예제 #1
0
파일: trap.c 프로젝트: MarginC/kame
static __inline void
userret (struct lwp *l, register_t pc, u_quad_t oticks)
{
	struct proc *p = l->l_proc;
	int sig;

	/* take pending signals */
	while ((sig = CURSIG(l)) != 0)
		postsig(sig);

	l->l_priority = l->l_usrpri;
	if (want_resched) {
		/*
		 * We're being preempted.
		 */
		preempt(0);
		while ((sig = CURSIG(l)) != 0)
			postsig(sig);
	}

	/*
	 * If profiling, charge recent system time to the trapped pc.
	 */
	if (l->l_flag & P_PROFIL) {
		extern int psratio;

		addupc_task(p, pc, (int)(p->p_sticks - oticks) * psratio);
	}

	curcpu()->ci_schedstate.spc_curpriority = l->l_priority;
}
예제 #2
0
/*
 * trap and syscall both need the following work done before returning
 * to user mode.
 */
static inline void
userret(struct lwp *l, struct frame *fp, u_quad_t oticks, u_int faultaddr,
    int fromtrap)
{
	struct proc *p = l->l_proc;
#ifdef M68040
	int sig;
	int beenhere = 0;

again:
#endif
	/* Invoke MI userret code */
	mi_userret(l);

	/*
	 * If profiling, charge system time to the trapped pc.
	 */
	if (p->p_stflag & PST_PROFIL) {
		extern int psratio;

		addupc_task(l, fp->f_pc,
			    (int)(p->p_sticks - oticks) * psratio);
	}

#ifdef M68040
	/*
	 * Deal with user mode writebacks (from trap, or from sigreturn).
	 * If any writeback fails, go back and attempt signal delivery.
	 * unless we have already been here and attempted the writeback
	 * (e.g. bad address with user ignoring SIGSEGV).  In that case
	 * we just return to the user without successfully completing
	 * the writebacks.  Maybe we should just drop the sucker?
	 */
	if (
#if defined(M68030) || defined(M68060)
	    cputype == CPU_68040 &&
#endif
	    fp->f_format == FMT7) {
		if (beenhere) {
#ifdef DEBUG
			if (mmudebug & MDB_WBFAILED)
				printf(fromtrap ?
		"pid %d(%s): writeback aborted, pc=%x, fa=%x\n" :
		"pid %d(%s): writeback aborted in sigreturn, pc=%x\n",
				    p->p_pid, p->p_comm, fp->f_pc, faultaddr);
#endif
		} else if ((sig = writeback(fp, fromtrap))) {
			ksiginfo_t ksi;
			beenhere = 1;
			oticks = p->p_sticks;
			(void)memset(&ksi, 0, sizeof(ksi));
			ksi.ksi_signo = sig;
			ksi.ksi_addr = (void *)faultaddr;
			ksi.ksi_code = BUS_OBJERR;
			trapsignal(l, &ksi);
			goto again;
		}
	}
#endif
}
예제 #3
0
파일: trap.c 프로젝트: MarginC/kame
static inline void
userret(struct proc *p, struct trapframe *frame, u_quad_t oticks)
{
	int sig;

	/* take pending signals */
	while ((sig = CURSIG(p)) != 0)
		postsig(sig);
	p->p_priority = p->p_usrpri;

	if (want_resched) {
		/*
		 * We're being preempted.
		 */
		preempt(NULL);
		while ((sig = CURSIG(p)) != 0)
			postsig(sig);
	}

	/*
	 * If profiling, charge recent system time to the trapped pc.
	 */
	if (p->p_flag & P_PROFIL) {
		extern int psratio;

		addupc_task(p, frame->tf_sxip & XIP_ADDR,
		    (int)(p->p_sticks - oticks) * psratio);
	}
	curpriority = p->p_priority;
}
예제 #4
0
파일: ast.c 프로젝트: MarginC/kame
void
userret(struct proc *p, u_int32_t pc, quad_t oticks)
{
	int sig;

	/* Take pending signals. */
	while ((sig = (CURSIG(p))) != 0)
		postsig(sig);

	p->p_priority = p->p_usrpri;

	if (want_resched) {
		/*
		 * We're being preempted.
		 */
		preempt(NULL);
		while ((sig = CURSIG(p)) != 0)
			postsig(sig);
	}

	/*
	 * If profiling, charge recent system time to the trapped pc.
	 */
	if (p->p_flag & P_PROFIL) { 
		extern int psratio;

		addupc_task(p, pc, (int)(p->p_sticks - oticks) * psratio);
	}                   

	curpriority = p->p_priority;
}
예제 #5
0
/*
 * Define the code needed before returning to user mode, for trap and
 * syscall.
 */
void
userret(struct thread *td, struct trapframe *frame)
{
	struct proc *p = td->td_proc;

	CTR3(KTR_SYSC, "userret: thread %p (pid %d, %s)", td, p->p_pid,
            td->td_name);
	KASSERT((p->p_flag & P_WEXIT) == 0,
	    ("Exiting process returns to usermode"));
#if 0
#ifdef DIAGNOSTIC
	/* Check that we called signotify() enough. */
	PROC_LOCK(p);
	thread_lock(td);
	if (SIGPENDING(td) && ((td->td_flags & TDF_NEEDSIGCHK) == 0 ||
	    (td->td_flags & TDF_ASTPENDING) == 0))
		printf("failed to set signal flags properly for ast()\n");
	thread_unlock(td);
	PROC_UNLOCK(p);
#endif
#endif
#ifdef KTRACE
	KTRUSERRET(td);
#endif
	/*
	 * If this thread tickled GEOM, we need to wait for the giggling to
	 * stop before we return to userland
	 */
	if (td->td_pflags & TDP_GEOM)
		g_waitidle();

	/*
	 * Charge system time if profiling.
	 */
	if (p->p_flag & P_PROFIL)
		addupc_task(td, TRAPF_PC(frame), td->td_pticks * psratio);
	/*
	 * Let the scheduler adjust our priority etc.
	 */
	sched_userret(td);
	KASSERT(td->td_locks == 0,
	    ("userret: Returning with %d locks held.", td->td_locks));
#ifdef VIMAGE
	/* Unfortunately td_vnet_lpush needs VNET_DEBUG. */
	VNET_ASSERT(curvnet == NULL,
	    ("%s: Returning on td %p (pid %d, %s) with vnet %p set in %s",
	    __func__, td, p->p_pid, td->td_name, curvnet,
	    (td->td_vnet_lpush != NULL) ? td->td_vnet_lpush : "N/A"));
#endif
#ifdef XEN
	PT_UPDATES_FLUSH();
#endif
}
예제 #6
0
파일: trap.c 프로젝트: ryo/netbsd-src
/*
 * trap and syscall both need the following work done before
 * returning to user mode.
 */
static void 
userret(struct lwp *l, struct trapframe *tf, u_quad_t oticks)
{
	struct proc *p = l->l_proc;

	/* Invoke MI userret code */
	mi_userret(l);

	/*
	 * If profiling, charge system time to the trapped pc.
	 */
	if (p->p_stflag & PST_PROFIL) {
		extern int psratio;
		addupc_task(l, tf->tf_pc,
		            (int)(p->p_sticks - oticks) * psratio);
	}
}
예제 #7
0
파일: trap.c 프로젝트: dank101/4.4BSD-Alpha
/*
 * Define the code needed before returning to user mode, for
 * trap, mem_access_fault, and syscall.
 */
static inline void
userret(struct proc *p, int pc, u_quad_t oticks)
{
	int sig;

