void _pixman_general_conical_gradient_get_scanline_32 (pixman_image_t *image, int x, int y, int width, uint32_t * buffer, const uint32_t *mask, uint32_t mask_bits) { source_image_t *source = (source_image_t *)image; gradient_t *gradient = (gradient_t *)source; conical_gradient_t *conical = (conical_gradient_t *)image; uint32_t *end = buffer + width; pixman_gradient_walker_t walker; pixman_bool_t affine = TRUE; double cx = 1.; double cy = 0.; double cz = 0.; double rx = x + 0.5; double ry = y + 0.5; double rz = 1.; double a = (conical->angle * M_PI) / (180. * 65536); _pixman_gradient_walker_init (&walker, gradient, source->common.repeat); if (source->common.transform) { pixman_vector_t v; /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; if (!pixman_transform_point_3d (source->common.transform, &v)) return; cx = source->common.transform->matrix[0][0] / 65536.; cy = source->common.transform->matrix[1][0] / 65536.; cz = source->common.transform->matrix[2][0] / 65536.; rx = v.vector[0] / 65536.; ry = v.vector[1] / 65536.; rz = v.vector[2] / 65536.; affine = source->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1; } if (affine) { rx -= conical->center.x / 65536.; ry -= conical->center.y / 65536.; while (buffer < end) { double angle; if (!mask || *mask++ & mask_bits) { pixman_fixed_48_16_t t; angle = atan2 (ry, rx) + a; t = (pixman_fixed_48_16_t) (angle * (65536. / (2 * M_PI))); *buffer = _pixman_gradient_walker_pixel (&walker, t); } ++buffer; rx += cx; ry += cy; } } else { while (buffer < end) { double x, y; double angle; if (!mask || *mask++ & mask_bits) { pixman_fixed_48_16_t t; if (rz != 0) { x = rx / rz; y = ry / rz; } else { x = y = 0.; } x -= conical->center.x / 65536.; y -= conical->center.y / 65536.; angle = atan2 (y, x) + a; t = (pixman_fixed_48_16_t) (angle * (65536. / (2 * M_PI))); *buffer = _pixman_gradient_walker_pixel (&walker, t); } ++buffer; rx += cx; ry += cy; rz += cz; } } }
static uint32_t * radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask) { /* * Implementation of radial gradients following the PDF specification. * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference * Manual (PDF 32000-1:2008 at the time of this writing). * * In the radial gradient problem we are given two circles (c₁,r₁) and * (c₂,r₂) that define the gradient itself. * * Mathematically the gradient can be defined as the family of circles * * ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂) * * excluding those circles whose radius would be < 0. When a point * belongs to more than one circle, the one with a bigger t is the only * one that contributes to its color. When a point does not belong * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0). * Further limitations on the range of values for t are imposed when * the gradient is not repeated, namely t must belong to [0,1]. * * The graphical result is the same as drawing the valid (radius > 0) * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient * is not repeated) using SOURCE operator composition. * * It looks like a cone pointing towards the viewer if the ending circle * is smaller than the starting one, a cone pointing inside the page if * the starting circle is the smaller one and like a cylinder if they * have the same radius. * * What we actually do is, given the point whose color we are interested * in, compute the t values for that point, solving for t in: * * length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂ * * Let's rewrite it in a simpler way, by defining some auxiliary * variables: * * cd = c₂ - c₁ * pd = p - c₁ * dr = r₂ - r₁ * length(t·cd - pd) = r₁ + t·dr * * which actually means * * hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr * * or * * ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr. * * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes: * * (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)² * * where we can actually expand the squares and solve for t: * * t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² = * = r₁² + 2·r₁·t·dr + t²·dr² * * (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t + * (pdx² + pdy² - r₁²) = 0 * * A = cdx² + cdy² - dr² * B = pdx·cdx + pdy·cdy + r₁·dr * C = pdx² + pdy² - r₁² * At² - 2Bt + C = 0 * * The solutions (unless the equation degenerates because of A = 0) are: * * t = (B ± ⎷(B² - A·C)) / A * * The solution we are going to prefer is the bigger one, unless the * radius associated to it is negative (or it falls outside the valid t * range). * * Additional observations (useful for optimizations): * A does not depend on p * * A < 0 <=> one of the two circles completely contains the other one * <=> for every p, the radiuses associated with the two t solutions * have opposite sign */ pixman_image_t *image = iter->image; int x = iter->x; int y = iter->y; int width = iter->width; uint32_t *buffer = iter->buffer; gradient_t *gradient = (gradient_t *)image; radial_gradient_t *radial = (radial_gradient_t *)image; uint32_t *end = buffer + width; pixman_gradient_walker_t walker; pixman_vector_t v, unit; /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; _pixman_gradient_walker_init (&walker, gradient, image->common.repeat); if (image->common.transform) { if (!pixman_transform_point_3d (image->common.transform, &v)) return iter->buffer; unit.vector[0] = image->common.transform->matrix[0][0]; unit.vector[1] = image->common.transform->matrix[1][0]; unit.vector[2] = image->common.transform->matrix[2][0]; } else { unit.vector[0] = pixman_fixed_1; unit.vector[1] = 0; unit.vector[2] = 0; } if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1) { /* * Given: * * t = (B ± ⎷(B² - A·C)) / A * * where * * A = cdx² + cdy² - dr² * B = pdx·cdx + pdy·cdy + r₁·dr * C = pdx² + pdy² - r₁² * det = B² - A·C * * Since we have an affine transformation, we know that (pdx, pdy) * increase linearly with each pixel, * * pdx = pdx₀ + n·ux, * pdy = pdy₀ + n·uy, * * we can then express B, C and det through multiple differentiation. */ pixman_fixed_32_32_t b, db, c, dc, ddc; /* warning: this computation may overflow */ v.vector[0] -= radial->c1.x; v.vector[1] -= radial->c1.y; /* * B and C are computed and updated exactly. * If fdot was used instead of dot, in the worst case it would * lose 11 bits of precision in each of the multiplication and * summing up would zero out all the bit that were preserved, * thus making the result 0 instead of the correct one. * This would mean a worst case of unbound relative error or * about 2^10 absolute error */ b = dot (v.vector[0], v.vector[1], radial->c1.radius, radial->delta.x, radial->delta.y, radial->delta.radius); db = dot (unit.vector[0], unit.vector[1], 0, radial->delta.x, radial->delta.y, 0); c = dot (v.vector[0], v.vector[1], -((pixman_fixed_48_16_t) radial->c1.radius), v.vector[0], v.vector[1], radial->c1.radius); dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0], 2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1], 0, unit.vector[0], unit.vector[1], 0); ddc = 2 * dot (unit.vector[0], unit.vector[1], 0, unit.vector[0], unit.vector[1], 0); while (buffer < end) { if (!mask || *mask++) { *buffer = radial_compute_color (radial->a, b, c, radial->inva, radial->delta.radius, radial->mindr, &walker, image->common.repeat); } b += db; c += dc; dc += ddc; ++buffer; } } else { /* projective */ /* Warning: * error propagation guarantees are much looser than in the affine case */ while (buffer < end) { if (!mask || *mask++) { if (v.vector[2] != 0) { double pdx, pdy, invv2, b, c; invv2 = 1. * pixman_fixed_1 / v.vector[2]; pdx = v.vector[0] * invv2 - radial->c1.x; /* / pixman_fixed_1 */ pdy = v.vector[1] * invv2 - radial->c1.y; /* / pixman_fixed_1 */ b = fdot (pdx, pdy, radial->c1.radius, radial->delta.x, radial->delta.y, radial->delta.radius); /* / pixman_fixed_1 / pixman_fixed_1 */ c = fdot (pdx, pdy, -radial->c1.radius, pdx, pdy, radial->c1.radius); /* / pixman_fixed_1 / pixman_fixed_1 */ *buffer = radial_compute_color (radial->a, b, c, radial->inva, radial->delta.radius, radial->mindr, &walker, image->common.repeat); } else { *buffer = 0; } } ++buffer; v.vector[0] += unit.vector[0]; v.vector[1] += unit.vector[1]; v.vector[2] += unit.vector[2]; } } iter->y++; return iter->buffer; }
