예제 #1
0
void ParticleSorterMpi::run()
{

	int total_nr_images = MDin.numberOfObjects();
	features.resize(total_nr_images, NR_FEATURES);

	// Each node does part of the work
	long int my_first_image, my_last_image, my_nr_images;
	divide_equally(total_nr_images, node->size, node->rank, my_first_image, my_last_image);
	my_nr_images = my_last_image - my_first_image + 1;

	int barstep;
	if (verb > 0)
	{
		std::cout << "Calculating sorting features for all input particles..." << std::endl;
		init_progress_bar(my_nr_images);
		barstep = XMIPP_MAX(1, my_nr_images/ 60);
	}

	long int ipart = 0;
	FOR_ALL_OBJECTS_IN_METADATA_TABLE(MDin)
	{

		if (ipart >= my_first_image && ipart <= my_last_image)
		{
			if (verb > 0 && ipart % barstep == 0)
				progress_bar(ipart);

			calculateFeaturesOneParticle(ipart);

		}
		ipart++;
	}

	if (verb > 0)
		progress_bar(my_nr_images);

	// Combine results from all nodes
	MultidimArray<double> allnodes_features;
	allnodes_features.resize(features);
	MPI_Allreduce(MULTIDIM_ARRAY(features), MULTIDIM_ARRAY(allnodes_features), MULTIDIM_SIZE(features), MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
	features = allnodes_features;

	// Only the master writes out files
	if (verb > 0)
	{
		normaliseFeatures();

		writeFeatures();
	}

}
예제 #2
0
void ParticlePolisherMpi::polishParticlesAllMicrographs()
{

	if (!do_start_all_over && exists(fn_out + ".star"))
	{
		if (verb > 0)
			std::cout << std::endl << " + " << fn_out << ".star already exists: skipping polishing of the particles." << std::endl;
		return;
	}

	int total_nr_micrographs = exp_model.average_micrographs.size();

	// Each node does part of the work
	long int my_first_micrograph, my_last_micrograph, my_nr_micrographs;
	divide_equally(total_nr_micrographs, node->size, node->rank, my_first_micrograph, my_last_micrograph);
	my_nr_micrographs = my_last_micrograph - my_first_micrograph + 1;

	// Loop over all average micrographs
	int barstep;
	if (verb > 0)
	{
		std::cout << " + Write out polished particles for all micrographs ... " << std::endl;
		init_progress_bar(my_nr_micrographs);
		barstep = XMIPP_MAX(1, my_nr_micrographs/ 60);
	}

    for (long int i = my_first_micrograph; i <= my_last_micrograph; i++)
	{
    	if (verb > 0 && i % barstep == 0)
			progress_bar(i);

    	polishParticlesOneMicrograph(i);
	}

   	if (verb > 0)
   		progress_bar(my_nr_micrographs);

    if (node->isMaster())
    	writeStarFilePolishedParticles();

    MPI_Barrier(MPI_COMM_WORLD);

}
    void run()
    {
        // Get angles ==============================================================
        MetaData angles;
        angles.read(fnIn);
        size_t AngleNo = angles.size();
        if (AngleNo == 0 || !angles.containsLabel(MDL_ANGLE_ROT))
            REPORT_ERROR(ERR_MD_BADLABEL, "Input file doesn't contain angular information");

        double maxWeight = -99.e99;
        MultidimArray<double> weight;
        weight.initZeros(AngleNo);
        if (angles.containsLabel(MDL_WEIGHT))
        {
            // Find maximum weight
            int i=0;
            FOR_ALL_OBJECTS_IN_METADATA(angles)
            {
                double w;
                angles.getValue(MDL_WEIGHT,w,__iter.objId);
                DIRECT_A1D_ELEM(weight,i++)=w;
                maxWeight=XMIPP_MAX(w,maxWeight);
            }
        }
예제 #4
0
void MpiProgImageRotationalPCA::createMutexes(size_t Nimgs)
{
  fileMutex = new MpiFileMutex(node);
  threadMutex = new Mutex();
  taskDistributor = new MpiTaskDistributor(Nimgs, XMIPP_MAX(1,Nimgs/(5*node->size)), node);
}
예제 #5
0
	void read(int argc, char **argv)
	{

		parser.setCommandLine(argc, argv);

		int general_section = parser.addSection("General Options");
		fn_unt = parser.getOption("--u", "STAR file with the untilted xy-coordinates");
		fn_til = parser.getOption("--t", "STAR file with the untilted xy-coordinates");
		size = textToInteger(parser.getOption("--size", "Largest dimension of the micrograph (in pixels), e.g. 4096"));
		dim = textToInteger(parser.getOption("--dim", "Dimension of boxed particles (for EMAN .box files in pixels)", "200"));
		acc = textToFloat(parser.getOption("--acc", "Allowed accuracy (in pixels), e.g. half the particle diameter"));
		tilt = textToFloat(parser.getOption("--tilt", "Fix tilt angle (in degrees)", "99999."));
		rot = textToFloat(parser.getOption("--rot", "Fix direction of the tilt axis (in degrees), 0 = along y, 90 = along x", "99999."));
		do_opt = !parser.checkOption("--dont_opt", "Skip optimization of the transformation matrix");
		mind2 = ROUND(acc * acc);

		int angle_section = parser.addSection("Specified tilt axis and translational search ranges");
		tilt0 = textToFloat(parser.getOption("--tilt0", "Minimum tilt angle (in degrees)","0."));
		tiltF = textToFloat(parser.getOption("--tiltF", "Maximum tilt angle (in degrees)","99999."));
		if (tiltF == 99999.) tiltF = tilt0;
		tiltStep = textToFloat(parser.getOption("--tiltStep", "Tilt angle step size (in degrees)","1."));

		rot0 = textToFloat(parser.getOption("--rot0", "Minimum rot angle (in degrees)","0."));
		rotF = textToFloat(parser.getOption("--rotF", "Maximum rot angle (in degrees)","99999."));
		if (rotF == 99999.) rotF = rot0;
		rotStep = textToFloat(parser.getOption("--rotStep", "Rot angle step size (in degrees)","1."));

		x0 = textToInteger(parser.getOption("--x0", "Minimum X offset (pixels)","-99999"));
		xF = textToInteger(parser.getOption("--xF", "Maximum X offset (pixels)","99999"));
		xStep = textToInteger(parser.getOption("--xStep", "X offset step size (pixels)","-1"));
		y0 = textToInteger(parser.getOption("--y0", "Minimum Y offset (pixels)","-99999"));
		yF = textToInteger(parser.getOption("--yF", "Maximum Y offset (pixels)","99999"));
		yStep = textToInteger(parser.getOption("--yStep", "Y offset step size (pixels)","-1"));

