static void getEstimatedAttitude(void) { int32_t axis; int32_t accMag = 0; static t_fp_vector EstM; static t_fp_vector EstN = { .A = { 1.0f, 0.0f, 0.0f } }; static float accLPF[3]; static uint32_t previousT; uint32_t currentT = micros(); uint32_t deltaT; float scale, deltaGyroAngle[3]; deltaT = currentT - previousT; scale = deltaT * gyro.scale; previousT = currentT; // Initialization for (axis = 0; axis < 3; axis++) { deltaGyroAngle[axis] = gyroADC[axis] * scale; if (cfg.acc_lpf_factor > 0) { accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / cfg.acc_lpf_factor)) + accADC[axis] * (1.0f / cfg.acc_lpf_factor); accSmooth[axis] = accLPF[axis]; } else { accSmooth[axis] = accADC[axis]; } accMag += (int32_t)accSmooth[axis] * accSmooth[axis]; } accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G); rotateV(&EstG.V, deltaGyroAngle); // Apply complimentary filter (Gyro drift correction) // If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. // To do that, we just skip filter, as EstV already rotated by Gyro if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) { for (axis = 0; axis < 3; axis++) EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR; } f.SMALL_ANGLE = (EstG.A[Z] > smallAngle); // Attitude of the estimated vector anglerad[ROLL] = atan2f(EstG.V.Y, EstG.V.Z); anglerad[PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)); angle[ROLL] = lrintf(anglerad[ROLL] * (1800.0f / M_PI)); angle[PITCH] = lrintf(anglerad[PITCH] * (1800.0f / M_PI)); if (sensors(SENSOR_MAG)) { rotateV(&EstM.V, deltaGyroAngle); for (axis = 0; axis < 3; axis++) EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR; heading = calculateHeading(&EstM); } else { rotateV(&EstN.V, deltaGyroAngle); normalizeV(&EstN.V, &EstN.V); heading = calculateHeading(&EstN); } acc_calc(deltaT); // rotate acc vector into earth frame if (cfg.throttle_correction_value) { float cosZ = EstG.V.Z / sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z); if (cosZ <= 0.015f) { // we are inverted, vertical or with a small angle < 0.86 deg throttleAngleCorrection = 0; } else { int angle = lrintf(acosf(cosZ) * throttleAngleScale); if (angle > 900) angle = 900; throttleAngleCorrection = lrintf(cfg.throttle_correction_value * sinf(angle / (900.0f * M_PI / 2.0f))) ; } } }
static void getEstimatedAttitude(void) { int32_t axis; int32_t accMag = 0; static t_fp_vector EstM; static t_fp_vector EstN = { .A = { 1.0f, 0.0f, 0.0f } }; static float accLPF[3]; static uint32_t previousT; uint32_t currentT = micros(); uint32_t deltaT; float scale; fp_angles_t deltaGyroAngle; deltaT = currentT - previousT; scale = deltaT * gyroScaleRad; previousT = currentT; // Initialization for (axis = 0; axis < 3; axis++) { deltaGyroAngle.raw[axis] = gyroADC[axis] * scale; if (imuRuntimeConfig->acc_lpf_factor > 0) { accLPF[axis] = accLPF[axis] * (1.0f - (1.0f / imuRuntimeConfig->acc_lpf_factor)) + accADC[axis] * (1.0f / imuRuntimeConfig->acc_lpf_factor); accSmooth[axis] = accLPF[axis]; } else { accSmooth[axis] = accADC[axis]; } accMag += (int32_t)accSmooth[axis] * accSmooth[axis]; } accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G); rotateV(&EstG.V, &deltaGyroAngle); // Apply complimentary filter (Gyro drift correction) // If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. // To do that, we just skip filter, as EstV already rotated by Gyro float invGyroComplimentaryFilterFactor = (1.0f / (imuRuntimeConfig->gyro_cmpf_factor + 1.0f)); if (72 < (uint16_t)accMag && (uint16_t)accMag < 133) { for (axis = 0; axis < 3; axis++) EstG.A[axis] = (EstG.A[axis] * imuRuntimeConfig->gyro_cmpf_factor + accSmooth[axis]) * invGyroComplimentaryFilterFactor; } f.SMALL_ANGLE = (EstG.A[Z] > smallAngle); // Attitude of the estimated vector anglerad[AI_ROLL] = atan2f(EstG.V.Y, EstG.V.Z); anglerad[AI_PITCH] = atan2f(-EstG.V.X, sqrtf(EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)); inclination.values.rollDeciDegrees = lrintf(anglerad[AI_ROLL] * (1800.0f / M_PI)); inclination.values.pitchDeciDegrees = lrintf(anglerad[AI_PITCH] * (1800.0f / M_PI)); if (sensors(SENSOR_MAG)) { rotateV(&EstM.V, &deltaGyroAngle); // FIXME what does the _M_ mean? float invGyroComplimentaryFilter_M_Factor = (1.0f / (imuRuntimeConfig->gyro_cmpfm_factor + 1.0f)); for (axis = 0; axis < 3; axis++) { EstM.A[axis] = (EstM.A[axis] * imuRuntimeConfig->gyro_cmpfm_factor + magADC[axis]) * invGyroComplimentaryFilter_M_Factor; } heading = calculateHeading(&EstM); } else { rotateV(&EstN.V, &deltaGyroAngle); normalizeV(&EstN.V, &EstN.V); heading = calculateHeading(&EstN); } acc_calc(deltaT); // rotate acc vector into earth frame }