/** * \brief Enable re200b pir sensor */ void re200b_motion_detect_enable(void) { acc_enable(ACC); /* Enable compasion interrupt */ acc_enable_interrupt(ACC); /* Enable ACC interrupt */ NVIC_EnableIRQ(ACC_IRQn); }
/** * \brief ACC example application entry point. * * \return Unused (ANSI-C compatibility). */ int main(void) { uint32_t uc_key; int16_t s_volt = 0; uint32_t ul_value = 0; volatile uint32_t ul_status = 0x0; int32_t l_volt_dac0 = 0; /* Initialize the system */ sysclk_init(); board_init(); /* Initialize debug console */ configure_console(); /* Output example information */ puts(STRING_HEADER); /* Initialize DACC */ /* Enable clock for DACC */ pmc_enable_periph_clk(ID_DACC); /* Reset DACC registers */ dacc_reset(DACC); /* External trigger mode disabled. DACC in free running mode. */ dacc_disable_trigger(DACC, DACC_CHANNEL_0); /* Half word transfer mode */ dacc_set_transfer_mode(DACC, 0); #if (SAM3S) || (SAM3XA) /* Power save: * sleep mode - 0 (disabled) * fast wakeup - 0 (disabled) */ dacc_set_power_save(DACC, 0, 0); #endif /* Enable output channel DACC_CHANNEL */ dacc_enable_channel(DACC, DACC_CHANNEL_0); /* Setup analog current */ dacc_set_analog_control(DACC, DACC_ANALOG_CONTROL); /* Set DAC0 output at ADVREF/2. The DAC formula is: * * (5/6 * VOLT_REF) - (1/6 * VOLT_REF) volt - (1/6 * VOLT_REF) * ----------------------------------- = -------------------------- * MAX_DIGITAL digit * * Here, digit = MAX_DIGITAL/2 */ dacc_write_conversion_data(DACC, MAX_DIGITAL / 2, DACC_CHANNEL_0); l_volt_dac0 = (MAX_DIGITAL / 2) * (2 * VOLT_REF / 3) / MAX_DIGITAL + VOLT_REF / 6; /* Enable clock for AFEC */ afec_enable(AFEC0); struct afec_config afec_cfg; afec_get_config_defaults(&afec_cfg); /* Initialize AFEC */ afec_init(AFEC0, &afec_cfg); struct afec_ch_config afec_ch_cfg; afec_ch_get_config_defaults(&afec_ch_cfg); afec_ch_cfg.gain = AFEC_GAINVALUE_0; afec_ch_set_config(AFEC0, AFEC_CHANNEL_POTENTIOMETER, &afec_ch_cfg); /* * Because the internal ADC offset is 0x200, it should cancel it and shift * down to 0. */ afec_channel_set_analog_offset(AFEC0, AFEC_CHANNEL_POTENTIOMETER, 0x200); afec_set_trigger(AFEC0, AFEC_TRIG_SW); /* Enable channel for potentiometer. */ afec_channel_enable(AFEC0, AFEC_CHANNEL_POTENTIOMETER); /* Enable clock for ACC */ pmc_enable_periph_clk(ID_ACC); /* Initialize ACC */ acc_init(ACC, ACC_MR_SELPLUS_AFE0_AD0, ACC_MR_SELMINUS_DAC0, ACC_MR_EDGETYP_ANY, ACC_MR_INV_DIS); /* Enable ACC interrupt */ NVIC_EnableIRQ(ACC_IRQn); /* Enable */ acc_enable_interrupt(ACC); dsplay_menu(); while (1) { while (usart_read(CONSOLE_UART, &uc_key)) { } printf("input: %c\r\n", uc_key); switch (uc_key) { case 's': case 'S': printf("Input DAC0 output voltage (%d~%d mv): ", (VOLT_REF / 6), (VOLT_REF * 5 / 6)); s_volt = get_input_voltage(); puts("\r"); if (s_volt > 0) { l_volt_dac0 = s_volt; /* The DAC formula is: * * (5/6 * VOLT_REF) - (1/6 * VOLT_REF) volt - (1/6 * VOLT_REF) * ----------------------------------- = -------------------------- * MAX_DIGITAL digit * */ ul_value = ((s_volt - (VOLT_REF / 6)) * (MAX_DIGITAL * 6) / 4) / VOLT_REF; dacc_write_conversion_data(DACC, ul_value, DACC_CHANNEL_0); puts("-I- Set ok\r"); } else { puts("-I- Input voltage is invalid\r"); } break; case 'v': case 'V': /* Start conversion */ afec_start_software_conversion(AFEC0); ul_status = afec_get_interrupt_status(AFEC0); while ((ul_status & AFEC_ISR_EOC0) != AFEC_ISR_EOC0) { ul_status = afec_get_interrupt_status(AFEC0); } /* Conversion is done */ ul_value = afec_channel_get_value(AFEC0, AFEC_CHANNEL_POTENTIOMETER); /* * Convert AFEC sample data to voltage value: * voltage value = (sample data / max. resolution) * reference voltage */ s_volt = (ul_value * VOLT_REF) / MAX_DIGITAL; printf("-I- Voltage on potentiometer(AD0) is %d mv\n\r", s_volt); printf("-I- Voltage on DAC0 is %ld mv \n\r", (long)l_volt_dac0); break; case 'm': case 'M': dsplay_menu(); break; } } }
