksump = blk->cksum;

	return (ret);
}
예제 #5
0
/*
 * __wt_block_write_off --
 *	Write a buffer into a block, returning the block's offset, size and
 * checksum.
 */
int
__wt_block_write_off(WT_SESSION_IMPL *session, WT_BLOCK *block,
    WT_ITEM *buf, wt_off_t *offsetp, uint32_t *sizep, uint32_t *cksump,
    int data_cksum, int caller_locked)
{
	WT_BLOCK_HEADER *blk;
	WT_DECL_RET;
	WT_FH *fh;
	size_t align_size;
	wt_off_t offset;
	int local_locked;

	blk = WT_BLOCK_HEADER_REF(buf->mem);
	fh = block->fh;
	local_locked = 0;

	/* Buffers should be aligned for writing. */
	if (!F_ISSET(buf, WT_ITEM_ALIGNED)) {
		WT_ASSERT(session, F_ISSET(buf, WT_ITEM_ALIGNED));
		WT_RET_MSG(session, EINVAL,
		    "direct I/O check: write buffer incorrectly allocated");
	}

	/*
	 * Align the size to an allocation unit.
	 *
	 * The buffer must be big enough for us to zero to the next allocsize
	 * boundary, this is one of the reasons the btree layer must find out
	 * from the block-manager layer the maximum size of the eventual write.
	 */
	align_size = WT_ALIGN(buf->size, block->allocsize);
	if (align_size > buf->memsize) {
		WT_ASSERT(session, align_size <= buf->memsize);
		WT_RET_MSG(session, EINVAL,
		    "buffer size check: write buffer incorrectly allocated");
	}
	if (align_size > UINT32_MAX) {
		WT_ASSERT(session, align_size <= UINT32_MAX);
		WT_RET_MSG(session, EINVAL,
		    "buffer size check: write buffer too large to write");
	}

	/* Zero out any unused bytes at the end of the buffer. */
	memset((uint8_t *)buf->mem + buf->size, 0, align_size - buf->size);

	/*
	 * Set the disk size so we don't have to incrementally read blocks
	 * during salvage.
	 */
	blk->disk_size = WT_STORE_SIZE(align_size);

	/*
	 * Update the block's checksum: if our caller specifies, checksum the
	 * complete data, otherwise checksum the leading WT_BLOCK_COMPRESS_SKIP
	 * bytes.  The assumption is applications with good compression support
	 * turn off checksums and assume corrupted blocks won't decompress
	 * correctly.  However, if compression failed to shrink the block, the
	 * block wasn't compressed, in which case our caller will tell us to
	 * checksum the data to detect corruption.   If compression succeeded,
	 * we still need to checksum the first WT_BLOCK_COMPRESS_SKIP bytes
	 * because they're not compressed, both to give salvage a quick test
	 * of whether a block is useful and to give us a test so we don't lose
	 * the first WT_BLOCK_COMPRESS_SKIP bytes without noticing.
	 */
	blk->flags = 0;
	if (data_cksum)
		F_SET(blk, WT_BLOCK_DATA_CKSUM);
	blk->cksum = 0;
	blk->cksum = __wt_cksum(
	    buf->mem, data_cksum ? align_size : WT_BLOCK_COMPRESS_SKIP);

	if (!caller_locked) {
		WT_RET(__wt_block_ext_prealloc(session, 5));
		__wt_spin_lock(session, &block->live_lock);
		local_locked = 1;
	}
	ret = __wt_block_alloc(session, block, &offset, (wt_off_t)align_size);

