예제 #1
0
VectorXd Robot::prediction(VectorXd X){   
VectorXd Xs(3);       
VectorXf noise = VectorXf::Random(3);
Xs(0)=X(0)+10*noise(0);
Xs(1)=X(1)+10*noise(1);
Xs(2)=X(2)+10*noise(2);
return Xs;
}
예제 #2
0
void DfHpqX::getHpq(TlDenseSymmetricMatrix_Lapack* pHpq,
                    TlDenseSymmetricMatrix_Lapack* pHpq2) {
  const int numOfAOs = this->m_nNumOfAOs;

  // make coordinates
  const Fl_Geometry flGeom((*this->pPdfParam_)["coordinates"]);
  const int numOfAtoms = flGeom.getNumOfAtoms();
  const int numOfDummyAtoms = flGeom.getNumOfDummyAtoms();
  const int numOfRealAtoms = numOfAtoms - numOfDummyAtoms;
  std::vector<TlAtom> Cs(numOfRealAtoms);
  std::vector<TlAtom> Xs(numOfDummyAtoms);
  std::size_t realAtomIndex = 0;
  std::size_t dummyAtomIndex = 0;
  for (int i = 0; i < numOfAtoms; ++i) {
    const std::string atomName = flGeom.getAtomSymbol(i);
    const TlPosition p = flGeom.getCoordinate(i);
    const double charge = flGeom.getCharge(i);
    const TlAtom atom(atomName, p, charge);
    if (atomName == "X") {
      Xs[dummyAtomIndex] = atom;
      ++dummyAtomIndex;
    } else {
      Cs[realAtomIndex] = atom;
      ++realAtomIndex;
    }
  }
  assert(realAtomIndex == Cs.size());
  assert(dummyAtomIndex == Xs.size());

  pHpq->resize(numOfAOs);
  pHpq2->resize(numOfAOs);

  this->createEngines();
  DfTaskCtrl* pTaskCtrl = this->getDfTaskCtrlObject();

  std::vector<DfTaskCtrl::Task2> taskList;
  bool hasTask = pTaskCtrl->getQueue2(this->orbitalInfo_, true,
                                      this->grainSize_, &taskList, true);
  while (hasTask == true) {
    this->getHpq_part(this->orbitalInfo_, taskList, Cs, Xs, pHpq, pHpq2);

    hasTask = pTaskCtrl->getQueue2(this->orbitalInfo_, true, this->grainSize_,
                                   &taskList);
  }

  if (this->chargeExtrapolateNumber_ > 0) {
    *pHpq2 /= static_cast<double>(this->chargeExtrapolateNumber_);
  }

  this->finalize(pHpq, pHpq2);

  delete pTaskCtrl;
  pTaskCtrl = NULL;
  this->destroyEngines();
}
예제 #3
0
int Ifpack_ShyLU::JustTryIt()
{
    // Dummy function, To show the error in AztecOO, This works
    //cout << "Entering JustTryIt" << endl;
    AztecOO *solver;
    solver = slu_data_.innersolver;
    //cout << solver_ << endl;
    Epetra_Map BsMap(-1, slu_data_.Snr, slu_data_.SRowElems, 0, A_->Comm());
    Epetra_MultiVector Xs(BsMap, 1);
    Epetra_MultiVector Bs(BsMap, 1);
    Xs.PutScalar(0.0);
    solver->SetLHS(&Xs);
    solver->SetRHS(&Bs);
    solver->Iterate(30, 1e-10);
    return 0;
}
real BppSolver::columnGeneration(BinPackingProblem& bpp)
{
	while (true) // repeat until no column can be added
	{
		try
		{
			real masterObjValue = 0.0;
			// solve LP master
			bool found = BPSolver.solve();
			if (found)
			{
				// master lp lower bound value
				masterObjValue = BPSolver.getObjValue();
				
				BPmodel.setDualValues(BPSolver);
				// set pricer obj coeficient to dual master values
				pricerModel.setObjLinearCoefs(BPmodel.getDualsValues());
			}
			else {
				// master not feasible.
				return IloInfinity;
			}

