예제 #1
0
파일: tlb_64.c 프로젝트: wesen/lemonix
/*
 * Update the MMU hash table to correspond with a change to
 * a Linux PTE.  If wrprot is true, it is permissible to
 * change the existing HPTE to read-only rather than removing it
 * (if we remove it we should clear the _PTE_HPTEFLAGS bits).
 */
void hpte_update(struct mm_struct *mm, unsigned long addr,
                 pte_t *ptep, unsigned long pte, int huge)
{
    struct ppc64_tlb_batch *batch = &__get_cpu_var(ppc64_tlb_batch);
    unsigned long vsid;
    unsigned int psize;
    int i;

    i = batch->index;

    /* We mask the address for the base page size. Huge pages will
     * have applied their own masking already
     */
    addr &= PAGE_MASK;

    /* Get page size (maybe move back to caller) */
    if (huge) {
#ifdef CONFIG_HUGETLB_PAGE
        psize = mmu_huge_psize;
#else
        BUG();
        psize = pte_pagesize_index(pte); /* shutup gcc */
#endif
    } else
        psize = pte_pagesize_index(pte);

    /*
     * This can happen when we are in the middle of a TLB batch and
     * we encounter memory pressure (eg copy_page_range when it tries
     * to allocate a new pte). If we have to reclaim memory and end
     * up scanning and resetting referenced bits then our batch context
     * will change mid stream.
     *
     * We also need to ensure only one page size is present in a given
     * batch
     */
    if (i != 0 && (mm != batch->mm || batch->psize != psize)) {
        flush_tlb_pending();
        i = 0;
    }
    if (i == 0) {
        batch->mm = mm;
        batch->psize = psize;
    }
    if (!is_kernel_addr(addr)) {
        vsid = get_vsid(mm->context.id, addr);
        WARN_ON(vsid == 0);
    } else
        vsid = get_kernel_vsid(addr);
    batch->vaddr[i] = (vsid << 28 ) | (addr & 0x0fffffff);
    batch->pte[i] = __real_pte(__pte(pte), ptep);
    batch->index = ++i;
    if (i >= PPC64_TLB_BATCH_NR)
        flush_tlb_pending();
}
예제 #2
0
/*
 * A linux PTE was changed and the corresponding hash table entry
 * neesd to be flushed. This function will either perform the flush
 * immediately or will batch it up if the current CPU has an active
 * batch on it.
 */
void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
                     pte_t *ptep, unsigned long pte, int huge)
{
    unsigned long vpn;
    struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
    unsigned long vsid;
    unsigned int psize;
    int ssize;
    real_pte_t rpte;
    int i;

    i = batch->index;

    /* Get page size (maybe move back to caller).
     *
     * NOTE: when using special 64K mappings in 4K environment like
     * for SPEs, we obtain the page size from the slice, which thus
     * must still exist (and thus the VMA not reused) at the time
     * of this call
     */
    if (huge) {
#ifdef CONFIG_HUGETLB_PAGE
        psize = get_slice_psize(mm, addr);
        /* Mask the address for the correct page size */
        addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
#else
        BUG();
        psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
#endif
    } else {
        psize = pte_pagesize_index(mm, addr, pte);
        /* Mask the address for the standard page size.  If we
         * have a 64k page kernel, but the hardware does not
         * support 64k pages, this might be different from the
         * hardware page size encoded in the slice table. */
        addr &= PAGE_MASK;
    }


    /* Build full vaddr */
    if (!is_kernel_addr(addr)) {
        ssize = user_segment_size(addr);
        vsid = get_vsid(mm->context.id, addr, ssize);
    } else {
        vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
        ssize = mmu_kernel_ssize;
    }
    WARN_ON(vsid == 0);
    vpn = hpt_vpn(addr, vsid, ssize);
    rpte = __real_pte(__pte(pte), ptep);