	/*
	 * Extend the file in chunks.  We want to limit the number of threads
	 * extending the file at the same time, so choose the one thread that's
	 * crossing the extended boundary.  We don't extend newly created files,
	 * and it's theoretically possible we might wait so long our extension
	 * of the file is passed by another thread writing single blocks, that's
	 * why there's a check in case the extended file size becomes too small:
	 * if the file size catches up, every thread tries to extend it.
	 *
	 * File extension may require locking: some variants of the system call
	 * used to extend the file initialize the extended space. If a writing
	 * thread races with the extending thread, the extending thread might
	 * overwrite already written data, and that would be very, very bad.
	 *
	 * Some variants of the system call to extend the file fail at run-time
	 * based on the filesystem type, fall back to ftruncate in that case,
	 * and remember that ftruncate requires locking.
	 */
	if (ret == 0 &&
	    fh->extend_len != 0 &&
	    (fh->extend_size <= fh->size ||
	    (offset + fh->extend_len <= fh->extend_size &&
	    offset +
	    fh->extend_len + (wt_off_t)align_size >= fh->extend_size))) {
		fh->extend_size = offset + fh->extend_len * 2;
		if (fh->fallocate_available != WT_FALLOCATE_NOT_AVAILABLE) {
			/*
			 * Release any locally acquired lock if it's not needed
			 * to extend the file, extending the file might require
			 * updating file metadata, which can be slow. (It may be
			 * a bad idea to configure for file extension on systems
			 * that require locking over the extend call.)
			 */
			if (!fh->fallocate_requires_locking && local_locked) {
				__wt_spin_unlock(session, &block->live_lock);
				local_locked = 0;
			}

			/* Extend the file. */
			if ((ret = __wt_fallocate(session,
			    fh, offset, fh->extend_len * 2)) == ENOTSUP) {
				ret = 0;
				goto extend_truncate;
			}
		} else {
extend_truncate:	/*
			 * We may have a caller lock or a locally acquired lock,
			 * but we need a lock to call ftruncate.
			 */
			if (!caller_locked && local_locked == 0) {
				__wt_spin_lock(session, &block->live_lock);
				local_locked = 1;
			}
			/*
			 * The truncate might fail if there's a file mapping
			 * (if there's an open checkpoint on the file), that's
			 * OK.
			 */
			if ((ret = __wt_ftruncate(
			    session, fh, offset + fh->extend_len * 2)) == EBUSY)
				ret = 0;
		}
	}
	/* Release any locally acquired lock. */
	if (local_locked) {
		__wt_spin_unlock(session, &block->live_lock);
		local_locked = 0;
	}
	WT_RET(ret);

	/* Write the block. */
	if ((ret =
	    __wt_write(session, fh, offset, align_size, buf->mem)) != 0) {
		if (!caller_locked)
			__wt_spin_lock(session, &block->live_lock);
		WT_TRET(__wt_block_off_free(
		    session, block, offset, (wt_off_t)align_size));
		if (!caller_locked)
			__wt_spin_unlock(session, &block->live_lock);
		WT_RET(ret);
	}

#ifdef HAVE_SYNC_FILE_RANGE
	/*
	 * Optionally schedule writes for dirty pages in the system buffer
	 * cache, but only if the current session can wait.
	 */
	if (block->os_cache_dirty_max != 0 &&
	    (block->os_cache_dirty += align_size) > block->os_cache_dirty_max &&
	    __wt_session_can_wait(session)) {
		block->os_cache_dirty = 0;
		WT_RET(__wt_fsync_async(session, fh));
	}
#endif
#ifdef HAVE_POSIX_FADVISE
	/* Optionally discard blocks from the system buffer cache. */
	if (block->os_cache_max != 0 &&
	    (block->os_cache += align_size) > block->os_cache_max) {
		block->os_cache = 0;
		if ((ret = posix_fadvise(fh->fd,
		    (wt_off_t)0, (wt_off_t)0, POSIX_FADV_DONTNEED)) != 0)
			WT_RET_MSG(
			    session, ret, "%s: posix_fadvise", block->name);
	}
#endif
	WT_STAT_FAST_CONN_INCR(session, block_write);
	WT_STAT_FAST_CONN_INCRV(session, block_byte_write, align_size);

	WT_RET(__wt_verbose(session, WT_VERB_WRITE,
	    "off %" PRIuMAX ", size %" PRIuMAX ", cksum %" PRIu32,
	    (uintmax_t)offset, (uintmax_t)align_size, blk->cksum));

