static int acpi_pcib_pci_attach(device_t dev) { struct acpi_pcib_softc *sc; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); pcib_attach_common(dev); sc = device_get_softc(dev); sc->ap_handle = acpi_get_handle(dev); return (acpi_pcib_attach(dev, &sc->ap_prt, sc->ap_pcibsc.secbus)); }
static int acpi_pcib_acpi_attach(device_t dev) { struct acpi_hpcib_softc *sc; ACPI_STATUS status; static int bus0_seen = 0; u_int addr, slot, func, busok; uint8_t busno; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->ap_dev = dev; sc->ap_handle = acpi_get_handle(dev); /* * Get our segment number by evaluating _SEG * It's OK for this to not exist. */ status = acpi_GetInteger(sc->ap_handle, "_SEG", &sc->ap_segment); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) { device_printf(dev, "could not evaluate _SEG - %s\n", AcpiFormatException(status)); return_VALUE (ENXIO); } /* If it's not found, assume 0. */ sc->ap_segment = 0; } /* * Get our base bus number by evaluating _BBN. * If this doesn't work, we assume we're bus number 0. * * XXX note that it may also not exist in the case where we are * meant to use a private configuration space mechanism for this bus, * so we should dig out our resources and check to see if we have * anything like that. How do we do this? * XXX If we have the requisite information, and if we don't think the * default PCI configuration space handlers can deal with this bus, * we should attach our own handler. * XXX invoke _REG on this for the PCI config space address space? * XXX It seems many BIOS's with multiple Host-PCI bridges do not set * _BBN correctly. They set _BBN to zero for all bridges. Thus, * if _BBN is zero and PCI bus 0 already exists, we try to read our * bus number from the configuration registers at address _ADR. * We only do this for domain/segment 0 in the hopes that this is * only needed for old single-domain machines. */ status = acpi_GetInteger(sc->ap_handle, "_BBN", &sc->ap_bus); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) { device_printf(dev, "could not evaluate _BBN - %s\n", AcpiFormatException(status)); return_VALUE (ENXIO); } else { /* If it's not found, assume 0. */ sc->ap_bus = 0; } } /* * If this is segment 0, the bus is zero, and PCI bus 0 already * exists, read the bus number via PCI config space. */ busok = 1; if (sc->ap_segment == 0 && sc->ap_bus == 0 && bus0_seen) { busok = 0; status = acpi_GetInteger(sc->ap_handle, "_ADR", &addr); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) { device_printf(dev, "could not evaluate _ADR - %s\n", AcpiFormatException(status)); return_VALUE (ENXIO); } else device_printf(dev, "couldn't find _ADR\n"); } else { /* XXX: We assume bus 0. */ slot = ACPI_ADR_PCI_SLOT(addr); func = ACPI_ADR_PCI_FUNC(addr); if (bootverbose) device_printf(dev, "reading config registers from 0:%d:%d\n", slot, func); if (host_pcib_get_busno(pci_cfgregread, 0, slot, func, &busno) == 0) device_printf(dev, "couldn't read bus number from cfg space\n"); else { sc->ap_bus = busno; busok = 1; } } } /* * If nothing else worked, hope that ACPI at least lays out the * host-PCI bridges in order and that as a result our unit number * is actually our bus number. There are several reasons this * might not be true. */ if (busok == 0) { sc->ap_bus = device_get_unit(dev); device_printf(dev, "trying bus number %d\n", sc->ap_bus); } /* If this is bus 0 on segment 0, note that it has been seen already. */ if (sc->ap_segment == 0 && sc->ap_bus == 0) bus0_seen = 1; return (acpi_pcib_attach(dev, &sc->ap_prt, sc->ap_bus)); }