예제 #1
0
hMatrix Inverse_Kinematics(hMatrix Initial_T,hMatrix Goal_T,double *Initial_t, double *DH_alpha, double *DH_a, double *DH_d, int joint){

	for(int i=0; i<joint; i++){
		Initial_theta[i] = *Initial_t;
		Initial_t++;
	}

	hMatrix Initial_Theta(7,1);
	hMatrix J(6,7), Pinv_J(7,6);
	hMatrix n_a(3,1),s_a(3,1),a_a(3,1),n_t(3,1),s_t(3,1),a_t(3,1),p_del(3,1);
	double x,y,z,rx,ry,rz;
	double error_position[3]= {Goal_T.element(0,3)-Initial_T.element(0,3),Goal_T.element(1,3)-Initial_T.element(1,3),Goal_T.element(2,3)-Initial_T.element(2,3)};
	hMatrix P(3,1),R(3,1),Rotation(3,3),dx_temp1(3,1),dx_temp2(3,1),dX(6,1),del_Theta(7,1),Temp(7,1);


	Initial_Theta.SET(7,1,Initial_theta);

			Initial_T = T_hMatrix(&Initial_theta[0], &DH_alpha[0], &DH_a[0], &DH_d[0], joint);
			J = Jacobian_hMatrix(&Initial_theta[0], &DH_alpha[0], &DH_a[0], &DH_d[0]);
			Pinv_J = Pseudo_Inverse(J);

			for(int i = 0; i<3; i++){
				n_a.SetElement(i,0,Initial_T.element(i,0));
				s_a.SetElement(i,0,Initial_T.element(i,1));
				a_a.SetElement(i,0,Initial_T.element(i,2));
				n_t.SetElement(i,0,Goal_T.element(i,0));
				s_t.SetElement(i,0,Goal_T.element(i,1));
				a_t.SetElement(i,0,Goal_T.element(i,2));
				p_del.SetElement(i,0,Goal_T.element(i,3)-Initial_T.element(i,3));
			}
			
			x = dot(n_a, p_del); 
			y = dot(s_a, p_del); 
			z = dot(a_a, p_del); ;
			rx = (dot(a_a,s_t)-dot(a_t,s_a))/2;
			ry = (dot(n_a,a_t)-dot(n_t,a_a))/2;
			rz = (dot(s_a,n_t)-dot(s_t,n_a))/2;

			double dx_P[3] = {x,y,z},dx_R[3] = {rx,ry,rz};

			P.SET(3,1,&dx_P[0]);
			R.SET(3,1,&dx_R[0]);

			Rotation = T_Rotation(Initial_T);
			dx_temp1 = Rotation*P;
			dx_temp2 = Rotation*R;

			for(int i =0; i<3; i++){
				dX.SetElement(i,0,dx_temp1.element(i,0));
				dX.SetElement(i+3,0,dx_temp2.element(i,0));
			}
			
			del_Theta = Pinv_J*dX;

			for(int i=0; i<joint; i++)
				Temp.SetElement(i,0,Initial_Theta.element(i,0) + del_Theta.element(i,0));
			Initial_Theta = Temp;
	
	return Initial_Theta;
}
예제 #2
0
bool yee_compare(CompareArgs &args)
{
    if ((args.image_a_->get_width()  != args.image_b_->get_width()) or
        (args.image_a_->get_height() != args.image_b_->get_height()))
    {
        args.error_string_ = "Image dimensions do not match\n";
        return false;
    }

    const auto w = args.image_a_->get_width();
    const auto h = args.image_a_->get_height();
    const auto dim = w * h;

    auto identical = true;
    for (auto i = 0u; i < dim; i++)
    {
        if (args.image_a_->get(i) != args.image_b_->get(i))
        {
            identical = false;
            break;
        }
    }
    if (identical)
    {
        args.error_string_ = "Images are binary identical\n";
        return true;
    }

    // Assuming colorspaces are in Adobe RGB (1998) convert to XYZ.
    std::vector<float> a_lum(dim);
    std::vector<float> b_lum(dim);

    std::vector<float> a_a(dim);
    std::vector<float> b_a(dim);
    std::vector<float> a_b(dim);
    std::vector<float> b_b(dim);

    if (args.verbose_)
    {
        std::cout << "Converting RGB to XYZ\n";
    }

    const auto gamma = args.gamma_;
    const auto luminance = args.luminance_;

    #pragma omp parallel for shared(args, a_lum, b_lum, a_a, a_b, b_a, b_b)
    for (auto y = 0; y < static_cast<ptrdiff_t>(h); y++)
    {
        for (auto x = 0u; x < w; x++)
        {
            const auto i = x + y * w;
            const auto a_color_r = powf(args.image_a_->get_red(i) / 255.0f,
                                        gamma);
            const auto a_color_g = powf(args.image_a_->get_green(i) / 255.0f,
                                        gamma);
            const auto a_color_b = powf(args.image_a_->get_blue(i) / 255.0f,
                                        gamma);
            float a_x;
            float a_y;
            float a_z;
            adobe_rgb_to_xyz(a_color_r, a_color_g, a_color_b, a_x, a_y, a_z);
            float l;
            xyz_to_lab(a_x, a_y, a_z, l, a_a[i], a_b[i]);
            const auto b_color_r = powf(args.image_b_->get_red(i) / 255.0f,
                                        gamma);
            const auto b_color_g = powf(args.image_b_->get_green(i) / 255.0f,
                                        gamma);
            const auto b_color_b = powf(args.image_b_->get_blue(i) / 255.0f,
                                        gamma);
            float b_x;
            float b_y;
            float b_z;
            adobe_rgb_to_xyz(b_color_r, b_color_g, b_color_b, b_x, b_y, b_z);
            xyz_to_lab(b_x, b_y, b_z, l, b_a[i], b_b[i]);
            a_lum[i] = a_y * luminance;
            b_lum[i] = b_y * luminance;
        }
    }