    /*
     * Check if we have an active batch on this CPU. If not, just
     * flush now and return. For now, we don global invalidates
     * in that case, might be worth testing the mm cpu mask though
     * and decide to use local invalidates instead...
     */
    if (!batch->active) {
        flush_hash_page(vpn, rpte, psize, ssize, 0);
        put_cpu_var(ppc64_tlb_batch);
        return;
    }

    /*
     * This can happen when we are in the middle of a TLB batch and
     * we encounter memory pressure (eg copy_page_range when it tries
     * to allocate a new pte). If we have to reclaim memory and end
     * up scanning and resetting referenced bits then our batch context
     * will change mid stream.
     *
     * We also need to ensure only one page size is present in a given
     * batch
     */
    if (i != 0 && (mm != batch->mm || batch->psize != psize ||
                   batch->ssize != ssize)) {
        __flush_tlb_pending(batch);
        i = 0;
    }
    if (i == 0) {
        batch->mm = mm;
        batch->psize = psize;
        batch->ssize = ssize;
    }
    batch->pte[i] = rpte;
    batch->vpn[i] = vpn;
    batch->index = ++i;
    if (i >= PPC64_TLB_BATCH_NR)
        __flush_tlb_pending(batch);
    put_cpu_var(ppc64_tlb_batch);
}
예제 #3
0
파일: hash64_64k.c 프로젝트: AK101111/linux
int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid,
		   pte_t *ptep, unsigned long trap, unsigned long flags,
		   int ssize, int subpg_prot)
{
	real_pte_t rpte;
	unsigned long *hidxp;
	unsigned long hpte_group;
	unsigned int subpg_index;
	unsigned long rflags, pa, hidx;
	unsigned long old_pte, new_pte, subpg_pte;
	unsigned long vpn, hash, slot;
	unsigned long shift = mmu_psize_defs[MMU_PAGE_4K].shift;

	/*
	 * atomically mark the linux large page PTE busy and dirty
	 */
	do {
		pte_t pte = READ_ONCE(*ptep);

		old_pte = pte_val(pte);
		/* If PTE busy, retry the access */
		if (unlikely(old_pte & H_PAGE_BUSY))
			return 0;
		/* If PTE permissions don't match, take page fault */
		if (unlikely(!check_pte_access(access, old_pte)))
			return 1;
		/*
		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
		 * a write access. Since this is 4K insert of 64K page size
		 * also add H_PAGE_COMBO
		 */
		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED | H_PAGE_COMBO;
		if (access & _PAGE_WRITE)
			new_pte |= _PAGE_DIRTY;
	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));

	/*
	 * Handle the subpage protection bits
	 */
	subpg_pte = new_pte & ~subpg_prot;
	rflags = htab_convert_pte_flags(subpg_pte);

	if (!cpu_has_feature(CPU_FTR_NOEXECUTE) &&
	    !cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) {

		/*
		 * No CPU has hugepages but lacks no execute, so we
		 * don't need to worry about that case
		 */
		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
	}

	subpg_index = (ea & (PAGE_SIZE - 1)) >> shift;
	vpn  = hpt_vpn(ea, vsid, ssize);
	rpte = __real_pte(__pte(old_pte), ptep);
	/*
	 *None of the sub 4k page is hashed
	 */
	if (!(old_pte & H_PAGE_HASHPTE))
		goto htab_insert_hpte;
	/*
	 * Check if the pte was already inserted into the hash table
	 * as a 64k HW page, and invalidate the 64k HPTE if so.
	 */
	if (!(old_pte & H_PAGE_COMBO)) {
		flush_hash_page(vpn, rpte, MMU_PAGE_64K, ssize, flags);
		/*
		 * clear the old slot details from the old and new pte.
		 * On hash insert failure we use old pte value and we don't
		 * want slot information there if we have a insert failure.
		 */
		old_pte &= ~(H_PAGE_HASHPTE | H_PAGE_F_GIX | H_PAGE_F_SECOND);
		new_pte &= ~(H_PAGE_HASHPTE | H_PAGE_F_GIX | H_PAGE_F_SECOND);
		goto htab_insert_hpte;
	}
	/*
	 * Check for sub page valid and update
	 */
	if (__rpte_sub_valid(rpte, subpg_index)) {
		int ret;