       	// Check for errors in the command-line option
    	if (parser.checkForErrors())
    		REPORT_ERROR("Errors encountered on the command line, exiting...");

		// If tilt and rot were given: do not search those
		if (tilt != 99999.)
		{
			tilt0 = tiltF = tilt;
			tiltStep = 1.;
		}
		if (rot != 99999.)
		{
			rot0 = rotF = rot;
			rotStep = 1.;
		}

		// By default search the entire micrograph
		x0 = XMIPP_MAX(x0, -size);
		xF = XMIPP_MIN(xF, size);
		// By default use a xStep of one third the accuracy
		if (xStep < 0)
			xStep = acc / 3;

		// By default treat y search in the same way as the x-search
		if (y0 == -99999)
			y0 = x0;
		if (yF == 99999)
			yF = xF;
		if (yStep < 0)
			yStep = xStep;

		// Done reading, now fill p_unt and p_til
		MDunt.read(fn_unt);
		MDtil.read(fn_til);

		// Check for the correct labels
		if (!MDunt.containsLabel(EMDL_IMAGE_COORD_X) || !MDunt.containsLabel(EMDL_IMAGE_COORD_Y))
			REPORT_ERROR("ERROR: Untilted STAR file does not contain the rlnCoordinateX or Y labels");
		if (!MDtil.containsLabel(EMDL_IMAGE_COORD_X) || !MDtil.containsLabel(EMDL_IMAGE_COORD_Y))
			REPORT_ERROR("ERROR: Tilted STAR file does not contain the rlnCoordinateX or Y labels");

		double x, y;

		p_unt.clear();
		FOR_ALL_OBJECTS_IN_METADATA_TABLE(MDunt)
		{
			MDunt.getValue(EMDL_IMAGE_COORD_X, x);
			MDunt.getValue(EMDL_IMAGE_COORD_Y, y);
			p_unt.push_back((int)x);
			p_unt.push_back((int)y);
		}
		p_til.clear();
		FOR_ALL_OBJECTS_IN_METADATA_TABLE(MDtil)
		{
			MDtil.getValue(EMDL_IMAGE_COORD_X, x);
			MDtil.getValue(EMDL_IMAGE_COORD_Y, y);
			p_til.push_back((int)x);
			p_til.push_back((int)y);
		}

		// Initialize best transformation params
		best_x = best_y = 9999;
		best_rot = best_tilt = 9999.;

	}
예제 #6
0
	double optimiseTransformationMatrix(bool do_optimise_nr_pairs)
	{
		std::vector<int> best_pairs_t2u, best_map;
		double score, best_score, best_dist=9999.;
		if (do_optimise_nr_pairs)
			best_score = 0.;
		else
			best_score = -999999.;

		int nn = XMIPP_MAX(1., (rotF-rot0)/rotStep);
		nn *= XMIPP_MAX(1., (tiltF-tilt0)/tiltStep);
		nn *= XMIPP_MAX(1., (xF-x0)/xStep);
		nn *= XMIPP_MAX(1., (yF-y0)/yStep);
		int n = 0;
		init_progress_bar(nn);
		for (double rot = rot0; rot <= rotF; rot+= rotStep)
		{
			for (double tilt = tilt0; tilt <= tiltF; tilt+= tiltStep)
			{
				// Assume tilt-axis lies in-plane...
				double psi = -rot;
				// Rotate all points correspondingly
				Euler_angles2matrix(rot, tilt, psi, Pass);
				//std::cerr << " Pass= " << Pass << std::endl;
				// Zero-translations for now (these are added in the x-y loops below)
				MAT_ELEM(Pass, 0, 2) = MAT_ELEM(Pass, 1, 2) = 0.;
				mapOntoTilt();
				for (int x = x0; x <= xF; x += xStep)
				{
					for (int y = y0; y <= yF; y += yStep, n++)
					{
						if (do_optimise_nr_pairs)
							score = getNumberOfPairs(x, y);
						else
							score = -getAverageDistance(x, y); // negative because smaller distance is better!

                                                bool is_best = false;
                                                if (do_optimise_nr_pairs && score==best_score)
                                                {
                                                    double dist = getAverageDistance(x, y);
                                                    if (dist < best_dist)
                                                    {
                                                        best_dist = dist;
                                                        is_best = true;
                                                    }
                                                }
						if (score > best_score || is_best)
						{
							best_score = score;
							best_pairs_t2u = pairs_t2u;
							best_rot = rot;
							best_tilt = tilt;
							best_x = x;
							best_y = y;
						}
						if (n%1000==0) progress_bar(n);
					}
				}
			}
		}
		progress_bar(nn);
		// Update pairs with the best_pairs
		if (do_optimise_nr_pairs)
			pairs_t2u = best_pairs_t2u;

		// Update the Passing matrix and the mapping
		Euler_angles2matrix(best_rot, best_tilt, -best_rot, Pass);
		// Zero-translations for now (these are added in the x-y loops below)
		MAT_ELEM(Pass, 0, 2) = MAT_ELEM(Pass, 1, 2) = 0.;
		mapOntoTilt();
		return best_score;

	}
예제 #7
0
void ProgXrayImport::run()
{
    // Delete output stack if it exists
    fnOut = fnRoot + ".mrc";
    fnOut.deleteFile();

    /* Turn off error handling */
    H5Eset_auto(H5E_DEFAULT, NULL, NULL);

    if (dSource == MISTRAL)
        H5File.openFile(fnInput, H5F_ACC_RDONLY);


    // Reading bad pixels mask
    if ( !fnBPMask.empty() )
    {
        std::cerr << "Reading bad pixels mask from "+fnBPMask << "." << std::endl;
        bpMask.read(fnBPMask);
        if ( (cropSizeX + cropSizeY ) > 0 )
            bpMask().selfWindow(cropSizeY,cropSizeX,
                                (int)(YSIZE(bpMask())-cropSizeY-1),(int)(XSIZE(bpMask())-cropSizeX-1));
        STARTINGX(bpMask()) = STARTINGY(bpMask()) = 0;
    }


    // Setting the image projections list
    switch (dSource)
    {
    case MISTRAL:
        {
            inMD.read(fnInput);
            H5File.getDataset("NXtomo/data/rotation_angle", anglesArray, false);
            H5File.getDataset("NXtomo/instrument/sample/ExpTimes", expTimeArray, false);
            H5File.getDataset("NXtomo/instrument/sample/current", cBeamArray);

            /* In case there is no angles information we set them to to an increasing sequence
             * just to be able to continue importing data */
            if ( anglesArray.size() != inMD.size() )
            {
                reportWarning("Input file does not contains angle information. Default sequence used.");
                anglesArray.resizeNoCopy(inMD.size());
                anglesArray.enumerate();
            }