	/* take pending signals */
	while ((sig = CURSIG(p)) != 0)
		psig(sig);
	p->p_pri = p->p_usrpri;
	if (want_ast) {
		want_ast = 0;
		if (p->p_flag & SOWEUPC) {
			p->p_flag &= ~SOWEUPC;
			ADDUPROF(p);
		}
	}
	if (want_resched) {
		/*
		 * Since we are curproc, a clock interrupt could
		 * change our priority without changing run queues
		 * (the running process is not kept on a run queue).
		 * If this happened after we setrq ourselves but
		 * before we swtch()'ed, we might not be on the queue
		 * indicated by our priority.
		 */
		(void) splstatclock();
		setrq(p);
		p->p_stats->p_ru.ru_nivcsw++;
		swtch();
		(void) spl0();
		while ((sig = CURSIG(p)) != 0)
			psig(sig);
	}

	/*
	 * If profiling, charge recent system time to the trapped pc.
	 */
	if (p->p_flag & SPROFIL)
		addupc_task(p, pc, (int)(p->p_sticks - oticks));

	curpri = p->p_pri;
}
예제 #8
0
/*
 * Define the code needed before returning to user mode, for
 * trap, mem_access_fault, and syscall.
 */
static inline void
userret(struct proc *p, int pc, u_quad_t oticks)
{
	int sig;

	/* take pending signals */
	while ((sig = CURSIG(p)) != 0)
		postsig(sig);
	p->p_priority = p->p_usrpri;
	if (want_ast) {
		want_ast = 0;
		if (p->p_flag & P_OWEUPC) {
			p->p_flag &= ~P_OWEUPC;
			ADDUPROF(p);
		}
	}
	if (want_resched) {
		/*
		 * Since we are curproc, clock will normally just change
		 * our priority without moving us from one queue to another
		 * (since the running process is not on a queue.)
		 * If that happened after we put ourselves on the run queue
		 * but before we switched, we might not be on the queue
		 * indicated by our priority.
		 */
		(void) splstatclock();
		setrunqueue(p);
		p->p_stats->p_ru.ru_nivcsw++;
		mi_switch();
		(void) spl0();
		while ((sig = CURSIG(p)) != 0)
			postsig(sig);
	}

	/*
	 * If profiling, charge recent system time to the trapped pc.
	 */
	if (p->p_flag & P_PROFIL)
		addupc_task(p, pc, (int)(p->p_sticks - oticks));

	curpriority = p->p_priority;
}
예제 #9
0
void
userret(struct proc *p, register_t pc, u_quad_t oticks)
{
	int sig;

	/* take pending signals */
	while ((sig = CURSIG(p)) != 0)
		postsig(sig);

	p->p_priority = p->p_usrpri;
	if (astpending) {
		astpending = 0;
		if (p->p_flag & P_OWEUPC) {
			ADDUPROF(p);
		}
	}
	if (want_resched) {
		/*
		 * We're being preempted.
		 */
		preempt(NULL);
		while ((sig = CURSIG(p)) != 0)
			postsig(sig);
	}

	/*
	 * If profiling, charge recent system time to the trapped pc.
	 */
	if (p->p_flag & P_PROFIL) {
		extern int psratio;

		addupc_task(p, pc, (int)(p->p_sticks - oticks) * psratio);
	}

	p->p_cpu->ci_schedstate.spc_curpriority = p->p_priority;
}
예제 #10
0
/* TBD locking user profiling is not resolved yet */
void
bsd_uprofil(struct time_value *syst, user_addr_t pc)
{
	struct proc *p = current_proc();
	int		ticks;
	struct timeval	*tv;
	struct timeval st;

	if (p == NULL)
	        return;
	if ( !(p->p_flag & P_PROFIL))
	        return;

	st.tv_sec = syst->seconds;
	st.tv_usec = syst->microseconds;

	tv = &(p->p_stats->p_ru.ru_stime);

	ticks = ((tv->tv_sec - st.tv_sec) * 1000 +
		(tv->tv_usec - st.tv_usec) / 1000) /
		(tick / 1000);
	if (ticks)
		addupc_task(p, pc, ticks);
}
예제 #11
0
/*
 * Define the code needed before returning to user mode, for trap and
 * syscall.
 */
void
userret(struct thread *td, struct trapframe *frame)
{
	struct proc *p = td->td_proc;

	CTR3(KTR_SYSC, "userret: thread %p (pid %d, %s)", td, p->p_pid,
            td->td_name);
	KASSERT((p->p_flag & P_WEXIT) == 0,
	    ("Exiting process returns to usermode"));
#if 0
#ifdef DIAGNOSTIC
	/* Check that we called signotify() enough. */
	PROC_LOCK(p);
	thread_lock(td);
	if (SIGPENDING(td) && ((td->td_flags & TDF_NEEDSIGCHK) == 0 ||
	    (td->td_flags & TDF_ASTPENDING) == 0))
		printf("failed to set signal flags properly for ast()\n");
	thread_unlock(td);
	PROC_UNLOCK(p);
#endif
#endif
#ifdef KTRACE
	KTRUSERRET(td);
#endif
	/*
	 * If this thread tickled GEOM, we need to wait for the giggling to
	 * stop before we return to userland
	 */
	if (td->td_pflags & TDP_GEOM)
		g_waitidle();

	/*
	 * Charge system time if profiling.
	 */
	if (p->p_flag & P_PROFIL)
		addupc_task(td, TRAPF_PC(frame), td->td_pticks * psratio);
	/*
	 * Let the scheduler adjust our priority etc.
	 */
	sched_userret(td);
#ifdef XEN
	PT_UPDATES_FLUSH();
#endif

	/*
	 * Check for misbehavior.
	 *
	 * In case there is a callchain tracing ongoing because of
	 * hwpmc(4), skip the scheduler pinning check.
	 * hwpmc(4) subsystem, infact, will collect callchain informations
	 * at ast() checkpoint, which is past userret().
	 */
	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
	KASSERT(td->td_critnest == 0,
	    ("userret: Returning in a critical section"));
	KASSERT(td->td_locks == 0,
	    ("userret: Returning with %d locks held", td->td_locks));
	KASSERT(td->td_rw_rlocks == 0,
	    ("userret: Returning with %d rwlocks held in read mode",
	    td->td_rw_rlocks));
	KASSERT((td->td_pflags & TDP_NOFAULTING) == 0,
	    ("userret: Returning with pagefaults disabled"));
	KASSERT(td->td_no_sleeping == 0,
	    ("userret: Returning with sleep disabled"));
	KASSERT(td->td_pinned == 0 || (td->td_pflags & TDP_CALLCHAIN) != 0,
	    ("userret: Returning with with pinned thread"));
	KASSERT(td->td_vp_reserv == 0,
	    ("userret: Returning while holding vnode reservation"));
	KASSERT((td->td_flags & TDF_SBDRY) == 0,
	    ("userret: Returning with stop signals deferred"));
#ifdef VIMAGE
	/* Unfortunately td_vnet_lpush needs VNET_DEBUG. */
	VNET_ASSERT(curvnet == NULL,
	    ("%s: Returning on td %p (pid %d, %s) with vnet %p set in %s",
	    __func__, td, p->p_pid, td->td_name, curvnet,
	    (td->td_vnet_lpush != NULL) ? td->td_vnet_lpush : "N/A"));
#endif
#ifdef	RACCT
	PROC_LOCK(p);
	while (p->p_throttled == 1)
		msleep(p->p_racct, &p->p_mtx, 0, "racct", 0);
	PROC_UNLOCK(p);
#endif
}
예제 #12
0
/*
 * Process an asynchronous software trap.
 * This is relatively easy.
 * This function will return with preemption disabled.
 */
void
ast(struct trapframe *framep)
{
	struct thread *td;
	struct proc *p;
	int flags;
	int sig;

	td = curthread;
	p = td->td_proc;

	CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, p->p_pid,
            p->p_comm);
	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
	WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
	mtx_assert(&Giant, MA_NOTOWNED);
	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
	td->td_frame = framep;
	td->td_pticks = 0;

	/*
	 * This updates the td_flag's for the checks below in one
	 * "atomic" operation with turning off the astpending flag.
	 * If another AST is triggered while we are handling the
	 * AST's saved in flags, the astpending flag will be set and
	 * ast() will be called again.
	 */
	thread_lock(td);
	flags = td->td_flags;
	td->td_flags &= ~(TDF_ASTPENDING | TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK |
	    TDF_NEEDRESCHED | TDF_ALRMPEND | TDF_PROFPEND | TDF_MACPEND);
	thread_unlock(td);
	PCPU_INC(cnt.v_trap);

	if (td->td_ucred != p->p_ucred) 
		cred_update_thread(td);
	if (td->td_pflags & TDP_OWEUPC && p->p_flag & P_PROFIL) {
		addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
		td->td_profil_ticks = 0;
		td->td_pflags &= ~TDP_OWEUPC;
	}
#ifdef HWPMC_HOOKS
	/* Handle Software PMC callchain capture. */
	if (PMC_IS_PENDING_CALLCHAIN(td))
		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_USER_CALLCHAIN_SOFT, (void *) framep);
#endif
	if (flags & TDF_ALRMPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGVTALRM);
		PROC_UNLOCK(p);
	}
	if (flags & TDF_PROFPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGPROF);
		PROC_UNLOCK(p);
	}
#ifdef MAC
	if (flags & TDF_MACPEND)
		mac_thread_userret(td);
#endif
	if (flags & TDF_NEEDRESCHED) {
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(1, 1, __func__);
#endif
		thread_lock(td);
		sched_prio(td, td->td_user_pri);
		mi_switch(SW_INVOL | SWT_NEEDRESCHED, NULL);
		thread_unlock(td);
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(0, 1, __func__);
#endif
	}

	/*
	 * Check for signals. Unlocked reads of p_pendingcnt or
	 * p_siglist might cause process-directed signal to be handled
	 * later.
	 */
	if (flags & TDF_NEEDSIGCHK || p->p_pendingcnt > 0 ||
	    !SIGISEMPTY(p->p_siglist)) {
		PROC_LOCK(p);
		mtx_lock(&p->p_sigacts->ps_mtx);
		while ((sig = cursig(td)) != 0)
			postsig(sig);
		mtx_unlock(&p->p_sigacts->ps_mtx);
		PROC_UNLOCK(p);
	}
	/*
	 * We need to check to see if we have to exit or wait due to a
	 * single threading requirement or some other STOP condition.
	 */
	if (flags & TDF_NEEDSUSPCHK) {
		PROC_LOCK(p);
		thread_suspend_check(0);
		PROC_UNLOCK(p);
	}

	if (td->td_pflags & TDP_OLDMASK) {
		td->td_pflags &= ~TDP_OLDMASK;
		kern_sigprocmask(td, SIG_SETMASK, &td->td_oldsigmask, NULL, 0);
	}

	userret(td, framep);
}
예제 #13
0
파일: trap.c 프로젝트: kusumi/DragonFlyBSD
/*
 * Exception, fault, and trap interface to the kernel.
 * This common code is called from assembly language IDT gate entry
 * routines that prepare a suitable stack frame, and restore this
 * frame after the exception has been processed.
 *
 * This function is also called from doreti in an interlock to handle ASTs.
 * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
 *
 * NOTE!  We have to retrieve the fault address prior to potentially
 *	  blocking, including blocking on any token.
 *
 * NOTE!  NMI and kernel DBG traps remain on their respective pcpu IST
 *	  stacks if taken from a kernel RPL. trap() cannot block in this
 *	  situation.  DDB entry or a direct report-and-return is ok.
 *
 * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
 * if an attempt is made to switch from a fast interrupt or IPI.
 */
void
trap(struct trapframe *frame)
{
	static struct krate sscpubugrate = { 1 };
	struct globaldata *gd = mycpu;
	struct thread *td = gd->gd_curthread;
	struct lwp *lp = td->td_lwp;
	struct proc *p;
	int sticks = 0;
	int i = 0, ucode = 0, type, code;
#ifdef INVARIANTS
	int crit_count = td->td_critcount;
	lwkt_tokref_t curstop = td->td_toks_stop;
#endif
	vm_offset_t eva;

	p = td->td_proc;
	clear_quickret();

#ifdef DDB
        /*
	 * We need to allow T_DNA faults when the debugger is active since
	 * some dumping paths do large bcopy() which use the floating
	 * point registers for faster copying.
	 */
	if (db_active && frame->tf_trapno != T_DNA) {
		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
		++gd->gd_trap_nesting_level;
		trap_fatal(frame, eva);
		--gd->gd_trap_nesting_level;
		goto out2;
	}
#endif

	eva = 0;

	if ((frame->tf_rflags & PSL_I) == 0) {
		/*
		 * Buggy application or kernel code has disabled interrupts
		 * and then trapped.  Enabling interrupts now is wrong, but
		 * it is better than running with interrupts disabled until
		 * they are accidentally enabled later.
		 */

		type = frame->tf_trapno;
		if (ISPL(frame->tf_cs) == SEL_UPL) {
			/* JG curproc can be NULL */
			kprintf(
			    "pid %ld (%s): trap %d with interrupts disabled\n",
			    (long)curproc->p_pid, curproc->p_comm, type);
		} else if ((type == T_STKFLT || type == T_PROTFLT ||
			    type == T_SEGNPFLT) &&
			   frame->tf_rip == (long)doreti_iret) {
			/*
			 * iretq fault from kernel mode during return to
			 * userland.
			 *
			 * This situation is expected, don't complain.
			 */
		} else if (type != T_NMI && type != T_BPTFLT &&
			   type != T_TRCTRAP) {
			/*
			 * XXX not quite right, since this may be for a
			 * multiple fault in user mode.
			 */
			kprintf("kernel trap %d (%s @ 0x%016jx) with "
				"interrupts disabled\n",
				type,
				td->td_comm,
				frame->tf_rip);
		}
		cpu_enable_intr();
	}

	type = frame->tf_trapno;
	code = frame->tf_err;

	if (ISPL(frame->tf_cs) == SEL_UPL) {
		/* user trap */

		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
			frame->tf_trapno, eva);

		userenter(td, p);

		sticks = (int)td->td_sticks;
		KASSERT(lp->lwp_md.md_regs == frame,
			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));

		switch (type) {
		case T_PRIVINFLT:	/* privileged instruction fault */
			i = SIGILL;
			ucode = ILL_PRVOPC;
			break;

		case T_BPTFLT:		/* bpt instruction fault */
		case T_TRCTRAP:		/* trace trap */
			frame->tf_rflags &= ~PSL_T;
			i = SIGTRAP;
			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
			ucode = code;
			i = SIGFPE;
			break;

		case T_ASTFLT:		/* Allow process switch */
			mycpu->gd_cnt.v_soft++;
			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
				atomic_clear_int(&mycpu->gd_reqflags,
						 RQF_AST_OWEUPC);
				addupc_task(p, p->p_prof.pr_addr,
					    p->p_prof.pr_ticks);
			}
			goto out;

		case T_PROTFLT:		/* general protection fault */
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;
		case T_STKFLT:		/* stack fault */
		case T_SEGNPFLT:	/* segment not present fault */
			i = SIGBUS;
			ucode = BUS_ADRERR;
			break;
		case T_TSSFLT:		/* invalid TSS fault */
		case T_DOUBLEFLT:	/* double fault */
		default:
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		case T_PAGEFLT:		/* page fault */
			i = trap_pfault(frame, TRUE);
#ifdef DDB
			if (frame->tf_rip == 0) {
				/* used for kernel debugging only */
				while (freeze_on_seg_fault)
					tsleep(p, 0, "freeze", hz * 20);
			}
#endif
			if (i == -1 || i == 0)
				goto out;
			if (i == SIGSEGV) {
				ucode = SEGV_MAPERR;
			} else {
				i = SIGSEGV;
				ucode = SEGV_ACCERR;
			}
			break;

		case T_DIVIDE:		/* integer divide fault */
			ucode = FPE_INTDIV;
			i = SIGFPE;
			break;