	*offsetp = offset;
	*sizep = WT_STORE_SIZE(align_size);
	*cksump = blk->cksum;

	return (ret);
}
예제 #6
0
/*
 * __wt_block_write_off --
 *	Write a buffer into a block, returning the block's offset, size and
 * checksum.
 */
int
__wt_block_write_off(WT_SESSION_IMPL *session, WT_BLOCK *block,
    WT_ITEM *buf, wt_off_t *offsetp, uint32_t *sizep, uint32_t *cksump,
    bool data_cksum, bool caller_locked)
{
	WT_BLOCK_HEADER *blk;
	WT_DECL_RET;
	WT_FH *fh;
	size_t align_size;
	wt_off_t offset;
	uint32_t cksum;
	bool local_locked;

	fh = block->fh;

	/*
	 * Clear the block header to ensure all of it is initialized, even the
	 * unused fields.
	 */
	blk = WT_BLOCK_HEADER_REF(buf->mem);
	memset(blk, 0, sizeof(*blk));

	/*
	 * Swap the page-header as needed; this doesn't belong here, but it's
	 * the best place to catch all callers.
	 */
	__wt_page_header_byteswap(buf->mem);

	/* Buffers should be aligned for writing. */
	if (!F_ISSET(buf, WT_ITEM_ALIGNED)) {
		WT_ASSERT(session, F_ISSET(buf, WT_ITEM_ALIGNED));
		WT_RET_MSG(session, EINVAL,
		    "direct I/O check: write buffer incorrectly allocated");
	}

	/*
	 * Align the size to an allocation unit.
	 *
	 * The buffer must be big enough for us to zero to the next allocsize
	 * boundary, this is one of the reasons the btree layer must find out
	 * from the block-manager layer the maximum size of the eventual write.
	 */
	align_size = WT_ALIGN(buf->size, block->allocsize);
	if (align_size > buf->memsize) {
		WT_ASSERT(session, align_size <= buf->memsize);
		WT_RET_MSG(session, EINVAL,
		    "buffer size check: write buffer incorrectly allocated");
	}
	if (align_size > UINT32_MAX) {
		WT_ASSERT(session, align_size <= UINT32_MAX);
		WT_RET_MSG(session, EINVAL,
		    "buffer size check: write buffer too large to write");
	}

	/* Zero out any unused bytes at the end of the buffer. */
	memset((uint8_t *)buf->mem + buf->size, 0, align_size - buf->size);

	/*
	 * Set the disk size so we don't have to incrementally read blocks
	 * during salvage.
	 */
	blk->disk_size = WT_STORE_SIZE(align_size);

	/*
	 * Update the block's checksum: if our caller specifies, checksum the
	 * complete data, otherwise checksum the leading WT_BLOCK_COMPRESS_SKIP
	 * bytes.  The assumption is applications with good compression support
	 * turn off checksums and assume corrupted blocks won't decompress
	 * correctly.  However, if compression failed to shrink the block, the
	 * block wasn't compressed, in which case our caller will tell us to
	 * checksum the data to detect corruption. If compression succeeded,
	 * we still need to checksum the first WT_BLOCK_COMPRESS_SKIP bytes
	 * because they're not compressed, both to give salvage a quick test
	 * of whether a block is useful and to give us a test so we don't lose
	 * the first WT_BLOCK_COMPRESS_SKIP bytes without noticing.
	 *
	 * Checksum a little-endian version of the header, and write everything
	 * in little-endian format. The checksum is (potentially) returned in a
	 * big-endian format, swap it into place in a separate step.
	 */
	blk->flags = 0;
	if (data_cksum)
		F_SET(blk, WT_BLOCK_DATA_CKSUM);
	blk->cksum = 0;
	__wt_block_header_byteswap(blk);
	blk->cksum = cksum = __wt_cksum(
	    buf->mem, data_cksum ? align_size : WT_BLOCK_COMPRESS_SKIP);
#ifdef WORDS_BIGENDIAN
	blk->cksum = __wt_bswap32(blk->cksum);
#endif