            // If expTime is empty or only one single value in nexus file then we fill with 1
            if (expTimeArray.size() < 2)
            {
                reportWarning("Input file does not contains tomogram exposition time information.");
                expTimeArray.initConstant(anglesArray.size(), 1.);
            }
            // If current is empty or only one single value in nexus file then we fill with 1
            if (cBeamArray.size() < 2)
            {
                reportWarning("Input file does not contains tomogram current beam information.");
                cBeamArray.initConstant(anglesArray.size(), 1.);
            }
            // Since Alba does not provide slit width, we set to ones
            slitWidthArray.initConstant(anglesArray.size(), 1.);
        }
        break;
    case BESSY:
        {
            size_t objId;

            for (size_t i = tIni; i <= tEnd; ++i)
            {
                objId = inMD.addObject();
                inMD.setValue(MDL_IMAGE, fnInput + formatString("/img%d.spe", i), objId);
            }
            break;
        }
    case GENERIC:
        {
            // Get Darkfield
            std::cerr << "Getting darkfield from "+fnInput << " ..." << std::endl;
            getDarkfield(fnInput, IavgDark);
            if (XSIZE(IavgDark())!=0)
                IavgDark.write(fnRoot+"_darkfield.xmp");


            std::vector<FileName> listDir;
            fnInput.getFiles(listDir);
            size_t objId;

            for (size_t i = 0; i < listDir.size(); ++i)
            {
                if (!listDir[i].hasImageExtension())
                    continue;
                objId = inMD.addObject();
                inMD.setValue(MDL_IMAGE, fnInput+"/"+listDir[i], objId);
            }
        }
        break;
    }

    inMD.findObjects(objIds);
    size_t nIm = inMD.size();

    // Create empty output stack file

    getImageInfo(inMD, imgInfo);


    /* Get the flatfield:: We get the FF after the image list because we need the image size to adapt the FF
     * in case they were already cropped.
     */
    if (!fnFlat.empty())
    {
        std::cout << "Getting flatfield from "+fnFlat << " ..." << std::endl;
        getFlatfield(fnFlat,IavgFlat);
        if ( XSIZE(IavgFlat()) != 0 )
        {
            FileName ffName = fnRoot+"_flatfield_avg.xmp";
            IavgFlat.write(ffName);
            fMD.setValue(MDL_IMAGE, ffName, fMD.addObject());
        }
    }

    createEmptyFile(fnOut, imgInfo.adim.xdim-cropSizeXi-cropSizeXe, imgInfo.adim.ydim-cropSizeYi-cropSizeYe, 1, nIm);

    // Process images
    td = new ThreadTaskDistributor(nIm, XMIPP_MAX(1, nIm/30));
    tm = new ThreadManager(thrNum, this);
    std::cerr << "Getting data from " << fnInput << " ...\n";
    init_progress_bar(nIm);
    tm->run(runThread);
    progress_bar(nIm);

    // Write Metadata and angles
    MetaData MDSorted;
    MDSorted.sort(outMD,MDL_ANGLE_TILT);
    MDSorted.write("tomo@"+fnRoot + ".xmd");
    if ( fMD.size() > 0 )
        fMD.write("flatfield@"+fnRoot + ".xmd", MD_APPEND);

    // We also reference initial and final images at 0 degrees for Mistral tomograms
    if ( dSource == MISTRAL )
    {
        fMD.clear();
        FileName degree0Fn = "NXtomo/instrument/sample/0_degrees_initial_image";
        if ( H5File.checkDataset(degree0Fn.c_str()))
            fMD.setValue(MDL_IMAGE, degree0Fn + "@" + fnInput, fMD.addObject());
        degree0Fn = "NXtomo/instrument/sample/0_degrees_final_image";
        if ( H5File.checkDataset(degree0Fn.c_str()))
            fMD.setValue(MDL_IMAGE, degree0Fn + "@" + fnInput, fMD.addObject());
        if ( fMD.size() > 0 )
            fMD.write("degree0@"+fnRoot + ".xmd", MD_APPEND);
    }

    // Write tlt file for IMOD
    std::ofstream fhTlt;
    fhTlt.open((fnRoot+".tlt").c_str());
    if (!fhTlt)
        REPORT_ERROR(ERR_IO_NOWRITE,fnRoot+".tlt");
    FOR_ALL_OBJECTS_IN_METADATA(MDSorted)
    {
        double tilt;
        MDSorted.getValue(MDL_ANGLE_TILT,tilt,__iter.objId);
        fhTlt << tilt << std::endl;
    }
    fhTlt.close();
    delete td;
    delete tm;
}
예제 #8
0
//#define DEBUG
double spatial_Bspline03_proj(
    const Matrix1D<double> &r, const Matrix1D<double> &u)
{
    // Avoids divisions by zero and allows orthogonal rays computation
    static Matrix1D<double> ur(3);
    if (XX(u) == 0) XX(ur) = XMIPP_EQUAL_ACCURACY;
    else XX(ur) = XX(u);
    if (YY(u) == 0) YY(ur) = XMIPP_EQUAL_ACCURACY;
    else YY(ur) = YY(u);
    if (ZZ(u) == 0) ZZ(ur) = XMIPP_EQUAL_ACCURACY;
    else ZZ(ur) = ZZ(u);

    // Some precalculated variables
    double x_sign = SGN(XX(ur));
    double y_sign = SGN(YY(ur));
    double z_sign = SGN(ZZ(ur));

    // Compute the minimum and maximum alpha for the ray
    double alpha_xmin = (-2 - XX(r)) / XX(ur);
    double alpha_xmax = (2 - XX(r)) / XX(ur);
    double alpha_ymin = (-2 - YY(r)) / YY(ur);
    double alpha_ymax = (2 - YY(r)) / YY(ur);
    double alpha_zmin = (-2 - ZZ(r)) / ZZ(ur);
    double alpha_zmax = (2 - ZZ(r)) / ZZ(ur);

    double alpha_min = XMIPP_MAX(XMIPP_MIN(alpha_xmin, alpha_xmax),
                           XMIPP_MIN(alpha_ymin, alpha_ymax));
    alpha_min = XMIPP_MAX(alpha_min, XMIPP_MIN(alpha_zmin, alpha_zmax));
    double alpha_max = XMIPP_MIN(XMIPP_MAX(alpha_xmin, alpha_xmax),
                           XMIPP_MAX(alpha_ymin, alpha_ymax));
    alpha_max = XMIPP_MIN(alpha_max, XMIPP_MAX(alpha_zmin, alpha_zmax));
    if (alpha_max - alpha_min < XMIPP_EQUAL_ACCURACY) return 0.0;