		hash = hpt_hash(vpn, shift, ssize);
		hidx = __rpte_to_hidx(rpte, subpg_index);
		if (hidx & _PTEIDX_SECONDARY)
			hash = ~hash;
		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
		slot += hidx & _PTEIDX_GROUP_IX;

		ret = mmu_hash_ops.hpte_updatepp(slot, rflags, vpn,
						 MMU_PAGE_4K, MMU_PAGE_4K,
						 ssize, flags);
		/*
		 *if we failed because typically the HPTE wasn't really here
		 * we try an insertion.
		 */
		if (ret == -1)
			goto htab_insert_hpte;

		*ptep = __pte(new_pte & ~H_PAGE_BUSY);
		return 0;
	}

htab_insert_hpte:
	/*
	 * handle H_PAGE_4K_PFN case
	 */
	if (old_pte & H_PAGE_4K_PFN) {
		/*
		 * All the sub 4k page have the same
		 * physical address.
		 */
		pa = pte_pfn(__pte(old_pte)) << HW_PAGE_SHIFT;
	} else {
		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
		pa += (subpg_index << shift);
	}
	hash = hpt_hash(vpn, shift, ssize);
repeat:
	hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;

	/* Insert into the hash table, primary slot */
	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
					MMU_PAGE_4K, MMU_PAGE_4K, ssize);
	/*
	 * Primary is full, try the secondary
	 */
	if (unlikely(slot == -1)) {
		hpte_group = ((~hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
						rflags, HPTE_V_SECONDARY,
						MMU_PAGE_4K, MMU_PAGE_4K,
						ssize);
		if (slot == -1) {
			if (mftb() & 0x1)
				hpte_group = ((hash & htab_hash_mask) *
					      HPTES_PER_GROUP) & ~0x7UL;
			mmu_hash_ops.hpte_remove(hpte_group);
			/*
			 * FIXME!! Should be try the group from which we removed ?
			 */
			goto repeat;
		}
	}
	/*
	 * Hypervisor failure. Restore old pte and return -1
	 * similar to __hash_page_*
	 */
	if (unlikely(slot == -2)) {
		*ptep = __pte(old_pte);
		hash_failure_debug(ea, access, vsid, trap, ssize,
				   MMU_PAGE_4K, MMU_PAGE_4K, old_pte);
		return -1;
	}
	/*
	 * Insert slot number & secondary bit in PTE second half,
	 * clear H_PAGE_BUSY and set appropriate HPTE slot bit
	 * Since we have H_PAGE_BUSY set on ptep, we can be sure
	 * nobody is undating hidx.
	 */
	hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
	rpte.hidx &= ~(0xfUL << (subpg_index << 2));
	*hidxp = rpte.hidx  | (slot << (subpg_index << 2));
	new_pte = mark_subptegroup_valid(new_pte, subpg_index);
	new_pte |=  H_PAGE_HASHPTE;
	/*
	 * check __real_pte for details on matching smp_rmb()
	 */
	smp_wmb();
	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
	return 0;
}
예제 #4
0
int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid,
		   pte_t *ptep, unsigned long trap, unsigned long flags,
		   int ssize, int subpg_prot)
{
	real_pte_t rpte;
	unsigned long hpte_group;
	unsigned int subpg_index;
	unsigned long rflags, pa;
	unsigned long old_pte, new_pte, subpg_pte;
	unsigned long vpn, hash, slot, gslot;
	unsigned long shift = mmu_psize_defs[MMU_PAGE_4K].shift;