	/* Pre-allocate some number of extension structures. */
	WT_RET(__wt_block_ext_prealloc(session, 5));

	/*
	 * Acquire a lock, if we don't already hold one.
	 * Allocate space for the write, and optionally extend the file (note
	 * the block-extend function may release the lock).
	 * Release any locally acquired lock.
	 */
	local_locked = false;
	if (!caller_locked) {
		__wt_spin_lock(session, &block->live_lock);
		local_locked = true;
	}
	ret = __wt_block_alloc(session, block, &offset, (wt_off_t)align_size);
	if (ret == 0)
		ret = __wt_block_extend(
		    session, block, fh, offset, align_size, &local_locked);
	if (local_locked)
		__wt_spin_unlock(session, &block->live_lock);
	WT_RET(ret);

	/* Write the block. */
	if ((ret =
	    __wt_write(session, fh, offset, align_size, buf->mem)) != 0) {
		if (!caller_locked)
			__wt_spin_lock(session, &block->live_lock);
		WT_TRET(__wt_block_off_free(
		    session, block, offset, (wt_off_t)align_size));
		if (!caller_locked)
			__wt_spin_unlock(session, &block->live_lock);
		WT_RET(ret);
	}

#ifdef HAVE_SYNC_FILE_RANGE
	/*
	 * Optionally schedule writes for dirty pages in the system buffer
	 * cache, but only if the current session can wait.
	 */
	if (block->os_cache_dirty_max != 0 &&
	    (block->os_cache_dirty += align_size) > block->os_cache_dirty_max &&
	    __wt_session_can_wait(session)) {
		block->os_cache_dirty = 0;
		WT_RET(__wt_fsync_async(session, fh));
	}
#endif
#ifdef HAVE_POSIX_FADVISE
	/* Optionally discard blocks from the system buffer cache. */
	if (block->os_cache_max != 0 &&
	    (block->os_cache += align_size) > block->os_cache_max) {
		block->os_cache = 0;
		if ((ret = posix_fadvise(fh->fd,
		    (wt_off_t)0, (wt_off_t)0, POSIX_FADV_DONTNEED)) != 0)
			WT_RET_MSG(
			    session, ret, "%s: posix_fadvise", block->name);
	}
#endif
	WT_STAT_FAST_CONN_INCR(session, block_write);
	WT_STAT_FAST_CONN_INCRV(session, block_byte_write, align_size);

	WT_RET(__wt_verbose(session, WT_VERB_WRITE,
	    "off %" PRIuMAX ", size %" PRIuMAX ", cksum %" PRIu32,
	    (uintmax_t)offset, (uintmax_t)align_size, cksum));

	*offsetp = offset;
	*sizep = WT_STORE_SIZE(align_size);
	*cksump = cksum;

	return (0);
}
예제 #7
0
/*
 * __wt_realloc_aligned --
 *	ANSI realloc function that aligns to buffer boundaries, configured with
 *	the "buffer_alignment" key to wiredtiger_open.
 */
int
__wt_realloc_aligned(WT_SESSION_IMPL *session,
    size_t *bytes_allocated_ret, size_t bytes_to_allocate, void *retp)
{
#if defined(HAVE_POSIX_MEMALIGN)
	WT_DECL_RET;

	/*
	 * !!!
	 * This function MUST handle a NULL WT_SESSION_IMPL handle.
	 */
	if (session != NULL && S2C(session)->buffer_alignment > 0) {
		void *p, *newp;
		size_t bytes_allocated;

		/*
		 * Sometimes we're allocating memory and we don't care about the
		 * final length -- bytes_allocated_ret may be NULL.
		 */
		p = *(void **)retp;
		bytes_allocated =
		    (bytes_allocated_ret == NULL) ? 0 : *bytes_allocated_ret;
		WT_ASSERT(session,
		    (p == NULL && bytes_allocated == 0) ||
		    (p != NULL &&
		    (bytes_allocated_ret == NULL || bytes_allocated != 0)));
		WT_ASSERT(session, bytes_to_allocate != 0);
		WT_ASSERT(session, bytes_allocated < bytes_to_allocate);