#ifdef DEBUG
    std::cout << "Pixel:  " << r.transpose() << std::endl
    << "Dir:    " << ur.transpose() << std::endl
    << "Alpha x:" << alpha_xmin << " " << alpha_xmax << std::endl
    << "        " << (r + alpha_xmin*ur).transpose() << std::endl
    << "        " << (r + alpha_xmax*ur).transpose() << std::endl
    << "Alpha y:" << alpha_ymin << " " << alpha_ymax << std::endl
    << "        " << (r + alpha_ymin*ur).transpose() << std::endl
    << "        " << (r + alpha_ymax*ur).transpose() << std::endl
    << "Alpha z:" << alpha_zmin << " " << alpha_zmax << std::endl
    << "        " << (r + alpha_zmin*ur).transpose() << std::endl
    << "        " << (r + alpha_zmax*ur).transpose() << std::endl
    << "alpha  :" << alpha_min  << " " << alpha_max  << std::endl
    << std::endl;
#endif

    // Compute the first point in the volume intersecting the ray
    static Matrix1D<double> v(3);
    V3_BY_CT(v, ur, alpha_min);
    V3_PLUS_V3(v, r, v);

#ifdef DEBUG
    std::cout << "First entry point: " << v.transpose() << std::endl;
    std::cout << "   Alpha_min: " << alpha_min << std::endl;
#endif

    // Follow the ray
    double alpha = alpha_min;
    double ray_sum = 0;
    do
    {
        double alpha_x = (XX(v) + x_sign - XX(r)) / XX(ur);
        double alpha_y = (YY(v) + y_sign - YY(r)) / YY(ur);
        double alpha_z = (ZZ(v) + z_sign - ZZ(r)) / ZZ(ur);

        // Which dimension will ray move next step into?, it isn't neccesary to be only
        // one.
        double diffx = ABS(alpha - alpha_x);
        double diffy = ABS(alpha - alpha_y);
        double diffz = ABS(alpha - alpha_z);
        double diff_alpha = XMIPP_MIN(XMIPP_MIN(diffx, diffy), diffz);
        ray_sum += spatial_Bspline03_integral(r, ur, alpha, alpha + diff_alpha);

        // Update alpha and the next entry point
        if (ABS(diff_alpha - diffx) <= XMIPP_EQUAL_ACCURACY) alpha = alpha_x;
        if (ABS(diff_alpha - diffy) <= XMIPP_EQUAL_ACCURACY) alpha = alpha_y;
        if (ABS(diff_alpha - diffz) <= XMIPP_EQUAL_ACCURACY) alpha = alpha_z;
        XX(v) += diff_alpha * XX(ur);
        YY(v) += diff_alpha * YY(ur);
        ZZ(v) += diff_alpha * ZZ(ur);

#ifdef DEBUG
        std::cout << "Alpha x,y,z: " << alpha_x << " " << alpha_y
        << " " << alpha_z << " ---> " << alpha << std::endl;

        std::cout << "    Next entry point: " << v.transpose() << std::endl
        << "    diff_alpha: " << diff_alpha << std::endl
        << "    ray_sum: " << ray_sum << std::endl
        << "    Alfa tot: " << alpha << "alpha_max: " << alpha_max <<
        std::endl;

#endif
    }
    while ((alpha_max - alpha) > XMIPP_EQUAL_ACCURACY);
    return ray_sum;
}
예제 #9
0
// Fit the beam-induced translations for all average micrographs
void ParticlePolisherMpi::fitMovementsAllMicrographs()
{

	int total_nr_micrographs = exp_model.average_micrographs.size();

	// Each node does part of the work
	long int my_first_micrograph, my_last_micrograph, my_nr_micrographs;
	divide_equally(total_nr_micrographs, node->size, node->rank, my_first_micrograph, my_last_micrograph);
	my_nr_micrographs = my_last_micrograph - my_first_micrograph + 1;

	// Loop over all average micrographs
	int barstep;
	if (verb > 0)
	{
		std::cout << " + Fitting straight paths for beam-induced movements in all micrographs ... " << std::endl;
		init_progress_bar(my_nr_micrographs);
		barstep = XMIPP_MAX(1, my_nr_micrographs/ 60);
	}

	for (long int i = my_first_micrograph; i <= my_last_micrograph; i++)
	{
    	if (verb > 0 && i % barstep == 0)
			progress_bar(i);

		fitMovementsOneMicrograph(i);
	}

	// Wait until all micrographs have been done
	MPI_Barrier(MPI_COMM_WORLD);

	if (verb > 0)
	{
		progress_bar(my_nr_micrographs);
	}

	// Combine results from all nodes
	MultidimArray<DOUBLE> allnodes_fitted_movements;
	allnodes_fitted_movements.resize(fitted_movements);
	MPI_Allreduce(MULTIDIM_ARRAY(fitted_movements), MULTIDIM_ARRAY(allnodes_fitted_movements), MULTIDIM_SIZE(fitted_movements), MY_MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
	fitted_movements = allnodes_fitted_movements;

    // Set the fitted movements in the xoff and yoff columns of the exp_model.MDimg
    for (long int ipart = 0; ipart < exp_model.numberOfParticles(); ipart++)
	{
		long int part_id = exp_model.particles[ipart].id;
		DOUBLE xoff = DIRECT_A2D_ELEM(fitted_movements, part_id, 0);
		DOUBLE yoff = DIRECT_A2D_ELEM(fitted_movements, part_id, 1);
		exp_model.MDimg.setValue(EMDL_ORIENT_ORIGIN_X, xoff, part_id);
		exp_model.MDimg.setValue(EMDL_ORIENT_ORIGIN_Y, yoff, part_id);
	}

    if (node->isMaster())
    {
		// Write out the STAR file with all the fitted movements
		FileName fn_tmp = fn_in.withoutExtension() + "_" + fn_out + ".star";
		exp_model.MDimg.write(fn_tmp);
		std::cout << " + Written out all fitted movements in STAR file: " << fn_tmp << std::endl;
    }


}
예제 #10
0
void ParticlePolisherMpi::optimiseBeamTilt()
{

	// This function assumes the shiny particles are in exp_mdel.MDimg!!

	if (beamtilt_max <= 0. && defocus_shift_max <= 0.)
		return;

	if (minres_beamtilt < maxres_model)
	{
		if (verb > 0)
			std::cout << " Skipping beamtilt correction, as the resolution of the shiny reconstruction  does not go beyond minres_beamtilt of " << minres_beamtilt << " Ang." << std::endl;
		return;
	}

	getBeamTiltGroups();

	initialiseSquaredDifferenceVectors();

	int total_nr_micrographs = exp_model.micrographs.size();

	// Each node does part of the work
	long int my_first_micrograph, my_last_micrograph, my_nr_micrographs;
	divide_equally(total_nr_micrographs, node->size, node->rank, my_first_micrograph, my_last_micrograph);
	my_nr_micrographs = my_last_micrograph - my_first_micrograph + 1;