#if NISA > 0
		case T_NMI:
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef DDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (ddb_on_nmi) {
					kprintf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* DDB */
				goto out2;
			} else if (panic_on_nmi)
				panic("NMI indicates hardware failure");
			break;
#endif /* NISA > 0 */

		case T_OFLOW:		/* integer overflow fault */
			ucode = FPE_INTOVF;
			i = SIGFPE;
			break;

		case T_BOUND:		/* bounds check fault */
			ucode = FPE_FLTSUB;
			i = SIGFPE;
			break;

		case T_DNA:
			/*
			 * Virtual kernel intercept - pass the DNA exception
			 * to the virtual kernel if it asked to handle it.
			 * This occurs when the virtual kernel is holding
			 * onto the FP context for a different emulated
			 * process then the one currently running.
			 *
			 * We must still call npxdna() since we may have
			 * saved FP state that the virtual kernel needs
			 * to hand over to a different emulated process.
			 */
			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
			    (td->td_pcb->pcb_flags & FP_VIRTFP)
			) {
				npxdna();
				break;
			}

			/*
			 * The kernel may have switched out the FP unit's
			 * state, causing the user process to take a fault
			 * when it tries to use the FP unit.  Restore the
			 * state here
			 */
			if (npxdna()) {
				gd->gd_cnt.v_trap++;
				goto out;
			}
			i = SIGFPE;
			ucode = FPE_FPU_NP_TRAP;
			break;

		case T_FPOPFLT:		/* FPU operand fetch fault */
			ucode = ILL_COPROC;
			i = SIGILL;
			break;

		case T_XMMFLT:		/* SIMD floating-point exception */
			ucode = 0; /* XXX */
			i = SIGFPE;
			break;
		}
	} else {
		/* kernel trap */

		switch (type) {
		case T_PAGEFLT:			/* page fault */
			trap_pfault(frame, FALSE);
			goto out2;

		case T_DNA:
			/*
			 * The kernel is apparently using fpu for copying.
			 * XXX this should be fatal unless the kernel has
			 * registered such use.
			 */
			if (npxdna()) {
				gd->gd_cnt.v_trap++;
				goto out2;
			}
			break;

		case T_STKFLT:		/* stack fault */
		case T_PROTFLT:		/* general protection fault */
		case T_SEGNPFLT:	/* segment not present fault */
			/*
			 * Invalid segment selectors and out of bounds
			 * %rip's and %rsp's can be set up in user mode.
			 * This causes a fault in kernel mode when the
			 * kernel tries to return to user mode.  We want
			 * to get this fault so that we can fix the
			 * problem here and not have to check all the
			 * selectors and pointers when the user changes
			 * them.
			 */
			if (mycpu->gd_intr_nesting_level == 0) {
				/*
				 * NOTE: in 64-bit mode traps push rsp/ss
				 *	 even if no ring change occurs.
				 */
				if (td->td_pcb->pcb_onfault &&
				    td->td_pcb->pcb_onfault_sp ==
				    frame->tf_rsp) {
					frame->tf_rip = (register_t)
						td->td_pcb->pcb_onfault;
					goto out2;
				}

				/*
				 * If the iretq in doreti faults during
				 * return to user, it will be special-cased
				 * in IDTVEC(prot) to get here.  We want
				 * to 'return' to doreti_iret_fault in
				 * ipl.s in approximately the same state we
				 * were in at the iretq.
				 */
				if (frame->tf_rip == (long)doreti_iret) {
					frame->tf_rip = (long)doreti_iret_fault;
					goto out2;
				}
			}
			break;

		case T_TSSFLT:
			/*
			 * PSL_NT can be set in user mode and isn't cleared
			 * automatically when the kernel is entered.  This
			 * causes a TSS fault when the kernel attempts to
			 * `iret' because the TSS link is uninitialized.  We
			 * want to get this fault so that we can fix the
			 * problem here and not every time the kernel is
			 * entered.
			 */
			if (frame->tf_rflags & PSL_NT) {
				frame->tf_rflags &= ~PSL_NT;
#if 0
				/* do we need this? */
				if (frame->tf_rip == (long)doreti_iret)
					frame->tf_rip = (long)doreti_iret_fault;
#endif
				goto out2;
			}
			break;

		case T_TRCTRAP:	 /* trace trap */
			/*
			 * Detect historical CPU artifact on syscall or int $3
			 * entry (if not shortcutted in exception.s via
			 * DIRECT_DISALLOW_SS_CPUBUG).
			 */
			gd->gd_cnt.v_trap++;
			if (frame->tf_rip == (register_t)IDTVEC(fast_syscall)) {
				krateprintf(&sscpubugrate,
					"Caught #DB at syscall cpu artifact\n");
				goto out2;
			}
			if (frame->tf_rip == (register_t)IDTVEC(bpt)) {
				krateprintf(&sscpubugrate,
					"Caught #DB at int $N cpu artifact\n");
				goto out2;
			}

			/*
			 * Ignore debug register trace traps due to
			 * accesses in the user's address space, which
			 * can happen under several conditions such as
			 * if a user sets a watchpoint on a buffer and
			 * then passes that buffer to a system call.
			 * We still want to get TRCTRAPS for addresses
			 * in kernel space because that is useful when
			 * debugging the kernel.
			 */
			if (user_dbreg_trap()) {
				/*
				 * Reset breakpoint bits because the
				 * processor doesn't
				 */
				load_dr6(rdr6() & ~0xf);
				goto out2;
			}
			/*
			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
			 */
		case T_BPTFLT:
			/*
			 * If DDB is enabled, let it handle the debugger trap.
			 * Otherwise, debugger traps "can't happen".
			 */
			ucode = TRAP_BRKPT;
#ifdef DDB
			if (kdb_trap(type, 0, frame))
				goto out2;
#endif
			break;

#if NISA > 0
		case T_NMI:
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef DDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (ddb_on_nmi) {
					kprintf ("NMI ... going to debugger\n");
					kdb_trap(type, 0, frame);
				}
#endif /* DDB */
				goto out2;
			} else if (panic_on_nmi == 0)
				goto out2;
			/* FALL THROUGH */
#endif /* NISA > 0 */
		}
		trap_fatal(frame, 0);
		goto out2;
	}

	/*
	 * Fault from user mode, virtual kernel interecept.
	 *
	 * If the fault is directly related to a VM context managed by a
	 * virtual kernel then let the virtual kernel handle it.
	 */
	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
		vkernel_trap(lp, frame);
		goto out;
	}

	/* Translate fault for emulators (e.g. Linux) */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	gd->gd_cnt.v_trap++;
	trapsignal(lp, i, ucode);