		/*
		 * We are going to allocate an aligned buffer.  When we do this
		 * repeatedly, the allocator is expected to start on a boundary
		 * each time, account for that additional space by never asking
		 * for less than a full alignment size.  The primary use case
		 * for aligned buffers is Linux direct I/O, which requires that
		 * the size be a multiple of the alignment anyway.
		 */
		bytes_to_allocate =
		    WT_ALIGN(bytes_to_allocate, S2C(session)->buffer_alignment);

		WT_STAT_FAST_CONN_INCR(session, memory_allocation);

		if ((ret = posix_memalign(&newp,
		    S2C(session)->buffer_alignment,
		    bytes_to_allocate)) != 0)
			WT_RET_MSG(session, ret, "memory allocation");

		if (p != NULL)
			memcpy(newp, p, bytes_allocated);
		__wt_free(session, p);
		p = newp;

		/* Clear the allocated memory (see above). */
		memset((uint8_t *)p + bytes_allocated, 0,
		    bytes_to_allocate - bytes_allocated);

		/* Update caller's bytes allocated value. */
		if (bytes_allocated_ret != NULL)
			*bytes_allocated_ret = bytes_to_allocate;

		*(void **)retp = p;
		return (0);
	}
#endif
	/*
	 * If there is no posix_memalign function, or no alignment configured,
	 * fall back to realloc.
	 *
	 * Windows note: Visual C CRT memalign does not match Posix behavior
	 * and would also double each allocation so it is bad for memory use
	 */
	return (__wt_realloc(
	    session, bytes_allocated_ret, bytes_to_allocate, retp));
}
예제 #8
0
/*将buffer的数据写入到block对应的文件中,并计算checksum和size*/
int __wt_block_write_off(WT_SESSION_IMPL *session, WT_BLOCK *block, WT_ITEM *buf, wt_off_t *offsetp, 
						uint32_t *sizep, uint32_t *cksump, int data_cksum, int caller_locked)
{
	WT_BLOCK_HEADER *blk;
	WT_DECL_RET;
	WT_FH *fh;
	size_t align_size;
	wt_off_t offset;
	int local_locked;

	blk = WT_BLOCK_HEADER_REF(buf->mem);
	fh = block->fh;
	local_locked = 0;

	/*buf不是对齐模式,不能进行写,因为这个是和磁盘相关的写入,必须是对齐的*/
	if(!F_ISSET(buf, WT_ITEM_ALIGNED)){
		WT_ASSERT(session, F_ISSET(buf, WT_ITEM_ALIGNED));
		WT_RET_MSG(session, EINVAL, "direct I/O check: write buffer incorrectly allocated");
	}

	/*计算buf->size按block对齐,对齐后有可能会比现有的buf->memsize大,如果大的话,不能进行写,有可能会缓冲区溢出*/
	align_size = WT_ALIGN(buf->size, block->allocsize);
	if (align_size > buf->memsize) {
		WT_ASSERT(session, align_size <= buf->memsize);
		WT_RET_MSG(session, EINVAL, "buffer size check: write buffer incorrectly allocated");
	}
	/*超过4G*/
	if (align_size > UINT32_MAX) {
		WT_ASSERT(session, align_size <= UINT32_MAX);
		WT_RET_MSG(session, EINVAL, "buffer size check: write buffer too large to write");
	}

	/*将对其后pading的buffer位置进行清0*/
	memset((uint8_t*)buf->mem + buf->size, 0, align_size - buf->size);

	/*设置block header,计算存储的数据长度*/
	blk->disk_size = WT_STORE_SIZE(align_size);
	blk->flags = 0;
	if(data_cksum)
		F_SET(blk, WT_BLOCK_DATA_CKSUM);