	// Loop over all average micrographs
	int barstep;
	if (verb > 0)
	{
		std::cout << " + Optimising beamtilts and/or defocus values in all micrographs ... " << std::endl;
		init_progress_bar(my_nr_micrographs);
		barstep = XMIPP_MAX(1, my_nr_micrographs/ 60);
	}

    for (long int i = my_first_micrograph; i <= my_last_micrograph; i++)
	{
    	if (verb > 0 && i % barstep == 0)
			progress_bar(i);

    	optimiseBeamTiltAndDefocusOneMicrograph(i);
	}

   	if (verb > 0)
   		progress_bar(my_nr_micrographs);

	// Combine results from all nodes
	if (beamtilt_max > 0.)
	{
		MultidimArray<DOUBLE> allnodes_diff2_beamtilt;
		allnodes_diff2_beamtilt.initZeros(diff2_beamtilt);
		MPI_Allreduce(MULTIDIM_ARRAY(diff2_beamtilt), MULTIDIM_ARRAY(allnodes_diff2_beamtilt), MULTIDIM_SIZE(diff2_beamtilt), MY_MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
		diff2_beamtilt = allnodes_diff2_beamtilt;
	}

	if (defocus_shift_max > 0.)
	{
		MultidimArray<DOUBLE> allnodes_defocus_shift_allmics;
		allnodes_defocus_shift_allmics.initZeros(defocus_shift_allmics);
		MPI_Allreduce(MULTIDIM_ARRAY(defocus_shift_allmics), MULTIDIM_ARRAY(allnodes_defocus_shift_allmics), MULTIDIM_SIZE(defocus_shift_allmics), MY_MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
		defocus_shift_allmics = allnodes_defocus_shift_allmics;
	}

	// Now get the final optimised beamtilts and defocus shifts, and write results to the MetadataTable
	applyOptimisedBeamTiltsAndDefocus();

	// Write the new MDTable to disc
	if (verb > 0)
		exp_model.MDimg.write(fn_out + ".star");

}
//majorAxis and minorAxis is the estimated particle size in px
void ProgSortByStatistics::processInprocessInputPrepareSPTH(MetaData &SF, bool trained)
{
    //#define DEBUG
    PCAMahalanobisAnalyzer tempPcaAnalyzer0;
    PCAMahalanobisAnalyzer tempPcaAnalyzer1;
    PCAMahalanobisAnalyzer tempPcaAnalyzer2;
    PCAMahalanobisAnalyzer tempPcaAnalyzer3;
    PCAMahalanobisAnalyzer tempPcaAnalyzer4;

    //Morphology
    tempPcaAnalyzer0.clear();
    //Signal to noise ratio
    tempPcaAnalyzer1.clear();
    tempPcaAnalyzer2.clear();
    tempPcaAnalyzer3.clear();
    //Histogram analysis, to detect black points and saturated parts
    tempPcaAnalyzer4.clear();

    double sign = 1;//;-1;
    int numNorm = 3;
    int numDescriptors0=numNorm;
    int numDescriptors2=4;
    int numDescriptors3=11;
    int numDescriptors4 = 10;

    MultidimArray<float> v0(numDescriptors0);
    MultidimArray<float> v2(numDescriptors2);
    MultidimArray<float> v3(numDescriptors3);
    MultidimArray<float> v4(numDescriptors4);

    if (verbose>0)
    {
        std::cout << " Sorting particle set by new xmipp method..." << std::endl;
    }

    int nr_imgs = SF.size();
    if (verbose>0)
        init_progress_bar(nr_imgs);

    int c = XMIPP_MAX(1, nr_imgs / 60);
    int imgno = 0, imgnoPCA=0;

    bool thereIsEnable=SF.containsLabel(MDL_ENABLED);
    bool first=true;

    // We assume that at least there is one particle
    size_t Xdim, Ydim, Zdim, Ndim;
    getImageSize(SF,Xdim,Ydim,Zdim,Ndim);

    //Initialization:
    MultidimArray<double> nI, modI, tempI, tempM, ROI;
    MultidimArray<bool> mask;
    nI.resizeNoCopy(Ydim,Xdim);
    modI.resizeNoCopy(Ydim,Xdim);
    tempI.resizeNoCopy(Ydim,Xdim);
    tempM.resizeNoCopy(Ydim,Xdim);
    mask.resizeNoCopy(Ydim,Xdim);
    mask.initConstant(true);

    MultidimArray<double> autoCorr(2*Ydim,2*Xdim);
    MultidimArray<double> smallAutoCorr;

    Histogram1D hist;
    Matrix2D<double> U,V,temp;
    Matrix1D<double> D;

    MultidimArray<int> radial_count;
    MultidimArray<double> radial_avg;
    Matrix1D<int> center(2);
    MultidimArray<int> distance;
    int dim;
    center.initZeros();

    v0.initZeros(numDescriptors0);
    v2.initZeros(numDescriptors2);
    v3.initZeros(numDescriptors3);
    v4.initZeros(numDescriptors4);

    ROI.resizeNoCopy(Ydim,Xdim);
    ROI.setXmippOrigin();
    FOR_ALL_ELEMENTS_IN_ARRAY2D(ROI)
    {
        double temp = std::sqrt(i*i+j*j);
        if ( temp < (Xdim/2))
            A2D_ELEM(ROI,i,j)= 1;
        else
            A2D_ELEM(ROI,i,j)= 0;
    }

    Image<double> img;
    FourierTransformer transformer(FFTW_BACKWARD);

    FOR_ALL_OBJECTS_IN_METADATA(SF)
    {
        if (thereIsEnable)
        {
            int enabled;
            SF.getValue(MDL_ENABLED,enabled,__iter.objId);
            if ( (enabled==-1)  )
            {
                imgno++;
                continue;
            }
        }

        img.readApplyGeo(SF,__iter.objId);
        if (targetXdim!=-1 && targetXdim!=XSIZE(img()))
        	selfScaleToSize(LINEAR,img(),targetXdim,targetXdim,1);

        MultidimArray<double> &mI=img();
        mI.setXmippOrigin();
        mI.statisticsAdjust(0,1);
        mask.setXmippOrigin();
        //The size of v1 depends on the image size and must be declared here
        int numDescriptors1 = XSIZE(mI)/2; //=100;
        MultidimArray<float> v1(numDescriptors1);
        v1.initZeros(numDescriptors1);

        double var = 1;
        normalize(transformer,mI,tempI,modI,0,var,mask);
        modI.setXmippOrigin();
        tempI.setXmippOrigin();
        nI = sign*tempI*(modI*modI);
        tempM = (modI*modI);