#ifdef DEBUG
	if (type <= MAX_TRAP_MSG) {
		uprintf("fatal process exception: %s",
			trap_msg[type]);
		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
			uprintf(", fault VA = 0x%lx", frame->tf_addr);
		uprintf("\n");
	}
#endif

out:
	userret(lp, frame, sticks);
	userexit(lp);
out2:	;
	if (p != NULL && lp != NULL)
		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
#ifdef INVARIANTS
	KASSERT(crit_count == td->td_critcount,
		("trap: critical section count mismatch! %d/%d",
		crit_count, td->td_pri));
	KASSERT(curstop == td->td_toks_stop,
		("trap: extra tokens held after trap! %ld/%ld",
		curstop - &td->td_toks_base,
		td->td_toks_stop - &td->td_toks_base));
#endif
}
예제 #14
0
파일: trap.c 프로젝트: kusumi/DragonFlyBSD
/*
 * Handle signals, upcalls, profiling, and other AST's and/or tasks that
 * must be completed before we can return to or try to return to userland.
 *
 * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
 * arithmatic on the delta calculation so the absolute tick values are
 * truncated to an integer.
 */
static void
userret(struct lwp *lp, struct trapframe *frame, int sticks)
{
	struct proc *p = lp->lwp_proc;
	int sig;
	int ptok;

	/*
	 * Charge system time if profiling.  Note: times are in microseconds.
	 * This may do a copyout and block, so do it first even though it
	 * means some system time will be charged as user time.
	 */
	if (p->p_flags & P_PROFIL) {
		addupc_task(p, frame->tf_rip,
			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
	}

recheck:
	/*
	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
	 * LWP_MP_VNLRU, etc).
	 */
	if (lp->lwp_mpflags & LWP_MP_URETMASK)
		lwpuserret(lp);

	/*
	 * Block here if we are in a stopped state.
	 */
	if (STOPLWP(p, lp)) {
		lwkt_gettoken(&p->p_token);
		tstop();
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}
	while (dump_stop_usertds) {
		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
	}

	/*
	 * Post any pending upcalls.  If running a virtual kernel be sure
	 * to restore the virtual kernel's vmspace before posting the upcall.
	 */
	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
		lwkt_gettoken(&p->p_token);
		if (p->p_flags & P_SIGVTALRM) {
			p->p_flags &= ~P_SIGVTALRM;
			ksignal(p, SIGVTALRM);
		}
		if (p->p_flags & P_SIGPROF) {
			p->p_flags &= ~P_SIGPROF;
			ksignal(p, SIGPROF);
		}
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}

	/*
	 * Post any pending signals.  If running a virtual kernel be sure
	 * to restore the virtual kernel's vmspace before posting the signal.
	 *
	 * WARNING!  postsig() can exit and not return.
	 */
	if ((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0) {
		postsig(sig, ptok);
		goto recheck;
	}

	/*
	 * block here if we are swapped out, but still process signals
	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
	 * aware of our situation, we do not have to wake it up.
	 */
	if (p->p_flags & P_SWAPPEDOUT) {
		lwkt_gettoken(&p->p_token);
		p->p_flags |= P_SWAPWAIT;
		swapin_request();
		if (p->p_flags & P_SWAPWAIT)
			tsleep(p, PCATCH, "SWOUT", 0);
		p->p_flags &= ~P_SWAPWAIT;
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}

	/*
	 * In a multi-threaded program it is possible for a thread to change
	 * signal state during a system call which temporarily changes the
	 * signal mask.  In this case postsig() might not be run and we
	 * have to restore the mask ourselves.
	 */
	if (lp->lwp_flags & LWP_OLDMASK) {
		lp->lwp_flags &= ~LWP_OLDMASK;
		lp->lwp_sigmask = lp->lwp_oldsigmask;
		goto recheck;
	}
}
예제 #15
0
void
trap(struct trapframe *frame)
{
	struct globaldata *gd = mycpu;
	struct thread *td = gd->gd_curthread;
	struct lwp *lp = td->td_lwp;
	struct proc *p;
	int sticks = 0;
	int i = 0, ucode = 0, type, code;
	int have_mplock = 0;
#ifdef INVARIANTS
	int crit_count = td->td_critcount;
	lwkt_tokref_t curstop = td->td_toks_stop;
#endif
	vm_offset_t eva;

	p = td->td_proc;
#ifdef DDB
	/*
	 * We need to allow T_DNA faults when the debugger is active since
	 * some dumping paths do large bcopy() which use the floating
	 * point registers for faster copying.
	 */
	if (db_active && frame->tf_trapno != T_DNA) {
		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
		++gd->gd_trap_nesting_level;
		MAKEMPSAFE(have_mplock);
		trap_fatal(frame, eva);
		--gd->gd_trap_nesting_level;
		goto out2;
	}
#endif

	eva = 0;
	++gd->gd_trap_nesting_level;
	if (frame->tf_trapno == T_PAGEFLT) {
		/*
		 * For some Cyrix CPUs, %cr2 is clobbered by interrupts.
		 * This problem is worked around by using an interrupt
		 * gate for the pagefault handler.  We are finally ready
		 * to read %cr2 and then must reenable interrupts.
		 *
		 * XXX this should be in the switch statement, but the
		 * NO_FOOF_HACK and VM86 goto and ifdefs obfuscate the
		 * flow of control too much for this to be obviously
		 * correct.
		 */
		eva = rcr2();
		cpu_enable_intr();
	}

	--gd->gd_trap_nesting_level;

	if (!(frame->tf_eflags & PSL_I)) {
		/*
		 * Buggy application or kernel code has disabled interrupts
		 * and then trapped.  Enabling interrupts now is wrong, but
		 * it is better than running with interrupts disabled until
		 * they are accidentally enabled later.
		 */
		type = frame->tf_trapno;
		if (ISPL(frame->tf_cs)==SEL_UPL || (frame->tf_eflags & PSL_VM)) {
			MAKEMPSAFE(have_mplock);
			kprintf(
			    "pid %ld (%s): trap %d with interrupts disabled\n",
			    (long)curproc->p_pid, curproc->p_comm, type);
		} else if (type != T_BPTFLT && type != T_TRCTRAP) {
			/*
			 * XXX not quite right, since this may be for a
			 * multiple fault in user mode.
			 */
			MAKEMPSAFE(have_mplock);
			kprintf("kernel trap %d with interrupts disabled\n",
			    type);
		}
		cpu_enable_intr();
	}

#if defined(I586_CPU) && !defined(NO_F00F_HACK)
restart:
#endif
	type = frame->tf_trapno;
	code = frame->tf_err;

	if (in_vm86call) {
		if (frame->tf_eflags & PSL_VM &&
		    (type == T_PROTFLT || type == T_STKFLT)) {
			KKASSERT(get_mplock_count(curthread) > 0);
			i = vm86_emulate((struct vm86frame *)frame);
			KKASSERT(get_mplock_count(curthread) > 0);
			if (i != 0) {
				/*
				 * returns to original process
				 */
				vm86_trap((struct vm86frame *)frame,
					  have_mplock);
				KKASSERT(0); /* NOT REACHED */
			}
			goto out2;
		}
		switch (type) {
			/*
			 * these traps want either a process context, or
			 * assume a normal userspace trap.
			 */
		case T_PROTFLT:
		case T_SEGNPFLT:
			trap_fatal(frame, eva);
			goto out2;
		case T_TRCTRAP:
			type = T_BPTFLT;	/* kernel breakpoint */
			/* FALL THROUGH */
		}
		goto kernel_trap;	/* normal kernel trap handling */
	}

        if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
		/* user trap */

		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
			frame->tf_trapno, eva);

		userenter(td, p);

		sticks = (int)td->td_sticks;
		lp->lwp_md.md_regs = frame;

		switch (type) {
		case T_PRIVINFLT:	/* privileged instruction fault */
			i = SIGILL;
			ucode = ILL_PRVOPC;
			break;

		case T_BPTFLT:		/* bpt instruction fault */
		case T_TRCTRAP:		/* trace trap */
			frame->tf_eflags &= ~PSL_T;
			i = SIGTRAP;
			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
			break;

		case T_ARITHTRAP:	/* arithmetic trap */
			ucode = code;
			i = SIGFPE;
			break;

		case T_ASTFLT:		/* Allow process switch */
			mycpu->gd_cnt.v_soft++;
			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
				atomic_clear_int(&mycpu->gd_reqflags,
						 RQF_AST_OWEUPC);
				addupc_task(p, p->p_prof.pr_addr,
					    p->p_prof.pr_ticks);
			}
			goto out;