#ifdef EXPORT_MODELS
			pricerSolver.exportModel("pricer.lp");
#endif
			found = pricerSolver.solve();
			if (found)
			{
				// get pricer objectif value Z*
				real pricerValue = pricerSolver.getObjValue();
				if (pricerValue - 1.0 >= EPS) // then add new column
				{
					auto& Z = pricerModel.getPrimalValues();
#ifdef DBG_OUTPUT 
					for (int i = 0; i < nbItems; i++)
						std::cout << Z[i] << " ";
					std::cout << std::endl;
#endif
					// get the set S* such that Zi == 1
					IntBin _S;

					for (std::size_t i = 0; i < bpp.getNbItems(); i++) {
						if (Z[i] >= 1 - EPS)
							_S.addItem(i, bpp.getItemWeights()[i]);
					}

					// make _S maximal
					makeBinMaximal(bpp, _S);
					// add new bin variable to master
					BPmodel.addColumn(_S);


#ifdef EXPORT_MODELS
					BPSolver.exportModel("model.lp");
#endif
				}
				else // no column to add.
				{
#ifdef DBG_OUTPUT
					std::cout << masterObjValue << std::endl;
					IloNumArray Xs(env);
					BPSolver.getValues(BPVars, Xs);
					for (size_t i = 0; i < BPVars.getSize(); i++)
						std::cout << Xs[i] << ", ";
					std::cout << std::endl;
					Xs.end();
#endif

#ifdef EXPORT_MODEL
					BPSolver.exportModel("model.lp");
					pricerSolver.exportModel("pricer.lp");
#endif // !EXPORT_MODEL

					BPmodel.setPrimalValues(BPSolver);
					return masterObjValue;
				}
			}
			else // pricer solution not found
			{
			}
		}
		catch (IloException& e) {
			std::cout << "IloException rised : " << e << std::endl;
		} // TODO exception handling
		catch (...) // other errors
		{
		}
	}// END WHILE
}
예제 #5
0
void parcel::setRelaxationTimes
(
    label celli,
    scalar& tauMomentum,
    scalarField& tauEvaporation,
    scalar& tauHeatTransfer,
    scalarField& tauBoiling,
    const spray& sDB,
    const scalar rho,
    const vector& Up,
    const scalar temperature,
    const scalar pressure,
    const scalarField& Yfg,
    const scalarField& m0,
    const scalar dt
)
{

    const liquidMixture& fuels = sDB.fuels();

    scalar mCell = rho*sDB.mesh().V()[cell()];
    scalarField mfg(Yfg*mCell);

    label Ns = sDB.composition().Y().size();
    label Nf = fuels.components().size();

    // Tf is based on the 1/3 rule
    scalar Tf  = T() + (temperature - T())/3.0;

    // calculate mixture properties
    scalar W = 0.0;
    scalar kMixture = 0.0;
    scalar cpMixture = 0.0;
    scalar muf = 0.0;

    for(label i=0; i<Ns; i++)
    {
        scalar Y = sDB.composition().Y()[i][celli];
        W += Y/sDB.gasProperties()[i].W();
        // Using mass-fractions to average...
        kMixture += Y*sDB.gasProperties()[i].kappa(Tf);
        cpMixture += Y*sDB.gasProperties()[i].Cp(Tf);
        muf += Y*sDB.gasProperties()[i].mu(Tf);
    }
    W = 1.0/W;

    scalarField Xf(Nf, 0.0);
    scalarField Yf(Nf, 0.0);
    scalarField psat(Nf, 0.0);
    scalarField msat(Nf, 0.0);

    for(label i=0; i<Nf; i++)
    {
        label j = sDB.liquidToGasIndex()[i];
        scalar Y = sDB.composition().Y()[j][celli];
        scalar Wi = sDB.gasProperties()[j].W();
        Yf[i] = Y;
        Xf[i] = Y*W/Wi;
        psat[i] = fuels.properties()[i].pv(pressure, temperature);
        msat[i] = min(1.0, psat[i]/pressure)*Wi/W;
    }

    scalar nuf = muf/rho;

    scalar liquidDensity = fuels.rho(pressure, T(), X());
    scalar liquidcL = fuels.cp(pressure, T(), X());
    scalar heatOfVapour = fuels.hl(pressure, T(), X());

    // calculate the partial rho of the fuel vapour
    // alternative is to use the mass fraction
    // however, if rhoFuelVap is small (zero)
    // d(mass)/dt = 0 => no evaporation... hmmm... is that good? NO!