        A1D_ELEM(v0,0) = (tempM*ROI).sum();
        int index = 1;
        var+=2;
        while (index < numNorm)
        {
            normalize(transformer,mI,tempI,modI,0,var,mask);
            modI.setXmippOrigin();
            tempI.setXmippOrigin();
            nI += sign*tempI*(modI*modI);
            tempM += (modI*modI);
            A1D_ELEM(v0,index) = (tempM*ROI).sum();
            index++;
            var+=2;
        }

        nI /= tempM;
        tempPcaAnalyzer0.addVector(v0);
        nI=(nI*ROI);

        auto_correlation_matrix(mI,autoCorr);
        if (first)
        {
            radialAveragePrecomputeDistance(autoCorr, center, distance, dim);
            first=false;
        }
        fastRadialAverage(autoCorr, distance, dim, radial_avg, radial_count);

        for (int n = 0; n < numDescriptors1; ++n)
            A1D_ELEM(v1,n)=(float)DIRECT_A1D_ELEM(radial_avg,n);

        tempPcaAnalyzer1.addVector(v1);

#ifdef DEBUG

        //String name = "000005@Images/Extracted/run_002/extra/BPV_1386.stk";
        String name = "000010@Images/Extracted/run_001/extra/KLH_Dataset_I_Training_0028.stk";
        //String name = "001160@Images/Extracted/run_001/DefaultFamily5";

        std::cout << img.name() << std::endl;

        if (img.name()==name2)
        {
            FileName fpName    = "test_1.txt";
            mI.write(fpName);
            fpName    = "test_2.txt";
            nI.write(fpName);
            fpName    = "test_3.txt";
            tempM.write(fpName);
            fpName    = "test_4.txt";
            ROI.write(fpName);
            //exit(1);
        }
#endif
        nI.binarize(0);
        int im = labelImage2D(nI,nI,8);
        compute_hist(nI, hist, 0, im, im+1);
        size_t l;
        int k,i,j;
        hist.maxIndex(l,k,i,j);
        A1D_ELEM(hist,j)=0;
        hist.maxIndex(l,k,i,j);
        nI.binarizeRange(j-1,j+1);

        double x0=0,y0=0,majorAxis=0,minorAxis=0,ellipAng=0;
        size_t area=0;
        fitEllipse(nI,x0,y0,majorAxis,minorAxis,ellipAng,area);

        A1D_ELEM(v2,0)=majorAxis/((img().xdim) );
        A1D_ELEM(v2,1)=minorAxis/((img().xdim) );
        A1D_ELEM(v2,2)= (fabs((img().xdim)/2-x0)+fabs((img().ydim)/2-y0))/((img().xdim)/2);
        A1D_ELEM(v2,3)=area/( (double)((img().xdim)/2)*((img().ydim)/2) );

        for (int n=0 ; n < numDescriptors2 ; n++)
        {
            if ( std::isnan(std::abs(A1D_ELEM(v2,n))))
                A1D_ELEM(v2,n)=0;
        }

        tempPcaAnalyzer2.addVector(v2);

        //mI.setXmippOrigin();
        //auto_correlation_matrix(mI*ROI,autoCorr);
        //auto_correlation_matrix(nI,autoCorr);
        autoCorr.window(smallAutoCorr,-5,-5, 5, 5);
        smallAutoCorr.copy(temp);
        svdcmp(temp,U,D,V);

        for (int n = 0; n < numDescriptors3; ++n)
            A1D_ELEM(v3,n)=(float)VEC_ELEM(D,n); //A1D_ELEM(v3,n)=(float)VEC_ELEM(D,n)/VEC_ELEM(D,0);

        tempPcaAnalyzer3.addVector(v3);


        double minVal=0.;
        double maxVal=0.;
        mI.computeDoubleMinMax(minVal,maxVal);
        compute_hist(mI, hist, minVal, maxVal, 100);

        for (int n=0 ; n <= numDescriptors4-1 ; n++)
        {
            A1D_ELEM(v4,n)= (hist.percentil((n+1)*10));
        }
        tempPcaAnalyzer4.addVector(v4);

#ifdef DEBUG

        if (img.name()==name1)
        {
            FileName fpName    = "test.txt";
            mI.write(fpName);
            fpName    = "test3.txt";
            nI.write(fpName);
        }
#endif
        imgno++;
        imgnoPCA++;

        if (imgno % c == 0 && verbose>0)
            progress_bar(imgno);
    }

    tempPcaAnalyzer0.evaluateZScore(2,20,trained);
    tempPcaAnalyzer1.evaluateZScore(2,20,trained);
    tempPcaAnalyzer2.evaluateZScore(2,20,trained);
    tempPcaAnalyzer3.evaluateZScore(2,20,trained);
    tempPcaAnalyzer4.evaluateZScore(2,20,trained);

    pcaAnalyzer.push_back(tempPcaAnalyzer0);
    pcaAnalyzer.push_back(tempPcaAnalyzer1);
    pcaAnalyzer.push_back(tempPcaAnalyzer1);
    pcaAnalyzer.push_back(tempPcaAnalyzer3);
    pcaAnalyzer.push_back(tempPcaAnalyzer4);

}
void ProgSortByStatistics::processInputPrepare(MetaData &SF)
{
    PCAMahalanobisAnalyzer tempPcaAnalyzer;
    tempPcaAnalyzer.clear();

    Image<double> img;
    MultidimArray<double> img2;
    MultidimArray<int> radial_count;
    MultidimArray<double> radial_avg;
    Matrix1D<int> center(2);
    center.initZeros();

    if (verbose>0)
        std::cout << " Processing training set ..." << std::endl;

    int nr_imgs = SF.size();
    if (verbose>0)
        init_progress_bar(nr_imgs);
    int c = XMIPP_MAX(1, nr_imgs / 60);
    int imgno = 0, imgnoPCA=0;
    MultidimArray<float> v;
    MultidimArray<int> distance;
    int dim;

    bool thereIsEnable=SF.containsLabel(MDL_ENABLED);
    bool first=true;
    FOR_ALL_OBJECTS_IN_METADATA(SF)
    {
        if (thereIsEnable)
        {
            int enabled;
            SF.getValue(MDL_ENABLED,enabled,__iter.objId);
            if (enabled==-1)
                continue;
        }
        img.readApplyGeo(SF,__iter.objId);
        if (targetXdim!=-1 && targetXdim!=XSIZE(img()))
        	selfScaleToSize(LINEAR,img(),targetXdim,targetXdim,1);
        MultidimArray<double> &mI=img();
        mI.setXmippOrigin();
        mI.statisticsAdjust(0,1);

        // Overall statistics
        Histogram1D hist;
        compute_hist(mI,hist,-4,4,31);