			/*
			 * The following two traps can happen in
			 * vm86 mode, and, if so, we want to handle
			 * them specially.
			 */
		case T_PROTFLT:		/* general protection fault */
		case T_STKFLT:		/* stack fault */
			if (frame->tf_eflags & PSL_VM) {
				i = vm86_emulate((struct vm86frame *)frame);
				if (i == 0)
					goto out;
				break;
			}
			i = SIGBUS;
			ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR;
			break;
		case T_SEGNPFLT:	/* segment not present fault */
			i = SIGBUS;
			ucode = BUS_ADRERR;
			break;
		case T_TSSFLT:		/* invalid TSS fault */
		case T_DOUBLEFLT:	/* double fault */
		default:
			i = SIGBUS;
			ucode = BUS_OBJERR;
			break;

		case T_PAGEFLT:		/* page fault */
			i = trap_pfault(frame, TRUE, eva);
			if (i == -1)
				goto out;
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
			if (i == -2)
				goto restart;
#endif
			if (i == 0)
				goto out;

			if (i == SIGSEGV)
				ucode = SEGV_MAPERR;
			else {
				i = SIGSEGV;
				ucode = SEGV_ACCERR;
			}
			break;

		case T_DIVIDE:		/* integer divide fault */
			ucode = FPE_INTDIV;
			i = SIGFPE;
			break;

#if NISA > 0
		case T_NMI:
			MAKEMPSAFE(have_mplock);
#ifdef POWERFAIL_NMI
			goto handle_powerfail;
#else /* !POWERFAIL_NMI */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef DDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (ddb_on_nmi) {
					kprintf ("NMI ... going to debugger\n");
					kdb_trap (type, 0, frame);
				}
#endif /* DDB */
				goto out2;
			} else if (panic_on_nmi)
				panic("NMI indicates hardware failure");
			break;
#endif /* POWERFAIL_NMI */
#endif /* NISA > 0 */

		case T_OFLOW:		/* integer overflow fault */
			ucode = FPE_INTOVF;
			i = SIGFPE;
			break;

		case T_BOUND:		/* bounds check fault */
			ucode = FPE_FLTSUB;
			i = SIGFPE;
			break;

		case T_DNA:
			/*
			 * Virtual kernel intercept - pass the DNA exception
			 * to the virtual kernel if it asked to handle it.
			 * This occurs when the virtual kernel is holding
			 * onto the FP context for a different emulated
			 * process then the one currently running.
			 *
			 * We must still call npxdna() since we may have
			 * saved FP state that the virtual kernel needs
			 * to hand over to a different emulated process.
			 */
			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
			    (td->td_pcb->pcb_flags & FP_VIRTFP)
			) {
				npxdna();
				break;
			}

#if NNPX > 0
			/* 
			 * The kernel may have switched out the FP unit's
			 * state, causing the user process to take a fault
			 * when it tries to use the FP unit.  Restore the
			 * state here
			 */
			if (npxdna())
				goto out;
#endif
			if (!pmath_emulate) {
				i = SIGFPE;
				ucode = FPE_FPU_NP_TRAP;
				break;
			}
			i = (*pmath_emulate)(frame);
			if (i == 0) {
				if (!(frame->tf_eflags & PSL_T))
					goto out2;
				frame->tf_eflags &= ~PSL_T;
				i = SIGTRAP;
			}
			/* else ucode = emulator_only_knows() XXX */
			break;

		case T_FPOPFLT:		/* FPU operand fetch fault */
			ucode = ILL_COPROC;
			i = SIGILL;
			break;

		case T_XMMFLT:		/* SIMD floating-point exception */
			ucode = 0; /* XXX */
			i = SIGFPE;
			break;
		}
	} else {
kernel_trap:
		/* kernel trap */

		switch (type) {
		case T_PAGEFLT:			/* page fault */
			trap_pfault(frame, FALSE, eva);
			goto out2;

		case T_DNA:
#if NNPX > 0
			/*
			 * The kernel may be using npx for copying or other
			 * purposes.
			 */
			if (npxdna())
				goto out2;
#endif
			break;

		case T_PROTFLT:		/* general protection fault */
		case T_SEGNPFLT:	/* segment not present fault */
			/*
			 * Invalid segment selectors and out of bounds
			 * %eip's and %esp's can be set up in user mode.
			 * This causes a fault in kernel mode when the
			 * kernel tries to return to user mode.  We want
			 * to get this fault so that we can fix the
			 * problem here and not have to check all the
			 * selectors and pointers when the user changes
			 * them.
			 */
#define	MAYBE_DORETI_FAULT(where, whereto)				\
	do {								\
		if (frame->tf_eip == (int)where) {			\
			frame->tf_eip = (int)whereto;			\
			goto out2;					\
		}							\
	} while (0)
			if (mycpu->gd_intr_nesting_level == 0) {
				/*
				 * Invalid %fs's and %gs's can be created using
				 * procfs or PT_SETREGS or by invalidating the
				 * underlying LDT entry.  This causes a fault
				 * in kernel mode when the kernel attempts to
				 * switch contexts.  Lose the bad context
				 * (XXX) so that we can continue, and generate
				 * a signal.
				 */
				MAYBE_DORETI_FAULT(doreti_iret,
						   doreti_iret_fault);
				MAYBE_DORETI_FAULT(doreti_popl_ds,
						   doreti_popl_ds_fault);
				MAYBE_DORETI_FAULT(doreti_popl_es,
						   doreti_popl_es_fault);
				MAYBE_DORETI_FAULT(doreti_popl_fs,
						   doreti_popl_fs_fault);
				MAYBE_DORETI_FAULT(doreti_popl_gs,
						   doreti_popl_gs_fault);

				/*
				 * NOTE: cpu doesn't push esp on kernel trap
				 */
				if (td->td_pcb->pcb_onfault &&
				    td->td_pcb->pcb_onfault_sp ==
				    (int)&frame->tf_esp) {
					frame->tf_eip = 
					    (register_t)td->td_pcb->pcb_onfault;
					goto out2;
				}
			}
			break;

		case T_TSSFLT:
			/*
			 * PSL_NT can be set in user mode and isn't cleared
			 * automatically when the kernel is entered.  This
			 * causes a TSS fault when the kernel attempts to
			 * `iret' because the TSS link is uninitialized.  We
			 * want to get this fault so that we can fix the
			 * problem here and not every time the kernel is
			 * entered.
			 */
			if (frame->tf_eflags & PSL_NT) {
				frame->tf_eflags &= ~PSL_NT;
				goto out2;
			}
			break;