    // Assume equilibrium at drop-surface => pressure @ surface
    // = vapour pressure to calculate fuel-vapour density @ surface
    scalar pressureAtSurface = fuels.pv(pressure, T(), X());
    scalar rhoFuelVap = pressureAtSurface*fuels.W(X())/(specie::RR*Tf);

    scalarField Xs(sDB.fuels().Xs(pressure, temperature, T(), Xf, X()));
    scalarField Ys(Nf, 0.0);
    scalar Wliq = 0.0;

    for(label i=0; i<Nf; i++)
    {
        label j = sDB.liquidToGasIndex()[i];
        scalar Wi = sDB.gasProperties()[j].W();
        Wliq += Xs[i]*Wi;
    }

    for(label i=0; i<Nf; i++)
    {
        label j = sDB.liquidToGasIndex()[i];
        scalar Wi = sDB.gasProperties()[j].W();
        Ys[i] = Xs[i]*Wi/Wliq;
    }

    scalar Reynolds = Re(Up, nuf);
    scalar Prandtl = Pr(cpMixture, muf, kMixture);

    // calculate the characteritic times

    if(liquidCore_> 0.5)
    {
//      no drag for parcels in the liquid core..
        tauMomentum = GREAT;
    }
    else
    {
        tauMomentum = sDB.drag().relaxationTime
        (
            Urel(Up),
            d(),
            rho,
            liquidDensity,
            nuf,
            dev()
        );
    }

    // store the relaxationTime since it is needed in some breakup models.
    tMom_ = tauMomentum;

    tauHeatTransfer = sDB.heatTransfer().relaxationTime
    (
        liquidDensity,
        d(),
        liquidcL,
        kMixture,
        Reynolds,
        Prandtl
    );

    // evaporation-properties are evaluated at averaged temperature
    // set the boiling conditions true if pressure @ surface is 99.9%
    // of the pressure
    // this is mainly to put a limit on the evaporation time,
    // since tauEvaporation is very very small close to the boiling point.

    for(label i=0; i<Nf; i++)
    {
        scalar Td = min(T(), 0.999*fuels.properties()[i].Tc());
        bool boiling = fuels.properties()[i].pv(pressure, Td) >= 0.999*pressure;
        scalar Di = fuels.properties()[i].D(pressure, Td);
        scalar Schmidt = Sc(nuf, Di);

        scalar partialPressure = Xf[i]*pressure;

//      saturated vapour
        if(partialPressure > psat[i])
        {
            tauEvaporation[i] = GREAT;
        }
//      not saturated vapour
        else
        {
            if (!boiling)
            {
                // for saturation evaporation, only use 99.99% for numerical robustness
                scalar dm = max(SMALL, 0.9999*msat[i] - mfg[i]);

                tauEvaporation[i] = sDB.evaporation().relaxationTime
                (
                    d(),
                    fuels.properties()[i].rho(pressure, Td),
                    rhoFuelVap,
                    Di,
                    Reynolds,
                    Schmidt,
                    Xs[i],
                    Xf[i],
                    m0[i],
                    dm,
                    dt
                );
            }
            else
            {
                scalar Nusselt =
                    sDB.heatTransfer().Nu(Reynolds, Prandtl);

//              calculating the boiling temperature of the liquid at ambient pressure
                scalar tBoilingSurface = Td;

                label Niter = 0;
                scalar deltaT = 10.0;
                scalar dp0 = fuels.properties()[i].pv(pressure, tBoilingSurface) - pressure;
                while ((Niter < 200) && (mag(deltaT) > 1.0e-3))
                {
                    Niter++;
                    scalar pBoil = fuels.properties()[i].pv(pressure, tBoilingSurface);
                    scalar dp = pBoil - pressure;
                    if ( (dp > 0.0) && (dp0 > 0.0) )
                    {
                        tBoilingSurface -= deltaT;
                    }
                    else
                    {
                        if ( (dp < 0.0) && (dp0 < 0.0) )
                        {
                            tBoilingSurface += deltaT;
                        }
                        else
                        {
                            deltaT *= 0.5;
                            if ( (dp > 0.0) && (dp0 < 0.0) )
                            {
                                tBoilingSurface -= deltaT;
                            }
                            else
                            {
                                tBoilingSurface += deltaT;
                            }
                        }
                    }
                    dp0 = dp;
                }