/** * \brief ACC example application entry point. * * \return Unused (ANSI-C compatibility). */ int main(void) { uint8_t uc_key; int16_t s_volt = 0; uint32_t ul_value = 0; volatile uint32_t ul_status = 0x0; int32_t l_volt_dac0 = 0; /* Initialize the system */ sysclk_init(); board_init(); /* Initialize debug console */ configure_console(); /* Output example information */ puts(STRING_HEADER); /* Initialize DACC */ /* Enable clock for DACC */ pmc_enable_periph_clk(ID_DACC); /* Reset DACC registers */ dacc_reset(DACC); /* External trigger mode disabled. DACC in free running mode. */ dacc_disable_trigger(DACC); /* Half word transfer mode */ dacc_set_transfer_mode(DACC, 0); /* Power save: * sleep mode - 0 (disabled) * fast wake-up - 0 (disabled) */ dacc_set_power_save(DACC, 0, 0); /* Timing: * refresh - 0x08 (1024*8 dacc clocks) * max speed mode - 0 (disabled) * startup time - 0xf (960 dacc clocks) */ dacc_set_timing(DACC, 0x08, 0, 0xf); /* Disable TAG and select output channel DACC_CHANNEL */ dacc_set_channel_selection(DACC, DACC_CHANNEL_0); /* Enable output channel DACC_CHANNEL */ dacc_enable_channel(DACC, DACC_CHANNEL_0); /* Setup analog current */ dacc_set_analog_control(DACC, DACC_ANALOG_CONTROL); /* Set DAC0 output at ADVREF/2. The DAC formula is: * * (5/6 * VOLT_REF) - (1/6 * VOLT_REF) volt - (1/6 * VOLT_REF) * ----------------------------------- = -------------------------- * MAX_DIGITAL digit * * Here, digit = MAX_DIGITAL/2 */ dacc_write_conversion_data(DACC, MAX_DIGITAL / 2); l_volt_dac0 = (MAX_DIGITAL / 2) * (2 * VOLT_REF / 3) / MAX_DIGITAL + VOLT_REF / 6; /* Initialize ADC */ /* Enable clock for ADC */ pmc_enable_periph_clk(ID_ADC); /* * Formula: ADCClock = MCK / ( (PRESCAL+1) * 2 ) * For example, MCK = 64MHZ, PRESCAL = 4, then: * ADCClock = 64 / ((4+1) * 2) = 6.4MHz; */ adc_init(ADC, sysclk_get_cpu_hz(), ADC_CLOCK, ADC_STARTUP_TIME_SETTING); /* Formula: * Startup Time = startup value / ADCClock * Transfer Time = (TRANSFER * 2 + 3) / ADCClock * Tracking Time = (TRACKTIM + 1) / ADCClock * Settling Time = settling value / ADCClock * For example, ADC clock = 6MHz (166.7 ns) * Startup time = 512 / 6MHz = 85.3 us * Transfer Time = (1 * 2 + 3) / 6MHz = 833.3 ns * Tracking Time = (0 + 1) / 6MHz = 166.7 ns * Settling Time = 3 / 6MHz = 500 ns */ /* Set ADC timing */ adc_configure_timing(ADC, ADC_TRACK_SETTING, ADC_SETTLING_TIME_3, ADC_TRANSFER_SETTING); /* Channel 5 has to be compared */ adc_enable_channel(ADC, ADC_CHANNEL_5); //! [acc_enable_clock] /** Enable clock for ACC */ pmc_enable_periph_clk(ID_ACC); //! [acc_enable_clock] //! [acc_init] /** Initialize ACC */ acc_init(ACC, ACC_MR_SELPLUS_AD5, ACC_MR_SELMINUS_DAC0, ACC_MR_EDGETYP_ANY, ACC_MR_INV_DIS); //! [acc_init] //! [acc_irq_enable] /** Enable ACC interrupt */ NVIC_EnableIRQ(ACC_IRQn); /** Enable */ acc_enable_interrupt(ACC); //! [acc_irq_enable] dsplay_menu(); while (1) { while (uart_read(CONSOLE_UART, &uc_key)) { } printf("input: %c\r\n", uc_key); switch (uc_key) { case 's': case 'S': printf("Input DAC0 output voltage (%d~%d mv): ", (VOLT_REF / 6), (VOLT_REF * 5 / 6)); s_volt = get_input_voltage(); puts("\r"); if (s_volt > 0) { l_volt_dac0 = s_volt; /* The DAC formula is: * * (5/6 * VOLT_REF) - (1/6 * VOLT_REF) volt - (1/6 * VOLT_REF) * ----------------------------------- = -------------------------- * MAX_DIGITAL digit * */ ul_value = ((s_volt - (VOLT_REF / 6)) * (MAX_DIGITAL * 6) / 4) / VOLT_REF; dacc_write_conversion_data(DACC, ul_value); puts("-I- Set ok\r"); } else { puts("-I- Input voltage is invalid\r"); } break; case 'v': case 'V': /* Start conversion */ adc_start(ADC); ul_status = adc_get_status(ADC); while ((ul_status & ADC_ISR_EOC5) != ADC_ISR_EOC5) { ul_status = adc_get_status(ADC); } /* Conversion is done */ ul_value = adc_get_channel_value(ADC, ADC_CHANNEL_5); /* * Convert ADC sample data to voltage value: * voltage value = (sample data / max. resolution) * reference voltage */ s_volt = (ul_value * VOLT_REF) / MAX_DIGITAL; printf("-I- Voltage on potentiometer(AD5) is %d mv\n\r", s_volt); printf("-I- Voltage on DAC0 is %ld mv \n\r", (long)l_volt_dac0); break; case 'm': case 'M': dsplay_menu(); break; } } }