		case T_TRCTRAP:	 /* trace trap */
			if (frame->tf_eip == (int)IDTVEC(syscall)) {
				/*
				 * We've just entered system mode via the
				 * syscall lcall.  Continue single stepping
				 * silently until the syscall handler has
				 * saved the flags.
				 */
				goto out2;
			}
			if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
				/*
				 * The syscall handler has now saved the
				 * flags.  Stop single stepping it.
				 */
				frame->tf_eflags &= ~PSL_T;
				goto out2;
			}
                        /*
                         * Ignore debug register trace traps due to
                         * accesses in the user's address space, which
                         * can happen under several conditions such as
                         * if a user sets a watchpoint on a buffer and
                         * then passes that buffer to a system call.
                         * We still want to get TRCTRAPS for addresses
                         * in kernel space because that is useful when
                         * debugging the kernel.
                         */
                        if (user_dbreg_trap()) {
                                /*
                                 * Reset breakpoint bits because the
                                 * processor doesn't
                                 */
                                load_dr6(rdr6() & 0xfffffff0);
                                goto out2;
                        }
			/*
			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
			 */
		case T_BPTFLT:
			/*
			 * If DDB is enabled, let it handle the debugger trap.
			 * Otherwise, debugger traps "can't happen".
			 */
			ucode = TRAP_BRKPT;
#ifdef DDB
			MAKEMPSAFE(have_mplock);
			if (kdb_trap (type, 0, frame))
				goto out2;
#endif
			break;

#if NISA > 0
		case T_NMI:
			MAKEMPSAFE(have_mplock);
#ifdef POWERFAIL_NMI
#ifndef TIMER_FREQ
#  define TIMER_FREQ 1193182
#endif
	handle_powerfail:
		{
		  static unsigned lastalert = 0;

		  if (time_uptime - lastalert > 10) {
		      log(LOG_WARNING, "NMI: power fail\n");
		      sysbeep(TIMER_FREQ/880, hz);
		      lastalert = time_uptime;
		  }
		    /* YYY mp count */
		  goto out2;
		}
#else /* !POWERFAIL_NMI */
			/* machine/parity/power fail/"kitchen sink" faults */
			if (isa_nmi(code) == 0) {
#ifdef DDB
				/*
				 * NMI can be hooked up to a pushbutton
				 * for debugging.
				 */
				if (ddb_on_nmi) {
					kprintf ("NMI ... going to debugger\n");
					kdb_trap (type, 0, frame);
				}
#endif /* DDB */
				goto out2;
			} else if (panic_on_nmi == 0)
				goto out2;
			/* FALL THROUGH */
#endif /* POWERFAIL_NMI */
#endif /* NISA > 0 */
		}

		MAKEMPSAFE(have_mplock);
		trap_fatal(frame, eva);
		goto out2;
	}

	/*
	 * Virtual kernel intercept - if the fault is directly related to a
	 * VM context managed by a virtual kernel then let the virtual kernel
	 * handle it.
	 */
	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
		vkernel_trap(lp, frame);
		goto out;
	}

	/* Translate fault for emulators (e.g. Linux) */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	MAKEMPSAFE(have_mplock);
	trapsignal(lp, i, ucode);

#ifdef DEBUG
	if (type <= MAX_TRAP_MSG) {
		uprintf("fatal process exception: %s",
			trap_msg[type]);
		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
			uprintf(", fault VA = 0x%lx", (u_long)eva);
		uprintf("\n");
	}
#endif

out:
	userret(lp, frame, sticks);
	userexit(lp);
out2:	;
	if (have_mplock)
		rel_mplock();
	if (p != NULL && lp != NULL)
		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
#ifdef INVARIANTS
	KASSERT(crit_count == td->td_critcount,
		("trap: critical section count mismatch! %d/%d",
		crit_count, td->td_pri));
	KASSERT(curstop == td->td_toks_stop,
		("trap: extra tokens held after trap! %zd/%zd",
		curstop - &td->td_toks_base,
		td->td_toks_stop - &td->td_toks_base));
#endif
}
예제 #16
0
void
user_trap(struct trapframe *frame)
{
	struct globaldata *gd = mycpu;
	struct thread *td = gd->gd_curthread;
	struct lwp *lp = td->td_lwp;
	struct proc *p;
	int sticks = 0;
	int i = 0, ucode = 0, type, code;
	int have_mplock = 0;
#ifdef INVARIANTS
	int crit_count = td->td_critcount;
	lwkt_tokref_t curstop = td->td_toks_stop;
#endif
	vm_offset_t eva;

	p = td->td_proc;

	/*
	 * This is a bad kludge to avoid changing the various trapframe
	 * structures.  Because we are enabled as a virtual kernel,
	 * the original tf_err field will be passed to us shifted 16
	 * over in the tf_trapno field for T_PAGEFLT.
	 */
	if (frame->tf_trapno == T_PAGEFLT)
		eva = frame->tf_err;
	else
		eva = 0;
#if 0
	kprintf("USER_TRAP AT %08x xflags %d trapno %d eva %08x\n", 
		frame->tf_eip, frame->tf_xflags, frame->tf_trapno, eva);
#endif

	/*
	 * Everything coming from user mode runs through user_trap,
	 * including system calls.
	 */
	if (frame->tf_trapno == T_SYSCALL80) {
		syscall2(frame);
		return;
	}

	KTR_LOG(kernentry_trap, lp->lwp_proc->p_pid, lp->lwp_tid,
		frame->tf_trapno, eva);

#ifdef DDB
	if (db_active) {
		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
		++gd->gd_trap_nesting_level;
		MAKEMPSAFE(have_mplock);
		trap_fatal(frame, TRUE, eva);
		--gd->gd_trap_nesting_level;
		goto out2;
	}
#endif

#if defined(I586_CPU) && !defined(NO_F00F_HACK)
restart:
#endif
	type = frame->tf_trapno;
	code = frame->tf_err;

	userenter(td, p);

	sticks = (int)td->td_sticks;
	lp->lwp_md.md_regs = frame;

	switch (type) {
	case T_PRIVINFLT:	/* privileged instruction fault */
		i = SIGILL;
		ucode = ILL_PRVOPC;
		break;

	case T_BPTFLT:		/* bpt instruction fault */
	case T_TRCTRAP:		/* trace trap */
		frame->tf_eflags &= ~PSL_T;
		i = SIGTRAP;
		ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
		break;

	case T_ARITHTRAP:	/* arithmetic trap */
		ucode = code;
		i = SIGFPE;
		break;

	case T_ASTFLT:		/* Allow process switch */
		mycpu->gd_cnt.v_soft++;
		if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
			atomic_clear_int(&mycpu->gd_reqflags,
				    RQF_AST_OWEUPC);
			addupc_task(p, p->p_prof.pr_addr,
				    p->p_prof.pr_ticks);
		}
		goto out;

		/*
		 * The following two traps can happen in
		 * vm86 mode, and, if so, we want to handle
		 * them specially.
		 */
	case T_PROTFLT:		/* general protection fault */
	case T_STKFLT:		/* stack fault */
#if 0
		if (frame->tf_eflags & PSL_VM) {
			i = vm86_emulate((struct vm86frame *)frame);
			if (i == 0)
				goto out;
			break;
		}
#endif
		i = SIGBUS;
		ucode = (type == T_PROTFLT) ? BUS_OBJERR : BUS_ADRERR;
		break;
	case T_SEGNPFLT:	/* segment not present fault */
		i = SIGBUS;
		ucode = BUS_ADRERR;
		break;
	case T_TSSFLT:		/* invalid TSS fault */
	case T_DOUBLEFLT:	/* double fault */
	default:
		i = SIGBUS;
		ucode = BUS_OBJERR;
		break;

	case T_PAGEFLT:		/* page fault */
		MAKEMPSAFE(have_mplock);
		i = trap_pfault(frame, TRUE, eva);
		if (i == -1)
			goto out;
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
		if (i == -2)
			goto restart;
#endif
		if (i == 0)
			goto out;

		if (i == SIGSEGV)
			ucode = SEGV_MAPERR;
		else {
			i = SIGSEGV;
			ucode = SEGV_ACCERR;
		}
		break;

	case T_DIVIDE:		/* integer divide fault */
		ucode = FPE_INTDIV;
		i = SIGFPE;
		break;