void _pixman_general_radial_gradient_get_scanline_32 (pixman_image_t *image, int x, int y, int width, uint32_t * buffer, const uint32_t *mask, uint32_t mask_bits) { /* * In the radial gradient problem we are given two circles (c₁,r₁) and * (c₂,r₂) that define the gradient itself. Then, for any point p, we * must compute the value(s) of t within [0.0, 1.0] representing the * circle(s) that would color the point. * * There are potentially two values of t since the point p can be * colored by both sides of the circle, (which happens whenever one * circle is not entirely contained within the other). * * If we solve for a value of t that is outside of [0.0, 1.0] then we * use the extend mode (NONE, REPEAT, REFLECT, or PAD) to map to a * value within [0.0, 1.0]. * * Here is an illustration of the problem: * * p₂ * p • * • ╲ * · ╲r₂ * p₁ · ╲ * • θ╲ * ╲ ╌╌• * ╲r₁ · c₂ * θ╲ · * ╌╌• * c₁ * * Given (c₁,r₁), (c₂,r₂) and p, we must find an angle θ such that two * points p₁ and p₂ on the two circles are collinear with p. Then, the * desired value of t is the ratio of the length of p₁p to the length * of p₁p₂. * * So, we have six unknown values: (p₁x, p₁y), (p₂x, p₂y), θ and t. * We can also write six equations that constrain the problem: * * Point p₁ is a distance r₁ from c₁ at an angle of θ: * * 1. p₁x = c₁x + r₁·cos θ * 2. p₁y = c₁y + r₁·sin θ * * Point p₂ is a distance r₂ from c₂ at an angle of θ: * * 3. p₂x = c₂x + r2·cos θ * 4. p₂y = c₂y + r2·sin θ * * Point p lies at a fraction t along the line segment p₁p₂: * * 5. px = t·p₂x + (1-t)·p₁x * 6. py = t·p₂y + (1-t)·p₁y * * To solve, first subtitute 1-4 into 5 and 6: * * px = t·(c₂x + r₂·cos θ) + (1-t)·(c₁x + r₁·cos θ) * py = t·(c₂y + r₂·sin θ) + (1-t)·(c₁y + r₁·sin θ) * * Then solve each for cos θ and sin θ expressed as a function of t: * * cos θ = (-(c₂x - c₁x)·t + (px - c₁x)) / ((r₂-r₁)·t + r₁) * sin θ = (-(c₂y - c₁y)·t + (py - c₁y)) / ((r₂-r₁)·t + r₁) * * To simplify this a bit, we define new variables for several of the * common terms as shown below: * * p₂ * p • * • ╲ * · ┆ ╲r₂ * p₁ · ┆ ╲ * • pdy┆ ╲ * ╲ ┆ •c₂ * ╲r₁ ┆ · ┆ * ╲ ·┆ ┆cdy * •╌╌╌╌┴╌╌╌╌╌╌╌┘ * c₁ pdx cdx * * cdx = (c₂x - c₁x) * cdy = (c₂y - c₁y) * dr = r₂-r₁ * pdx = px - c₁x * pdy = py - c₁y * * Note that cdx, cdy, and dr do not depend on point p at all, so can * be pre-computed for the entire gradient. The simplifed equations * are now: * * cos θ = (-cdx·t + pdx) / (dr·t + r₁) * sin θ = (-cdy·t + pdy) / (dr·t + r₁) * * Finally, to get a single function of t and eliminate the last * unknown θ, we use the identity sin²θ + cos²θ = 1. First, square * each equation, (we knew a quadratic was coming since it must be * possible to obtain two solutions in some cases): * * cos²θ = (cdx²t² - 2·cdx·pdx·t + pdx²) / (dr²·t² + 2·r₁·dr·t + r₁²) * sin²θ = (cdy²t² - 2·cdy·pdy·t + pdy²) / (dr²·t² + 2·r₁·dr·t + r₁²) * * Then add both together, set the result equal to 1, and express as a * standard quadratic equation in t of the form At² + Bt + C = 0 * * (cdx² + cdy² - dr²)·t² - 2·(cdx·pdx + cdy·pdy + r₁·dr)·t + (pdx² + pdy² - r₁²) = 0 * * In other words: * * A = cdx² + cdy² - dr² * B = -2·(pdx·cdx + pdy·cdy + r₁·dr) * C = pdx² + pdy² - r₁² * * And again, notice that A does not depend on p, so can be * precomputed. From here we just use the quadratic formula to solve * for t: * * t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A */ gradient_t *gradient = (gradient_t *)image; source_image_t *source = (source_image_t *)image; radial_gradient_t *radial = (radial_gradient_t *)image; uint32_t *end = buffer + width; pixman_gradient_walker_t walker; pixman_bool_t affine = TRUE; double cx = 1.; double cy = 0.; double cz = 0.; double rx = x + 0.5; double ry = y + 0.5; double rz = 1.; _pixman_gradient_walker_init (&walker, gradient, source->common.repeat); if (source->common.transform) { pixman_vector_t v; /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; if (!pixman_transform_point_3d (source->common.transform, &v)) return; cx = source->common.transform->matrix[0][0] / 65536.; cy = source->common.transform->matrix[1][0] / 65536.; cz = source->common.transform->matrix[2][0] / 65536.; rx = v.vector[0] / 65536.; ry = v.vector[1] / 65536.; rz = v.vector[2] / 65536.; affine = source->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1; } if (affine) { /* When computing t over a scanline, we notice that some expressions * are constant so we can compute them just once. Given: * * t = (-2·B ± ⎷(B² - 4·A·C)) / 2·A * * where * * A = cdx² + cdy² - dr² [precomputed as radial->A] * B = -2·(pdx·cdx + pdy·cdy + r₁·dr) * C = pdx² + pdy² - r₁² * * Since we have an affine transformation, we know that (pdx, pdy) * increase linearly with each pixel, * * pdx = pdx₀ + n·cx, * pdy = pdy₀ + n·cy, * * we can then express B in terms of an linear increment along * the scanline: * * B = B₀ + n·cB, with * B₀ = -2·(pdx₀·cdx + pdy₀·cdy + r₁·dr) and * cB = -2·(cx·cdx + cy·cdy) * * Thus we can replace the full evaluation of B per-pixel (4 multiplies, * 2 additions) with a single addition. */ float r1 = radial->c1.radius / 65536.; float r1sq = r1 * r1; float pdx = rx - radial->c1.x / 65536.; float pdy = ry - radial->c1.y / 65536.; float A = radial->A; float invA = -65536. / (2. * A); float A4 = -4. * A; float B = -2. * (pdx*radial->cdx + pdy*radial->cdy + r1*radial->dr); float cB = -2. * (cx*radial->cdx + cy*radial->cdy); pixman_bool_t invert = A * radial->dr < 0; while (buffer < end) { if (!mask || *mask++ & mask_bits) { pixman_fixed_t t; double det = B * B + A4 * (pdx * pdx + pdy * pdy - r1sq); if (det <= 0.) t = (pixman_fixed_t) (B * invA); else if (invert) t = (pixman_fixed_t) ((B + sqrt (det)) * invA); else t = (pixman_fixed_t) ((B - sqrt (det)) * invA); *buffer = _pixman_gradient_walker_pixel (&walker, t); } ++buffer; pdx += cx; pdy += cy; B += cB; } } else { /* projective */ while (buffer < end) { if (!mask || *mask++ & mask_bits) { double pdx, pdy; double B, C; double det; double c1x = radial->c1.x / 65536.0; double c1y = radial->c1.y / 65536.0; double r1 = radial->c1.radius / 65536.0; pixman_fixed_48_16_t t; double x, y; if (rz != 0) { x = rx / rz; y = ry / rz; } else { x = y = 0.; } pdx = x - c1x; pdy = y - c1y; B = -2 * (pdx * radial->cdx + pdy * radial->cdy + r1 * radial->dr); C = (pdx * pdx + pdy * pdy - r1 * r1); det = (B * B) - (4 * radial->A * C); if (det < 0.0) det = 0.0; if (radial->A * radial->dr < 0) t = (pixman_fixed_48_16_t) ((-B - sqrt (det)) / (2.0 * radial->A) * 65536); else t = (pixman_fixed_48_16_t) ((-B + sqrt (det)) / (2.0 * radial->A) * 65536); *buffer = _pixman_gradient_walker_pixel (&walker, t); } ++buffer; rx += cx; ry += cy; rz += cz; } } }