	/*
	 * atomically mark the linux large page PTE busy and dirty
	 */
	do {
		pte_t pte = READ_ONCE(*ptep);

		old_pte = pte_val(pte);
		/* If PTE busy, retry the access */
		if (unlikely(old_pte & H_PAGE_BUSY))
			return 0;
		/* If PTE permissions don't match, take page fault */
		if (unlikely(!check_pte_access(access, old_pte)))
			return 1;
		/*
		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
		 * a write access. Since this is 4K insert of 64K page size
		 * also add H_PAGE_COMBO
		 */
		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED | H_PAGE_COMBO;
		if (access & _PAGE_WRITE)
			new_pte |= _PAGE_DIRTY;
	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));

	/*
	 * Handle the subpage protection bits
	 */
	subpg_pte = new_pte & ~subpg_prot;
	rflags = htab_convert_pte_flags(subpg_pte);

	if (cpu_has_feature(CPU_FTR_NOEXECUTE) &&
	    !cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) {

		/*
		 * No CPU has hugepages but lacks no execute, so we
		 * don't need to worry about that case
		 */
		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
	}

	subpg_index = (ea & (PAGE_SIZE - 1)) >> shift;
	vpn  = hpt_vpn(ea, vsid, ssize);
	rpte = __real_pte(__pte(old_pte), ptep);
	/*
	 *None of the sub 4k page is hashed
	 */
	if (!(old_pte & H_PAGE_HASHPTE))
		goto htab_insert_hpte;
	/*
	 * Check if the pte was already inserted into the hash table
	 * as a 64k HW page, and invalidate the 64k HPTE if so.
	 */
	if (!(old_pte & H_PAGE_COMBO)) {
		flush_hash_page(vpn, rpte, MMU_PAGE_64K, ssize, flags);
		/*
		 * clear the old slot details from the old and new pte.
		 * On hash insert failure we use old pte value and we don't
		 * want slot information there if we have a insert failure.
		 */
		old_pte &= ~H_PAGE_HASHPTE;
		new_pte &= ~H_PAGE_HASHPTE;
		goto htab_insert_hpte;
	}
	/*
	 * Check for sub page valid and update
	 */
	if (__rpte_sub_valid(rpte, subpg_index)) {
		int ret;

		gslot = pte_get_hash_gslot(vpn, shift, ssize, rpte,
					   subpg_index);
		ret = mmu_hash_ops.hpte_updatepp(gslot, rflags, vpn,
						 MMU_PAGE_4K, MMU_PAGE_4K,
						 ssize, flags);

		/*
		 * If we failed because typically the HPTE wasn't really here
		 * we try an insertion.
		 */
		if (ret == -1)
			goto htab_insert_hpte;

		*ptep = __pte(new_pte & ~H_PAGE_BUSY);
		return 0;
	}

htab_insert_hpte:

	/*
	 * Initialize all hidx entries to invalid value, the first time
	 * the PTE is about to allocate a 4K HPTE.
	 */
	if (!(old_pte & H_PAGE_COMBO))
		rpte.hidx = INVALID_RPTE_HIDX;

	/*
	 * handle H_PAGE_4K_PFN case
	 */
	if (old_pte & H_PAGE_4K_PFN) {
		/*
		 * All the sub 4k page have the same
		 * physical address.
		 */
		pa = pte_pfn(__pte(old_pte)) << HW_PAGE_SHIFT;
	} else {
		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
		pa += (subpg_index << shift);
	}
	hash = hpt_hash(vpn, shift, ssize);
repeat:
	hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;

	/* Insert into the hash table, primary slot */
	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
					MMU_PAGE_4K, MMU_PAGE_4K, ssize);
	/*
	 * Primary is full, try the secondary
	 */
	if (unlikely(slot == -1)) {
		bool soft_invalid;

		hpte_group = ((~hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
						rflags, HPTE_V_SECONDARY,
						MMU_PAGE_4K, MMU_PAGE_4K,
						ssize);