#if NISA > 0
	case T_NMI:
		MAKEMPSAFE(have_mplock);
		/* machine/parity/power fail/"kitchen sink" faults */
		if (isa_nmi(code) == 0) {
#ifdef DDB
			/*
			 * NMI can be hooked up to a pushbutton
			 * for debugging.
			 */
			if (ddb_on_nmi) {
				kprintf ("NMI ... going to debugger\n");
				kdb_trap (type, 0, frame);
			}
#endif /* DDB */
			goto out2;
		} else if (panic_on_nmi)
			panic("NMI indicates hardware failure");
		break;
#endif /* NISA > 0 */

	case T_OFLOW:		/* integer overflow fault */
		ucode = FPE_INTOVF;
		i = SIGFPE;
		break;

	case T_BOUND:		/* bounds check fault */
		ucode = FPE_FLTSUB;
		i = SIGFPE;
		break;

	case T_DNA:
		/*
		 * Virtual kernel intercept - pass the DNA exception
		 * to the (emulated) virtual kernel if it asked to handle 
		 * it.  This occurs when the virtual kernel is holding
		 * onto the FP context for a different emulated
		 * process then the one currently running.
		 *
		 * We must still call npxdna() since we may have
		 * saved FP state that the (emulated) virtual kernel
		 * needs to hand over to a different emulated process.
		 */
		if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
		    (td->td_pcb->pcb_flags & FP_VIRTFP)
		) {
			npxdna(frame);
			break;
		}

#if NNPX > 0
		/* 
		 * The kernel may have switched out the FP unit's
		 * state, causing the user process to take a fault
		 * when it tries to use the FP unit.  Restore the
		 * state here
		 */
		if (npxdna(frame))
			goto out;
#endif
		if (!pmath_emulate) {
			i = SIGFPE;
			ucode = FPE_FPU_NP_TRAP;
			break;
		}
		i = (*pmath_emulate)(frame);
		if (i == 0) {
			if (!(frame->tf_eflags & PSL_T))
				goto out2;
			frame->tf_eflags &= ~PSL_T;
			i = SIGTRAP;
		}
		/* else ucode = emulator_only_knows() XXX */
		break;

	case T_FPOPFLT:		/* FPU operand fetch fault */
		ucode = ILL_COPROC;
		i = SIGILL;
		break;

	case T_XMMFLT:		/* SIMD floating-point exception */
		ucode = 0; /* XXX */
		i = SIGFPE;
		break;
	}

	/*
	 * Virtual kernel intercept - if the fault is directly related to a
	 * VM context managed by a virtual kernel then let the virtual kernel
	 * handle it.
	 */
	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
		vkernel_trap(lp, frame);
		goto out;
	}

	/*
	 * Translate fault for emulators (e.g. Linux) 
	 */
	if (*p->p_sysent->sv_transtrap)
		i = (*p->p_sysent->sv_transtrap)(i, type);

	MAKEMPSAFE(have_mplock);
	trapsignal(lp, i, ucode);

#ifdef DEBUG
	if (type <= MAX_TRAP_MSG) {
		uprintf("fatal process exception: %s",
			trap_msg[type]);
		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
			uprintf(", fault VA = 0x%lx", (u_long)eva);
		uprintf("\n");
	}
#endif

out:
	userret(lp, frame, sticks);
	userexit(lp);
out2:	;
	if (have_mplock)
		rel_mplock();
	KTR_LOG(kernentry_trap_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
#ifdef INVARIANTS
	KASSERT(crit_count == td->td_critcount,
		("trap: critical section count mismatch! %d/%d",
		crit_count, td->td_pri));
	KASSERT(curstop == td->td_toks_stop,
		("trap: extra tokens held after trap! %zd/%zd",
		curstop - &td->td_toks_base,
		td->td_toks_stop - &td->td_toks_base));
#endif
}
예제 #17
0
/*
 * Handle signals, upcalls, profiling, and other AST's and/or tasks that
 * must be completed before we can return to or try to return to userland.
 *
 * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
 * arithmatic on the delta calculation so the absolute tick values are
 * truncated to an integer.
 */
static void
userret(struct lwp *lp, struct trapframe *frame, int sticks)
{
	struct proc *p = lp->lwp_proc;
	void (*hook)(void);
	int sig;

	if (p->p_userret != NULL) {
		hook = p->p_userret;
		p->p_userret = NULL;
		(*hook)();
	}
		
	/*
	 * Charge system time if profiling.  Note: times are in microseconds.
	 * This may do a copyout and block, so do it first even though it
	 * means some system time will be charged as user time.
	 */
	if (p->p_flags & P_PROFIL) {
		addupc_task(p, frame->tf_eip, 
			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
	}

recheck:
	/*
	 * If the jungle wants us dead, so be it.
	 */
	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
		lwkt_gettoken(&p->p_token);
		lwp_exit(0);
		lwkt_reltoken(&p->p_token);	/* NOT REACHED */
	}

	/*
	 * Block here if we are in a stopped state.
	 */
	if (p->p_stat == SSTOP || dump_stop_usertds) {
		lwkt_gettoken(&p->p_token);
		tstop();
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}

	/*
	 * Post any pending upcalls.  If running a virtual kernel be sure
	 * to restore the virtual kernel's vmspace before posting the upcall.
	 */
	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF | P_UPCALLPEND)) {
		lwkt_gettoken(&p->p_token);
		if (p->p_flags & P_SIGVTALRM) {
			p->p_flags &= ~P_SIGVTALRM;
			ksignal(p, SIGVTALRM);
		}
		if (p->p_flags & P_SIGPROF) {
			p->p_flags &= ~P_SIGPROF;
			ksignal(p, SIGPROF);
		}
		if (p->p_flags & P_UPCALLPEND) {
			p->p_flags &= ~P_UPCALLPEND;
			postupcall(lp);
		}
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}

	/*
	 * Post any pending signals.  If running a virtual kernel be sure
	 * to restore the virtual kernel's vmspace before posting the signal.
	 *
	 * WARNING!  postsig() can exit and not return.
	 */
	if ((sig = CURSIG_TRACE(lp)) != 0) {
		lwkt_gettoken(&p->p_token);
		postsig(sig);
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}

	/*
	 * block here if we are swapped out, but still process signals
	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
	 * aware of our situation, we do not have to wake it up.
	 */
	if (p->p_flags & P_SWAPPEDOUT) {
		lwkt_gettoken(&p->p_token);
		get_mplock();
		p->p_flags |= P_SWAPWAIT;
		swapin_request();
		if (p->p_flags & P_SWAPWAIT)
			tsleep(p, PCATCH, "SWOUT", 0);
		p->p_flags &= ~P_SWAPWAIT;
		rel_mplock();
		lwkt_reltoken(&p->p_token);
		goto recheck;
	}

	/*
	 * In a multi-threaded program it is possible for a thread to change
	 * signal state during a system call which temporarily changes the
	 * signal mask.  In this case postsig() might not be run and we
	 * have to restore the mask ourselves.
	 */
	if (lp->lwp_flags & LWP_OLDMASK) {
		lp->lwp_flags &= ~LWP_OLDMASK;
		lp->lwp_sigmask = lp->lwp_oldsigmask;
		goto recheck;
	}
}