        // Radial profile
        img2.resizeNoCopy(mI);
        FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY(img2)
        {
            double val=DIRECT_MULTIDIM_ELEM(mI,n);
            DIRECT_MULTIDIM_ELEM(img2,n)=val*val;
        }
        if (first)
        {
            radialAveragePrecomputeDistance(img2, center, distance, dim);
            first=false;
        }
        fastRadialAverage(img2, distance, dim, radial_avg, radial_count);

        // Build vector
        v.initZeros(XSIZE(hist)+XSIZE(img2)/2);
        int idx=0;
        FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY1D(hist)
        v(idx++)=(float)DIRECT_A1D_ELEM(hist,i);
        for (size_t i=0; i<XSIZE(img2)/2; i++)
            v(idx++)=(float)DIRECT_A1D_ELEM(radial_avg,i);

        tempPcaAnalyzer.addVector(v);

        if (imgno % c == 0 && verbose>0)
            progress_bar(imgno);
        imgno++;
        imgnoPCA++;
    }
    if (verbose>0)
        progress_bar(nr_imgs);

    MultidimArray<double> vavg,vstddev;
    tempPcaAnalyzer.computeStatistics(vavg,vstddev);
    tempPcaAnalyzer.evaluateZScore(2,20,false);
    pcaAnalyzer.insert(pcaAnalyzer.begin(), tempPcaAnalyzer);
}
예제 #13
0
// Evaluate plane ----------------------------------------------------------
double evaluatePlane(double rot, double tilt,
                     const MultidimArray<double> *V, const MultidimArray<double> *Vmag,
                     double maxFreq, double planeWidth, int direction,
                     MultidimArray<double> *Vdraw=NULL,
                     bool setPos=false, double rotPos=0, double tiltPos=0)
{
    if (rot<0 || rot>360 || tilt<-90 || tilt>90)
        return 0;

    Matrix2D<double> E, Einv;
    Euler_angles2matrix(rot,tilt,0,E);
    Einv=E.transpose();

    if (setPos)
    {
        Matrix2D<double> Epos;
        Euler_angles2matrix(rotPos,tiltPos,0,Epos);
        double angle=acos(E(2,0)*Epos(2,0)+E(2,1)*Epos(2,1)+E(2,2)*Epos(2,2));
        angle=RAD2DEG(angle);
        if (fabs(angle)<20 || fabs(180-angle)<20)
            return 0;
    }

    size_t N=XMIPP_MAX(XSIZE(*Vmag),YSIZE(*Vmag)/2);
    N=XMIPP_MAX(N,ZSIZE(*Vmag)/2);
    double df=0.5/N;
    Matrix1D<double> freq(3), freqp(3);
    Matrix1D<int> idx(3);
    double sumNeg=0, sumPos=0;
    int Nneg=0, Npos=0;
    double maxFreq2=maxFreq*maxFreq;
    int iPlaneWidth=(int)ceil(planeWidth);
    for (double ix=0; ix<=N; ix++)
    {
        XX(freq)=ix*df;
        double fx2=XX(freq)*XX(freq);
        if (fx2>maxFreq2)
            continue;
        for (double iy=-(int)N; iy<=N; iy++)
        {
            YY(freq)=iy*df;
            double fx2fy2=fx2+YY(freq)*YY(freq);
            if (fx2fy2>maxFreq2)
                continue;
            for (int iz=-iPlaneWidth; iz<=iPlaneWidth; iz++)
            {
                if (iz==0 || ix==0 || iy==0)
                    continue;

                // Frequency in the coordinate system of the plane
                ZZ(freq)=iz*df;

                // Frequency in the coordinate system of the volume
                SPEED_UP_temps012;
                M3x3_BY_V3x1(freqp,Einv,freq);
                bool inverted=false;
                if (XX(freqp)<0)
                {
                    XX(freqp)=-XX(freqp);
                    YY(freqp)=-YY(freqp);
                    ZZ(freqp)=-ZZ(freqp);
                    inverted=true;
                }

                // Get the corresponding index
                DIGFREQ2FFT_IDX(ZZ(freqp), ZSIZE(*V), ZZ(idx));
                DIGFREQ2FFT_IDX(YY(freqp), YSIZE(*V), YY(idx));
                DIGFREQ2FFT_IDX(XX(freqp), XSIZE(*V), XX(idx));
                if (XX(idx) < STARTINGX(*Vmag) || XX(idx) > FINISHINGX(*Vmag) ||
                    YY(idx) < STARTINGY(*Vmag) || YY(idx) > FINISHINGY(*Vmag) ||
                    ZZ(idx) < STARTINGZ(*Vmag) || ZZ(idx) > FINISHINGZ(*Vmag))
                    continue;

                // Make the corresponding sums
                bool negativeSum;
                if (direction==1)
                    negativeSum=iz<0;
                else
                    negativeSum=iz>0;
                double val=A3D_ELEM(*Vmag,ZZ(idx),YY(idx),XX(idx));
                if ((negativeSum && !inverted) || (!negativeSum && inverted)) // XOR
                {
                    sumNeg+=val;
                    Nneg++;
                    if (Vdraw!=NULL)
                        (*Vdraw)(idx)=2*direction*val;
                }
                else
                {
                    sumPos+=val;
                    Npos++;
                    if (Vdraw!=NULL)
                        (*Vdraw)(idx)=1.0/2.0*direction*val;
                }
            }
        }
    }
    if (fabs(Nneg-Npos)/(0.5*(Nneg+Npos))>0.5)
        // If there is a difference of more than 50%
        return 1e38;
    if (Nneg!=0)
        sumNeg/=Nneg;
    else
        return 1e38;
    if (Npos!=0)
        sumPos/=Npos;
    else
        return 1e38;

    return -(sumPos-sumNeg);
}
예제 #14
0
void ProgSSNR::estimateSSNR(int dim, Matrix2D<double> &output)
{
    // These vectors are for 1D
    Matrix1D<double> S_S21D((int)(XSIZE(S()) / 2 - ring_width)),
    S_N21D((int)(XSIZE(S()) / 2 - ring_width)),
    K1D((int)(XSIZE(S()) / 2 - ring_width)),
    S_SSNR1D;
    Matrix1D<double> N_S21D((int)(XSIZE(S()) / 2 - ring_width)),
    N_N21D((int)(XSIZE(S()) / 2 - ring_width)),
    N_SSNR1D;