		soft_invalid = hpte_soft_invalid(slot);
		if (unlikely(soft_invalid)) {
			/*
			 * We got a valid slot from a hardware point of view.
			 * but we cannot use it, because we use this special
			 * value; as defined by hpte_soft_invalid(), to track
			 * invalid slots. We cannot use it. So invalidate it.
			 */
			gslot = slot & _PTEIDX_GROUP_IX;
			mmu_hash_ops.hpte_invalidate(hpte_group + gslot, vpn,
						     MMU_PAGE_4K, MMU_PAGE_4K,
						     ssize, 0);
		}

		if (unlikely(slot == -1 || soft_invalid)) {
			/*
			 * For soft invalid slot, let's ensure that we release a
			 * slot from the primary, with the hope that we will
			 * acquire that slot next time we try. This will ensure
			 * that we do not get the same soft-invalid slot.
			 */
			if (soft_invalid || (mftb() & 0x1))
				hpte_group = ((hash & htab_hash_mask) *
					      HPTES_PER_GROUP) & ~0x7UL;

			mmu_hash_ops.hpte_remove(hpte_group);
			/*
			 * FIXME!! Should be try the group from which we removed ?
			 */
			goto repeat;
		}
	}
	/*
	 * Hypervisor failure. Restore old pte and return -1
	 * similar to __hash_page_*
	 */
	if (unlikely(slot == -2)) {
		*ptep = __pte(old_pte);
		hash_failure_debug(ea, access, vsid, trap, ssize,
				   MMU_PAGE_4K, MMU_PAGE_4K, old_pte);
		return -1;
	}

	new_pte |= pte_set_hidx(ptep, rpte, subpg_index, slot);
	new_pte |= H_PAGE_HASHPTE;

	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
	return 0;
}
예제 #5
0
int __hash_page_64K(unsigned long ea, unsigned long access,
		    unsigned long vsid, pte_t *ptep, unsigned long trap,
		    unsigned long flags, int ssize)
{
	real_pte_t rpte;
	unsigned long hpte_group;
	unsigned long rflags, pa;
	unsigned long old_pte, new_pte;
	unsigned long vpn, hash, slot;
	unsigned long shift = mmu_psize_defs[MMU_PAGE_64K].shift;

	/*
	 * atomically mark the linux large page PTE busy and dirty
	 */
	do {
		pte_t pte = READ_ONCE(*ptep);

		old_pte = pte_val(pte);
		/* If PTE busy, retry the access */
		if (unlikely(old_pte & H_PAGE_BUSY))
			return 0;
		/* If PTE permissions don't match, take page fault */
		if (unlikely(!check_pte_access(access, old_pte)))
			return 1;
		/*
		 * Check if PTE has the cache-inhibit bit set
		 * If so, bail out and refault as a 4k page
		 */
		if (!mmu_has_feature(MMU_FTR_CI_LARGE_PAGE) &&
		    unlikely(pte_ci(pte)))
			return 0;
		/*
		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
		 * a write access.
		 */
		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED;
		if (access & _PAGE_WRITE)
			new_pte |= _PAGE_DIRTY;
	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));

	rflags = htab_convert_pte_flags(new_pte);
	rpte = __real_pte(__pte(old_pte), ptep);

	if (cpu_has_feature(CPU_FTR_NOEXECUTE) &&
	    !cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);

	vpn  = hpt_vpn(ea, vsid, ssize);
	if (unlikely(old_pte & H_PAGE_HASHPTE)) {
		unsigned long gslot;

		/*
		 * There MIGHT be an HPTE for this pte
		 */
		gslot = pte_get_hash_gslot(vpn, shift, ssize, rpte, 0);
		if (mmu_hash_ops.hpte_updatepp(gslot, rflags, vpn, MMU_PAGE_64K,
					       MMU_PAGE_64K, ssize,
					       flags) == -1)
			old_pte &= ~_PAGE_HPTEFLAGS;
	}

	if (likely(!(old_pte & H_PAGE_HASHPTE))) {

		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
		hash = hpt_hash(vpn, shift, ssize);

repeat:
		hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;