static uint32_t * conical_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask) { pixman_image_t *image = iter->image; int x = iter->x; int y = iter->y; int width = iter->width; uint32_t *buffer = iter->buffer; gradient_t *gradient = (gradient_t *)image; conical_gradient_t *conical = (conical_gradient_t *)image; uint32_t *end = buffer + width; pixman_gradient_walker_t walker; pixman_bool_t affine = TRUE; double cx = 1.; double cy = 0.; double cz = 0.; double rx = x + 0.5; double ry = y + 0.5; double rz = 1.; _pixman_gradient_walker_init (&walker, gradient, image->common.repeat); if (image->common.transform) { pixman_vector_t v; /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; if (!pixman_transform_point_3d (image->common.transform, &v)) return iter->buffer; cx = image->common.transform->matrix[0][0] / 65536.; cy = image->common.transform->matrix[1][0] / 65536.; cz = image->common.transform->matrix[2][0] / 65536.; rx = v.vector[0] / 65536.; ry = v.vector[1] / 65536.; rz = v.vector[2] / 65536.; affine = image->common.transform->matrix[2][0] == 0 && v.vector[2] == pixman_fixed_1; } if (affine) { rx -= conical->center.x / 65536.; ry -= conical->center.y / 65536.; while (buffer < end) { if (!mask || *mask++) { double t = coordinates_to_parameter (rx, ry, conical->angle); *buffer = _pixman_gradient_walker_pixel ( &walker, (pixman_fixed_48_16_t)pixman_double_to_fixed (t)); } ++buffer; rx += cx; ry += cy; } } else { while (buffer < end) { double x, y; if (!mask || *mask++) { double t; if (rz != 0) { x = rx / rz; y = ry / rz; } else { x = y = 0.; } x -= conical->center.x / 65536.; y -= conical->center.y / 65536.; t = coordinates_to_parameter (x, y, conical->angle); *buffer = _pixman_gradient_walker_pixel ( &walker, (pixman_fixed_48_16_t)pixman_double_to_fixed (t)); } ++buffer; rx += cx; ry += cy; rz += cz; } } iter->y++; return iter->buffer; }
static uint32_t * linear_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask) { pixman_image_t *image = iter->image; int x = iter->x; int y = iter->y; int width = iter->width; uint32_t * buffer = iter->buffer; pixman_vector_t v, unit; pixman_fixed_32_32_t l; pixman_fixed_48_16_t dx, dy; gradient_t *gradient = (gradient_t *)image; linear_gradient_t *linear = (linear_gradient_t *)image; uint32_t *end = buffer + width; pixman_gradient_walker_t walker; _pixman_gradient_walker_init (&walker, gradient, image->common.repeat); /* reference point is the center of the pixel */ v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; v.vector[2] = pixman_fixed_1; if (image->common.transform) { if (!pixman_transform_point_3d (image->common.transform, &v)) return iter->buffer; unit.vector[0] = image->common.transform->matrix[0][0]; unit.vector[1] = image->common.transform->matrix[1][0]; unit.vector[2] = image->common.transform->matrix[2][0]; } else { unit.vector[0] = pixman_fixed_1; unit.vector[1] = 0; unit.vector[2] = 0; } dx = linear->p2.x - linear->p1.x; dy = linear->p2.y - linear->p1.y; l = dx * dx + dy * dy; if (l == 0 || unit.vector[2] == 0) { /* affine transformation only */ pixman_fixed_32_32_t t, next_inc; double inc; if (l == 0 || v.vector[2] == 0) { t = 0; inc = 0; } else { double invden, v2; invden = pixman_fixed_1 * (double) pixman_fixed_1 / (l * (double) v.vector[2]); v2 = v.vector[2] * (1. / pixman_fixed_1); t = ((dx * v.vector[0] + dy * v.vector[1]) - (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden; inc = (dx * unit.vector[0] + dy * unit.vector[1]) * invden; } next_inc = 0; if (((pixman_fixed_32_32_t )(inc * width)) == 0) { register uint32_t color; color = _pixman_gradient_walker_pixel (&walker, t); while (buffer < end) *buffer++ = color; } else { int i; i = 0; while (buffer < end) { if (!mask || *mask++) { *buffer = _pixman_gradient_walker_pixel (&walker, t + next_inc); } i++; next_inc = inc * i; buffer++; } } } else { /* projective transformation */ double t; t = 0; while (buffer < end) { if (!mask || *mask++) { if (v.vector[2] != 0) { double invden, v2; invden = pixman_fixed_1 * (double) pixman_fixed_1 / (l * (double) v.vector[2]); v2 = v.vector[2] * (1. / pixman_fixed_1); t = ((dx * v.vector[0] + dy * v.vector[1]) - (dx * linear->p1.x + dy * linear->p1.y) * v2) * invden; } *buffer = _pixman_gradient_walker_pixel (&walker, t); } ++buffer; v.vector[0] += unit.vector[0]; v.vector[1] += unit.vector[1]; v.vector[2] += unit.vector[2]; } } iter->y++; return iter->buffer; }