    // Selfile of the 2D images
    MetaData SF_individual;

    std::cerr << "Computing the SSNR ...\n";
    init_progress_bar(SF_S.size());
    int imgno = 1;
    Image<double> Is, In;
    Projection Iths, Ithn;
    MultidimArray< std::complex<double> > FFT_Is, FFT_Iths,  FFT_In, FFT_Ithn;
    MultidimArray<double> S2s, N2s, S2n, N2n;
    FileName fn_img;
    FourierTransformer FT(FFTW_BACKWARD);
    FourierProjector *Sprojector=NULL;
    FourierProjector *Nprojector=NULL;
    if (fourierProjections)
    {
    	Sprojector=new FourierProjector(S(),2,0.5,LINEAR);
    	Nprojector=new FourierProjector(N(),2,0.5,LINEAR);
    }
    FOR_ALL_OBJECTS_IN_METADATA2(SF_S, SF_N)
    {
    	double rot, tilt, psi;
    	SF_S.getValue(MDL_ANGLE_ROT,rot, __iter.objId);
    	SF_S.getValue(MDL_ANGLE_TILT,tilt,__iter.objId);
    	SF_S.getValue(MDL_ANGLE_PSI,psi,__iter.objId);
    	SF_S.getValue(MDL_IMAGE,fn_img,__iter.objId);
        Is.read(fn_img);
        Is().setXmippOrigin();
    	SF_N.getValue(MDL_IMAGE,fn_img,__iter2.objId);
        In.read(fn_img);
        In().setXmippOrigin();

        if (fourierProjections)
        {
        	projectVolume(*Sprojector, Iths, YSIZE(Is()), XSIZE(Is()), rot, tilt, psi);
        	projectVolume(*Nprojector, Ithn, YSIZE(Is()), XSIZE(Is()), rot, tilt, psi);
        }
        else
        {
			projectVolume(S(), Iths, YSIZE(Is()), XSIZE(Is()), rot, tilt, psi);
			projectVolume(N(), Ithn, YSIZE(Is()), XSIZE(Is()), rot, tilt, psi);
        }

#ifdef DEBUG

        Image<double> save;
        save() = Is();
        save.write("PPPread_signal.xmp");
        save() = In();
        save.write("PPPread_noise.xmp");
        save() = Iths();
        save.write("PPPtheo_signal.xmp");
        save() = Ithn();
        save.write("PPPtheo_noise.xmp");
#endif

        Is() -= Iths();
        In() -= Ithn(); // According to the article: should we not subtract here (simply remove this line)
                        // "...except that there is no subtraction in the denominator because the
        				// underlying signal is zero by definition."

        if (dim == 2)
        {
            FT.completeFourierTransform(Is(), FFT_Is);
            FT.completeFourierTransform(Iths(), FFT_Iths);
            FT.completeFourierTransform(In(), FFT_In);
            FT.completeFourierTransform(Ithn(), FFT_Ithn);
        }
        else
        {
            FT.FourierTransform(Is(), FFT_Is);
            FT.FourierTransform(Iths(), FFT_Iths);
            FT.FourierTransform(In(), FFT_In);
            FT.FourierTransform(Ithn(), FFT_Ithn);
        }

#ifdef DEBUG

        Image< std::complex<double> > savec;
        savec() = FFT_Is;
        savec.write("PPPFFTread_signal.xmp");
        savec() = FFT_In;
        savec.write("PPPFFTread_noise.xmp");
        savec() = FFT_Iths;
        savec.write("PPPFFTtheo_signal.xmp");
        savec() = FFT_Ithn;
        savec.write("PPPFFTtheo_noise.xmp");
#endif

        // Compute the amplitudes
        S2s.resizeNoCopy(FFT_Iths);
        N2s.resizeNoCopy(FFT_Iths);
        S2n.resizeNoCopy(FFT_Iths);
        N2n.resizeNoCopy(FFT_Iths);
        FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY(FFT_Iths)
        {
            DIRECT_MULTIDIM_ELEM(S2s, n) = abs(DIRECT_MULTIDIM_ELEM(FFT_Iths, n));
            DIRECT_MULTIDIM_ELEM(S2s, n) *= DIRECT_MULTIDIM_ELEM(S2s, n);
            DIRECT_MULTIDIM_ELEM(N2s, n) = abs(DIRECT_MULTIDIM_ELEM(FFT_Is, n));
            DIRECT_MULTIDIM_ELEM(N2s, n) *= DIRECT_MULTIDIM_ELEM(N2s, n);
            DIRECT_MULTIDIM_ELEM(S2n, n) = abs(DIRECT_MULTIDIM_ELEM(FFT_Ithn, n));
            DIRECT_MULTIDIM_ELEM(S2n, n) *= DIRECT_MULTIDIM_ELEM(S2n, n);
            DIRECT_MULTIDIM_ELEM(N2n, n) = abs(DIRECT_MULTIDIM_ELEM(FFT_In, n));
            DIRECT_MULTIDIM_ELEM(N2n, n) *= DIRECT_MULTIDIM_ELEM(N2n, n);
        }

#ifdef DEBUG

        save() = S2s();
        save.write("PPPS2s.xmp");
        save() = N2s();
        save.write("PPPN2s.xmp");
        save() = S2n();
        save.write("PPPS2n.xmp");
        save() = N2n();
        save.write("PPPN2n.xmp");
#endif

        if (dim == 2)
        {
            // Compute the SSNR image
            Image<double> SSNR2D;
            SSNR2D().initZeros(S2s);
            const MultidimArray<double> & SSNR2Dmatrix=SSNR2D();
            FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY(S2s)
            {
                double ISSNR = 0, alpha = 0, SSNR = 0;
                double aux = DIRECT_MULTIDIM_ELEM(N2s,n);
                if (aux > min_power)
                    ISSNR = DIRECT_MULTIDIM_ELEM(S2s,n) / aux;
                aux = DIRECT_MULTIDIM_ELEM(N2n,n);
                if (aux > min_power)
                    alpha = DIRECT_MULTIDIM_ELEM(S2n,n) / aux;
                if (alpha > min_power)
                {
                    aux = ISSNR / alpha - 1.0;
                    SSNR = XMIPP_MAX(aux, 0.0);
                }
                if (SSNR    > min_power)
                    DIRECT_MULTIDIM_ELEM(SSNR2Dmatrix,n) = 10.0 * log10(SSNR + 1.0);
            }
            CenterFFT(SSNR2D(), true);
#ifdef DEBUG

            save() = SSNR2Dmatrix;
            save.write("PPPSSNR2D.xmp");
#endif

            // Save image
            FileName fn_img_out;
            fn_img_out.compose(imgno, fn_out_images, "stk");
            SSNR2D.write(fn_img_out);
            size_t objId = SF_individual.addObject();
            SF_individual.setValue(MDL_IMAGE,fn_img_out,objId);
            SF_individual.setValue(MDL_ANGLE_ROT,rot,objId);
            SF_individual.setValue(MDL_ANGLE_TILT,tilt,objId);
            SF_individual.setValue(MDL_ANGLE_PSI,psi,objId);
        }