		/* Insert into the hash table, primary slot */
		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
						MMU_PAGE_64K, MMU_PAGE_64K,
						ssize);
		/*
		 * Primary is full, try the secondary
		 */
		if (unlikely(slot == -1)) {
			hpte_group = ((~hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
			slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
							rflags,
							HPTE_V_SECONDARY,
							MMU_PAGE_64K,
							MMU_PAGE_64K, ssize);
			if (slot == -1) {
				if (mftb() & 0x1)
					hpte_group = ((hash & htab_hash_mask) *
						      HPTES_PER_GROUP) & ~0x7UL;
				mmu_hash_ops.hpte_remove(hpte_group);
				/*
				 * FIXME!! Should be try the group from which we removed ?
				 */
				goto repeat;
			}
		}
		/*
		 * Hypervisor failure. Restore old pte and return -1
		 * similar to __hash_page_*
		 */
		if (unlikely(slot == -2)) {
			*ptep = __pte(old_pte);
			hash_failure_debug(ea, access, vsid, trap, ssize,
					   MMU_PAGE_64K, MMU_PAGE_64K, old_pte);
			return -1;
		}

		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | H_PAGE_HASHPTE;
		new_pte |= pte_set_hidx(ptep, rpte, 0, slot);
	}
	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
	return 0;
}
예제 #6
0
파일: tlb_64.c 프로젝트: cilynx/dd-wrt
/*
 * A linux PTE was changed and the corresponding hash table entry
 * neesd to be flushed. This function will either perform the flush
 * immediately or will batch it up if the current CPU has an active
 * batch on it.
 *
 * Must be called from within some kind of spinlock/non-preempt region...
 */
void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
		     pte_t *ptep, unsigned long pte, int huge)
{
	struct ppc64_tlb_batch *batch = &__get_cpu_var(ppc64_tlb_batch);
	unsigned long vsid, vaddr;
	unsigned int psize;
	real_pte_t rpte;
	int i;

	i = batch->index;

	/* We mask the address for the base page size. Huge pages will
	 * have applied their own masking already
	 */
	addr &= PAGE_MASK;

	/* Get page size (maybe move back to caller).
	 *
	 * NOTE: when using special 64K mappings in 4K environment like
	 * for SPEs, we obtain the page size from the slice, which thus
	 * must still exist (and thus the VMA not reused) at the time
	 * of this call
	 */
	if (huge) {
#ifdef CONFIG_HUGETLB_PAGE
		psize = mmu_huge_psize;
#else
		BUG();
		psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
#endif
	} else
		psize = pte_pagesize_index(mm, addr, pte);

	/* Build full vaddr */
	if (!is_kernel_addr(addr)) {
		vsid = get_vsid(mm->context.id, addr);
		WARN_ON(vsid == 0);
	} else
		vsid = get_kernel_vsid(addr);
	vaddr = (vsid << 28 ) | (addr & 0x0fffffff);
	rpte = __real_pte(__pte(pte), ptep);

	/*
	 * Check if we have an active batch on this CPU. If not, just
	 * flush now and return. For now, we don global invalidates
	 * in that case, might be worth testing the mm cpu mask though
	 * and decide to use local invalidates instead...
	 */
	if (!batch->active) {
		flush_hash_page(vaddr, rpte, psize, 0);
		return;
	}

	/*
	 * This can happen when we are in the middle of a TLB batch and
	 * we encounter memory pressure (eg copy_page_range when it tries
	 * to allocate a new pte). If we have to reclaim memory and end
	 * up scanning and resetting referenced bits then our batch context
	 * will change mid stream.
	 *
	 * We also need to ensure only one page size is present in a given
	 * batch
	 */
	if (i != 0 && (mm != batch->mm || batch->psize != psize)) {
		__flush_tlb_pending(batch);
		i = 0;
	}
	if (i == 0) {
		batch->mm = mm;
		batch->psize = psize;
	}
	batch->pte[i] = rpte;
	batch->vaddr[i] = vaddr;
	batch->index = ++i;
	if (i >= PPC64_TLB_BATCH_NR)
		__flush_tlb_pending(batch);
}