                scalar vapourSurfaceEnthalpy = 0.0;
                scalar vapourFarEnthalpy = 0.0;

                for(label k = 0; k < sDB.gasProperties().size(); k++)
                {
                    vapourSurfaceEnthalpy += sDB.composition().Y()[k][celli]*sDB.gasProperties()[k].H(tBoilingSurface);
                    vapourFarEnthalpy += sDB.composition().Y()[k][celli]*sDB.gasProperties()[k].H(temperature);
                }

                scalar kLiquid = fuels.properties()[i].K(pressure, 0.5*(tBoilingSurface+T()));

                tauBoiling[i] = sDB.evaporation().boilingTime
                (
                    fuels.properties()[i].rho(pressure, Td),
                    fuels.properties()[i].cp(pressure, Td),
                    heatOfVapour,
                    kMixture,
                    Nusselt,
                    temperature - T(),
                    d(),
                    liquidCore(),
                    sDB.runTime().value() - ct(),
                    Td,
                    tBoilingSurface,
                    vapourSurfaceEnthalpy,
                    vapourFarEnthalpy,
                    cpMixture,
                    temperature,
                    kLiquid
                );
            }

        }
    }
}
void PSSinthesis::Sinthesis(double s)
{
	hops[Qcolumn-1] = round(hopa*(pow(2,(s/12))));
	
	//Some declaration
	int L;
	L = N;
	for (int i=0; i< Qcolumn-1; i++)
		L = L + hops[i];
	double r;
	int n1;
	int n2;
	double n3;
	
	//Some inicialization
	
	ysaida2 = &ysaida[L-N];

	// We can divide the code in two here

	Phi = PhiPrevious + (hops[Qcolumn-1])*omega_true_sobre_fs[0] ;
	for (int i=0; i<(N/2 + 1); i++)
		Xs(i) = ExponencialComplexa(Phi(i));
	Xs = Xa_abs[0] % Xs;
	PhiPrevious = Phi;
	
	
	for (int i=0; i<(N/2 + 1); i++)
	{
	    fXs[i][0] = real(Xs(i));
	    fXs[i][1] = imag(Xs(i));
	}
	
	/*Synthesis*/
	if (p2) fftwf_execute(p2);
	
	double norm = N*sqrt( N/(2.0*hops[Qcolumn-1]) );

	for (int i=0; i<N; i++)
		q[i] = q[i]*w[0](i)/norm;
	
	if (first == true)
	{
		first = false;
		fill_n(ysaida,L-N,0);
		for (int i=L-N; i<L; i++)
			ysaida[i] = q[i-(L-N)];
	}
	else
	{
		for (int i=L-N; i<L; i++)
			ysaida[i] = ysaida[i] + q[i-(L-N)];
	}
	//Linear interpolation
	r = hops[Qcolumn-1]/(1.0*hopa);

        for (int n=0; n < hopa; n++)
        {
		n3 = n*r+1;
		n1 = floor(n3);
		n2 = ceil(n3);
		yshift[n] = ysaida2[n1] + (ysaida2[n2]-ysaida2[n1])*(n3 - n1);
	}
	
	//Shift ysaida hops[0] left
	for (int i=0; i<L-hops[0]; i++)
		ysaida[i] = ysaida[i+hops[0]];
	for (int i=L-hops[0]; i<L; i++)
		ysaida[i] = 0;
}
예제 #7
0
void PitchDetection::FindNote()
{
	for (int i=0; i<N; i++)
	{
		frames[N+i] = 0;
	}
	
	if (p) fftwf_execute(p);
	
	for (int i=0; i<(N + 1); i++)
	{
		Xa(i) = cx_float(fXa[i][0], fXa[i][1]);
	}
	
	Xs = Xa % conj(Xa);
	
	for (int i=0; i<(N + 1); i++)
	{
		fXs[i][0] = real(Xs(i));
		fXs[i][1] = imag(Xs(i));
	}
	
	if (p2) fftwf_execute(p2);
	
	for (int i=0; i<N; i++)
	{
		R(i) = q[i]/(2*N); 
	}
	
	NORM.zeros();
	