    if (args.verbose_)
    {
        std::cout << "Constructing Laplacian Pyramids\n";
    }

    const LPyramid la(a_lum, w, h);
    const LPyramid lb(b_lum, w, h);

    const auto num_one_degree_pixels =
        to_degrees(2 *
                   std::tan(args.field_of_view_ * to_radians(.5f)));
    const auto pixels_per_degree = w / num_one_degree_pixels;

    if (args.verbose_)
    {
        std::cout << "Performing test\n";
    }

    const auto adaptation_level = adaptation(num_one_degree_pixels);

    float cpd[MAX_PYR_LEVELS];
    cpd[0] = 0.5f * pixels_per_degree;
    for (auto i = 1u; i < MAX_PYR_LEVELS; i++)
    {
        cpd[i] = 0.5f * cpd[i - 1];
    }
    const auto csf_max = csf(3.248f, 100.0f);

    static_assert(MAX_PYR_LEVELS > 2,
                  "MAX_PYR_LEVELS must be greater than 2");

    float f_freq[MAX_PYR_LEVELS - 2];
    for (auto i = 0u; i < MAX_PYR_LEVELS - 2; i++)
    {
        f_freq[i] = csf_max / csf(cpd[i], 100.0f);
    }

    auto pixels_failed = 0u;
    auto error_sum = 0.;

    #pragma omp parallel for reduction(+ : pixels_failed, error_sum) \
        shared(args, a_a, a_b, b_a, b_b, cpd, f_freq)
    for (auto y = 0; y < static_cast<ptrdiff_t>(h); y++)
    {
        for (auto x = 0u; x < w; x++)
        {
            const auto index = y * w + x;
            const auto adapt = std::max((la.get_value(x, y, adaptation_level) +
                                         lb.get_value(x, y, adaptation_level)) * 0.5f,
                                        1e-5f);
            auto sum_contrast = 0.f;
            auto factor = 0.f;
            for (auto i = 0u; i < MAX_PYR_LEVELS - 2; i++)
            {
                const auto n1 =
                    fabsf(la.get_value(x, y, i) - la.get_value(x, y, i + 1));
                const auto n2 =
                    fabsf(lb.get_value(x, y, i) - lb.get_value(x, y, i + 1));
                const auto numerator = std::max(n1, n2);
                const auto d1 = fabsf(la.get_value(x, y, i + 2));
                const auto d2 = fabsf(lb.get_value(x, y, i + 2));
                const auto denominator = std::max(std::max(d1, d2), 1e-5f);
                const auto contrast = numerator / denominator;
                const auto f_mask = mask(contrast * csf(cpd[i], adapt));
                factor += contrast * f_freq[i] * f_mask;
                sum_contrast += contrast;
            }
            sum_contrast = std::max(sum_contrast, 1e-5f);
            factor /= sum_contrast;
            factor = std::min(std::max(factor, 1.f), 10.f);
            const auto delta =
                fabsf(la.get_value(x, y, 0) - lb.get_value(x, y, 0));
            error_sum += delta;
            auto pass = true;

            // pure luminance test
            if (delta > factor * tvi(adapt))
            {
                pass = false;
            }

            if (not args.luminance_only_)
            {
                // CIE delta E test with modifications
                auto color_scale = args.color_factor_;
                // ramp down the color test in scotopic regions
                if (adapt < 10.0f)
                {
                    // Don't do color test at all.
                    color_scale = 0.0;
                }
                const auto da = a_a[index] - b_a[index];
                const auto db = a_b[index] - b_b[index];
                const auto delta_e = (da * da + db * db) * color_scale;
                error_sum += delta_e;
                if (delta_e > factor)
                {
                    pass = false;
                }
            }

            if (not pass)
            {
                pixels_failed++;
                if (args.image_difference_)
                {
                    args.image_difference_->set(255, 0, 0, 255, index);
                }
            }
            else
            {
                if (args.image_difference_)
                {
                    args.image_difference_->set(0, 0, 0, 255, index);
                }
            }
        }
    }

    const auto error_sum_buff =
        std::to_string(error_sum) + " error sum\n";

    const auto different =
        std::to_string(pixels_failed) + " pixels are different\n";

    // Always output image difference if requested.
    if (args.image_difference_)
    {
        args.image_difference_->write_to_file(args.image_difference_->get_name());

        args.error_string_ += "Wrote difference image to ";
        args.error_string_ += args.image_difference_->get_name();
        args.error_string_ += "\n";
    }

    if (pixels_failed < args.threshold_pixels_)
    {
        args.error_string_ = "Images are perceptually indistinguishable\n";
        args.error_string_ += different;
        return true;
    }

    args.error_string_ = "Images are visibly different\n";
    args.error_string_ += different;
    if (args.sum_errors_)
    {
        args.error_string_ += error_sum_buff;
    }

    return false;
}
예제 #3
0
double PlanOperation::calcA(double totalTblSizeIn100k) { return a_a() * totalTblSizeIn100k + a_b(); }