	/*计算buf的cksum*/
	blk->cksum = __wt_cksum(buf->mem, data_cksum ? align_size : WT_BLOCK_COMPRESS_SKIP);

	if (!caller_locked) {
		WT_RET(__wt_block_ext_prealloc(session, 5));
		__wt_spin_lock(session, &block->live_lock);
		local_locked = 1;
	}

	ret = __wt_block_alloc(session, block, &offset, (wt_off_t)align_size);
	/*判断文件是否需要进行扩大,如果不扩大就有可能存不下写入的block数据*/
	if(ret == 0 && fh->extend_len != 0 && (fh->extend_size <= fh->size ||
		(offset + fh->extend_len <= fh->extend_size && offset + fh->extend_len + (wt_off_t)align_size >= fh->extend_size))){
			/*调整extend_size为原来的offset + extend_len的两倍*/
			fh->extend_size = offset + fh->extend_len * 2;
			if (fh->fallocate_available != WT_FALLOCATE_NOT_AVAILABLE) {
				/*释放block->live_lock的自旋锁,因为重设文件大小会时间比较长,需要先释放自旋锁,防止CPU空转*/
				if (!fh->fallocate_requires_locking && local_locked) {
					__wt_spin_unlock(session, &block->live_lock);
					local_locked = 0;
				}

				/*扩大文件的占用空间*/
				if ((ret = __wt_fallocate(session,fh, offset, fh->extend_len * 2)) == ENOTSUP) {
					ret = 0;
					goto extend_truncate;
				}
			}
			else{
extend_truncate:
				if (!caller_locked && local_locked == 0) {
					__wt_spin_lock(session, &block->live_lock);
					local_locked = 1;
				}
				/*直接调整文件大小,这个比__wt_fallocate更慢*/
				if ((ret = __wt_ftruncate(session, fh, offset + fh->extend_len * 2)) == EBUSY)
					ret = 0;
			}
	}

	if(local_locked){
		__wt_spin_unlock(session, &block->live_lock);
		local_locked = 0;
	}

	WT_RET(ret);
	/*进行block的数据写入*/
	ret =__wt_write(session, fh, offset, align_size, buf->mem);
	if (ret != 0) {
		if (!caller_locked)
			__wt_spin_lock(session, &block->live_lock);
		/*没写成功,将ext对应的数据返回给avail list*/
		WT_TRET(__wt_block_off_free(session, block, offset, (wt_off_t)align_size));
		if (!caller_locked)
			__wt_spin_unlock(session, &block->live_lock);

		WT_RET(ret);
	}

#ifdef HAVE_SYNC_FILE_RANGE
	/*需要进行fsync操作,脏页太多,进行一次异步刷盘*/
	if (block->os_cache_dirty_max != 0 && (block->os_cache_dirty += align_size) > block->os_cache_dirty_max && __wt_session_can_wait(session)) {
			block->os_cache_dirty = 0;
			WT_RET(__wt_fsync_async(session, fh));
	}
#endif

#ifdef HAVE_POSIX_FADVISE
	/*清理fh->fd文件对应的system page cache中的数据,这个过程可能会有IO操作,相当于同步的sync调用*/
	if (block->os_cache_max != 0 && (block->os_cache += align_size) > block->os_cache_max) {
		block->os_cache = 0;
		if ((ret = posix_fadvise(fh->fd, (wt_off_t)0, (wt_off_t)0, POSIX_FADV_DONTNEED)) != 0)
			WT_RET_MSG( session, ret, "%s: posix_fadvise", block->name);
	}
#endif

	WT_STAT_FAST_CONN_INCR(session, block_write);
	WT_STAT_FAST_CONN_INCRV(session, block_byte_write, align_size);

	WT_RET(__wt_verbose(session, WT_VERB_WRITE, "off %" PRIuMAX ", size %" PRIuMAX ", cksum %" PRIu32, 
							(uintmax_t)offset, (uintmax_t)align_size, blk->cksum));

	*offsetp = offset;
	*sizep = WT_STORE_SIZE(align_size);
	*cksump = blk->cksum;

	return ret;
}