	NORM(0) = 2*R(0);
	
	for (int i=1; i<N; i++)
	{
		NORM(i) = NORM(i-1) - pow(frames[i-1],2)- pow(frames[N-i],2);
	}
	
	
	for (int i=0; i<N; i++)
	{
		F(i) = 1 -0.05*i/(N-1);
	}
	
	AUTO = ( 2*F % R )/NORM;
	
	int flag = 0;
	
	for (int i=0; (i<N)&&(flag==0); i++)
	{
		if( AUTO(i) > 0 )
		{
			AUTO(i) = 0;
		}
		else
		{
			flag = 1;
		}
	}
	
	uword max_index;
	double fidelity = AUTO.max(max_index);
	
	
	if ((fidelity > 0.95) && (fidelity < 1) && ((int)max_index < N-1))
	{
	
		double a = AUTO(max_index-1);
		double b = AUTO(max_index);
		double c = AUTO(max_index+1);
	
		double real_index = max_index + 0.5*(a-c)/(a-2*b+c);
	
		f = fs/real_index;
		int nota = (int)round( (12/log(2))*log(f/16.351597831287414) );
		oitava = floor(nota/12.0);
		note = nota % 12;
	
		//cout << "nota = " << note[0] << " oitava = " << oitava[0] << " fidelity = " << fidelity << "\n";	
		
	}
}
예제 #8
0
int shylu_dist_solve<Epetra_CrsMatrix,Epetra_MultiVector>(
    shylu_symbolic<Epetra_CrsMatrix,Epetra_MultiVector> *ssym,
    shylu_data<Epetra_CrsMatrix,Epetra_MultiVector> *data,
    shylu_config<Epetra_CrsMatrix,Epetra_MultiVector> *config,
    const Epetra_MultiVector& X,
    Epetra_MultiVector& Y
)
{
    int err;
    AztecOO *solver = 0;
    assert(X.Map().SameAs(Y.Map()));
    //assert(X.Map().SameAs(A_->RowMap()));
    const Epetra_MultiVector *newX;
    newX = &X;
    //rd_->redistribute(X, newX);

    int nvectors = newX->NumVectors();

    // May have to use importer/exporter
    Epetra_Map BsMap(-1, data->Snr, data->SRowElems, 0, X.Comm());
    Epetra_Map BdMap(-1, data->Dnr, data->DRowElems, 0, X.Comm());

    Epetra_MultiVector Bs(BsMap, nvectors);
    Epetra_Import BsImporter(BsMap, newX->Map());

    assert(BsImporter.SourceMap().SameAs(newX->Map()));
    assert((newX->Map()).SameAs(BsImporter.SourceMap()));

    Bs.Import(*newX, BsImporter, Insert);
    Epetra_MultiVector Xs(BsMap, nvectors);

    Epetra_SerialComm LComm;        // Use Serial Comm for the local vectors.
    Epetra_Map LocalBdMap(-1, data->Dnr, data->DRowElems, 0, LComm);
    Epetra_MultiVector localrhs(LocalBdMap, nvectors);
    Epetra_MultiVector locallhs(LocalBdMap, nvectors);

    Epetra_MultiVector Z(BdMap, nvectors);

    Epetra_MultiVector Bd(BdMap, nvectors);
    Epetra_Import BdImporter(BdMap, newX->Map());
    assert(BdImporter.SourceMap().SameAs(newX->Map()));
    assert((newX->Map()).SameAs(BdImporter.SourceMap()));
    Bd.Import(*newX, BdImporter, Insert);

    int lda;
    double *values;
    err = Bd.ExtractView(&values, &lda);
    assert (err == 0);
    int nrows = ssym->C->RowMap().NumMyElements();

