bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const { if (_M_node_count == 0 || begin() == end()) return ((_M_node_count == 0) && (begin() == end()) && (this->_M_header._M_data._M_left == &this->_M_header._M_data) && (this->_M_header._M_data._M_right == &this->_M_header._M_data)); int __len = __black_count(_M_leftmost(), _M_root()); for (const_iterator __it = begin(); __it != end(); ++__it) { _Base_ptr __x = __it._M_node; _Base_ptr __L = _S_left(__x); _Base_ptr __R = _S_right(__x); if (__x->_M_color == _S_rb_tree_red) if ((__L && __L->_M_color == _S_rb_tree_red) || (__R && __R->_M_color == _S_rb_tree_red)) return false; if (__L && _M_key_compare(_S_key(__x), _S_key(__L))) return false; if (__R && _M_key_compare(_S_key(__R), _S_key(__x))) return false; if (!__L && !__R && __black_count(__x, _M_root()) != __len) return false; } if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) return false; if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) return false; return true; }
__iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent, const _Value& __val, _Rb_tree_node_base * __on_left, _Rb_tree_node_base * __on_right) { // We do not create the node here as, depending on tests, we might call // _M_key_compare that can throw an exception. _Base_ptr __new_node; if ( __parent == &this->_M_header._M_data ) { __new_node = _M_create_node(__val); _S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node _M_root() = __new_node; _M_rightmost() = __new_node; } else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false ( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true _M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) { __new_node = _M_create_node(__val); _S_left(__parent) = __new_node; if (__parent == _M_leftmost()) _M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node } else { __new_node = _M_create_node(__val); _S_right(__parent) = __new_node; if (__parent == _M_rightmost()) _M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node } _S_parent(__new_node) = __parent; _Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent); ++_M_node_count; return iterator(__new_node); }
class _Compare, class _Alloc> pair< _Rb_tree_iterator<_Value, _Nonconst_traits<_Value> >, bool> _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_unique(const _Value& __v) { _Link_type __y = this->_M_header._M_data; _Link_type __x = _M_root(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) if (__j == begin()) return pair<iterator,bool>(_M_insert(/* __x*/ __y, __y, __v), true); else --__j; if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) return pair<iterator,bool>(_M_insert(__x, __y, __v), true); return pair<iterator,bool>(__j, false); }
class _Compare, class _Alloc> __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::insert_equal(const _Value& __v) { _Link_type __y = this->_M_header._M_data; _Link_type __x = _M_root(); while (__x != 0) { __y = __x; __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? _S_left(__x) : _S_right(__x); } return _M_insert(__x, __y, __v); }
pair<__iterator__, bool> _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) { _Base_ptr __y = &this->_M_header._M_data; _Base_ptr __x = _M_root(); bool __comp = true; while (__x != 0) { __y = __x; __comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x)); __x = __comp ? _S_left(__x) : _S_right(__x); } iterator __j = iterator(__y); if (__comp) { if (__j == begin()) return pair<iterator,bool>(_M_insert(__y, __val, /* __x*/ __y), true); else --__j; } if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) { return pair<iterator,bool>(_M_insert(__y, __val, __x), true); } return pair<iterator,bool>(__j, false); }
__iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) { _Base_ptr __y = &this->_M_header._M_data; _Base_ptr __x = _M_root(); while (__x != 0) { __y = __x; if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) { __x = _S_left(__x); } else __x = _S_right(__x); } return _M_insert(__y, __val, __x); }
class _Compare, class _Alloc> __iterator__ _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> ::_M_insert(_Rb_tree_node_base* __x_, _Rb_tree_node_base* __y_, const _Value& __v, _Rb_tree_node_base* __w_) { _Link_type __w = (_Link_type) __w_; _Link_type __x = (_Link_type) __x_; _Link_type __y = (_Link_type) __y_; _Link_type __z; if ( __y == this->_M_header._M_data || ( __w == 0 && // If w != 0, the remainder fails to false ( __x != 0 || // If x != 0, the remainder succeeds to true _M_key_compare( _KeyOfValue()(__v), _S_key(__y) ) ) ) ) { __z = _M_create_node(__v); _S_left(__y) = __z; // also makes _M_leftmost() = __z // when __y == _M_header if (__y == this->_M_header._M_data) { _M_root() = __z; _M_rightmost() = __z; } else if (__y == _M_leftmost()) _M_leftmost() = __z; // maintain _M_leftmost() pointing to min node } else { __z = _M_create_node(__v); _S_right(__y) = __z; if (__y == _M_rightmost()) _M_rightmost() = __z; // maintain _M_rightmost() pointing to max node } _S_parent(__z) = __y; _S_left(__z) = 0; _S_right(__z) = 0; _Rb_global_inst::_Rebalance(__z, this->_M_header._M_data->_M_parent); ++_M_node_count; return iterator(__z); }
__iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position, const _Value& __val) { if (__position._M_node == this->_M_header._M_data._M_left) { // begin() // Check for zero members if (size() <= 0) return insert_equal(__val); if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val))) return _M_insert(__position._M_node, __val, __position._M_node); else { // Check for only one member if (__position._M_node->_M_left == __position._M_node) // Unlike insert_unique, can't avoid doing a comparison here. return _M_insert(__position._M_node, __val); // All other cases: // Standard-conformance - does the insertion point fall immediately AFTER // the hint? iterator __after = __position; ++__after; // Already know that compare(pos, v) must be true! // Therefore, we want to know if compare(after, v) is false. // (i.e., we now pos < v, now we want to know if v <= after) // If not, invalid hint. if ( __after._M_node == &this->_M_header._M_data || !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { // Invalid hint return insert_equal(__val); } } } else if (__position._M_node == &this->_M_header._M_data) { // end() if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost()))) return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null else { return insert_equal(__val); } } else { iterator __before = __position; --__before; // store the result of the comparison between pos and v so // that we don't have to do it again later. Note that this reverses the shortcut // on the if, possibly harming efficiency in comparisons; I think the harm will // be negligible, and to do what I want to do (save the result of a comparison so // that it can be re-used) there is no alternative. Test here is for before <= v <= pos. bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); if (!__comp_pos_v && !_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) { if (_S_right(__before._M_node) == 0) return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null else return _M_insert(__position._M_node, __val, __position._M_node); } else { // Does the insertion point fall immediately AFTER the hint? // Test for pos < v <= after iterator __after = __position; ++__after; if (__comp_pos_v && ( __after._M_node == &this->_M_header._M_data || !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { // Invalid hint return insert_equal(__val); } } } }
__iterator__ _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position, const _Value& __val) { if (__position._M_node == this->_M_header._M_data._M_left) { // begin() // if the container is empty, fall back on insert_unique. if (empty()) return insert_unique(__val).first; if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) { return _M_insert(__position._M_node, __val, __position._M_node); } // first argument just needs to be non-null else { bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) ); if (__comp_pos_v == false) // compare > and compare < both false so compare equal return __position; //Below __comp_pos_v == true // Standard-conformance - does the insertion point fall immediately AFTER // the hint? iterator __after = __position; ++__after; // Check for only one member -- in that case, __position points to itself, // and attempting to increment will cause an infinite loop. if (__after._M_node == &this->_M_header._M_data) // Check guarantees exactly one member, so comparison was already // performed and we know the result; skip repeating it in _M_insert // by specifying a non-zero fourth argument. return _M_insert(__position._M_node, __val, 0, __position._M_node); // All other cases: // Optimization to catch insert-equivalent -- save comparison results, // and we get this for free. if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { return insert_unique(__val).first; } } } else if (__position._M_node == &this->_M_header._M_data) { // end() if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) { // pass along to _M_insert that it can skip comparing // v, Key ; since compare Key, v was true, compare v, Key must be false. return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null } else return insert_unique(__val).first; } else { iterator __before = __position; --__before; bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node)); if (__comp_v_pos && _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) { if (_S_right(__before._M_node) == 0) return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null else return _M_insert(__position._M_node, __val, __position._M_node); // first argument just needs to be non-null } else { // Does the insertion point fall immediately AFTER the hint? iterator __after = __position; ++__after; // Optimization to catch equivalent cases and avoid unnecessary comparisons bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier // If the earlier comparison was true, this comparison doesn't need to be // performed because it must be false. However, if the earlier comparison // was false, we need to perform this one because in the equal case, both will // be false. if (!__comp_v_pos) { __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); } if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false && __comp_pos_v && (__after._M_node == &this->_M_header._M_data || _M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) { if (_S_right(__position._M_node) == 0) return _M_insert(__position._M_node, __val, 0, __position._M_node); else return _M_insert(__after._M_node, __val, __after._M_node); } else { // Test for equivalent case if (__comp_v_pos == __comp_pos_v) return __position; else return insert_unique(__val).first; } } } }