    // copy to local vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = localrhs.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    // TODO : Do we need to reset the lhs and rhs here ?
    if (config->amesosForDiagonal)
    {
        ssym->LP->SetRHS(&localrhs);
        ssym->LP->SetLHS(&locallhs);
        ssym->Solver->Solve();
    }
    else
    {
        ssym->ifSolver->ApplyInverse(localrhs, locallhs);
    }

    err = locallhs.ExtractView(&values, &lda);
    assert (err == 0);

    // copy to distributed vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = Z.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    Epetra_MultiVector temp1(BsMap, nvectors);
    ssym->R->Multiply(false, Z, temp1);
    Bs.Update(-1.0, temp1, 1.0);

    Xs.PutScalar(0.0);

    Epetra_LinearProblem Problem(data->Sbar.get(), &Xs, &Bs);
    if (config->schurSolver == "Amesos")
    {
        Amesos_BaseSolver *solver2 = data->dsolver;
        data->LP2->SetLHS(&Xs);
        data->LP2->SetRHS(&Bs);
        //cout << "Calling solve *****************************" << endl;
        solver2->Solve();
        //cout << "Out of solve *****************************" << endl;
    }
    else
    {
        if (config->libName == "Belos")
        {
            solver = data->innersolver;
            solver->SetLHS(&Xs);
            solver->SetRHS(&Bs);
        }
        else
        {
            // See the comment above on why we are not able to reuse the solver
            // when outer solve is AztecOO as well.
            solver = new AztecOO();
            //solver.SetPrecOperator(precop_);
            solver->SetAztecOption(AZ_solver, AZ_gmres);
            // Do not use AZ_none
            solver->SetAztecOption(AZ_precond, AZ_dom_decomp);
            //solver->SetAztecOption(AZ_precond, AZ_none);
            //solver->SetAztecOption(AZ_precond, AZ_Jacobi);
            ////solver->SetAztecOption(AZ_precond, AZ_Neumann);
            //solver->SetAztecOption(AZ_overlap, 3);
            //solver->SetAztecOption(AZ_subdomain_solve, AZ_ilu);
            //solver->SetAztecOption(AZ_output, AZ_all);
            //solver->SetAztecOption(AZ_diagnostics, AZ_all);
            solver->SetProblem(Problem);
        }

        // What should be a good inner_tolerance :-) ?
        solver->Iterate(config->inner_maxiters, config->inner_tolerance);
    }

    Epetra_MultiVector temp(BdMap, nvectors);
    ssym->C->Multiply(false, Xs, temp);
    temp.Update(1.0, Bd, -1.0);

    //Epetra_SerialComm LComm;        // Use Serial Comm for the local vectors.
    //Epetra_Map LocalBdMap(-1, data->Dnr, data->DRowElems, 0, LComm);
    //Epetra_MultiVector localrhs(LocalBdMap, nvectors);
    //Epetra_MultiVector locallhs(LocalBdMap, nvectors);

    //int lda;
    //double *values;
    err = temp.ExtractView(&values, &lda);
    assert (err == 0);
    //int nrows = data->Cptr->RowMap().NumMyElements();

    // copy to local vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = localrhs.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    if (config->amesosForDiagonal)
    {
        ssym->LP->SetRHS(&localrhs);
        ssym->LP->SetLHS(&locallhs);
        ssym->Solver->Solve();
    }
    else
    {
        ssym->ifSolver->ApplyInverse(localrhs, locallhs);
    }

    err = locallhs.ExtractView(&values, &lda);
    assert (err == 0);

    // copy to distributed vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = temp.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    // For checking faults
    //if (NumApplyInverse_ == 5)  temp.ReplaceMyValue(0, 0, 0.0);

    Epetra_Export XdExporter(BdMap, Y.Map());
    Y.Export(temp, XdExporter, Insert);

    Epetra_Export XsExporter(BsMap, Y.Map());
    Y.Export(Xs, XsExporter, Insert);

    if (config->libName == "Belos" || config->schurSolver == "Amesos")
    {
        // clean up
    }
    else
    {
        delete solver;
    }
    return 0;
}//end shylu_dist_solve <epetra,epetra>