/*-----------------------------------------------------------------------------------*/ void ctk_vncserver_appcall(void *state) { static struct vnc_server_state *vs; vs = (struct vnc_server_state *)(state); if(uip_connected()) { /* Since we've just been connected, the state pointer should be NULL and we need to allocate a new state object. If we have run out of memory for state objects, we'll have to abort the connection and return. */ if(vs == NULL) { vs = alloc_state(); if(vs == NULL) { uip_close(); return; } tcp_markconn(uip_conn, (void *)vs); } } else if(uip_closed() || uip_aborted()) { if(vs != NULL) { dealloc_state(vs); } return; } vnc_server_appcall(vs); }
/*@T * * The [[place_particles]] routine fills a region (indicated by the * [[indicatef]] argument) with fluid particles. The fluid particles * are placed at points inside the domain that lie on a regular mesh * with cell sizes of $h/1.3$. This is close enough to allow the * particles to overlap somewhat, but not too much. *@c*/ sim_state_t* place_particles(sim_param_t* param, domain_fun_t indicatef) { float h = param->h; float hh = h/1.3; // Count mesh points that fall in indicated region. int count = 0; for (float x = 0; x < 1; x += hh) for (float y = 0; y < 1; y += hh) for (float z = 0; z < 1; z += hh) count += indicatef(x,y,z); // Populate the particle data structure sim_state_t* s = alloc_state(count); int p = 0; for (float x = 0; x < 1; x += hh) { for (float y = 0; y < 1; y += hh) { for (float z = 0; z < 1; z += hh) { if (indicatef(x,y,z)) { vec3_set(s->part[p].x, x, y, z); vec3_set(s->part[p].v, 0, 0, 0); ++p; } } } } return s; }
static state * push_state( stack * const pStack, TARGET * const t, TARGET * const parent, int const curstate ) { state * const pState = alloc_state(); pState->t = t; pState->parent = parent; pState->prev = pStack->stack; pState->curstate = curstate; return pStack->stack = pState; }
EXPORT ConstantFlowRegion *SetConstantFlowRegion( COMPONENT comp, Locstate state, INTERFACE *intfc) { ConstantFlowRegion *cfr; FlowSpecifiedRegion *fsr; fsr = FSR_for_comp(comp,NULL,intfc); if (fsr != NULL) { size_t sizest = size_of_state(intfc); if (strcmp(fsr->type,"CONSTANT_REGION") != 0) { screen("ERROR in SetConstantFlowRegion(), " "attempt to respecify a flow specified region\n"); clean_up(ERROR); } cfr = (ConstantFlowRegion*)fsr; if (sizest != 0) { if (memcmp(state,cfr->state,sizest) != 0) { screen("ERROR in SetConstantFlowRegion(), " "attempt to respecify a constant region state\n"); clean_up(ERROR); } } return cfr; } scalar(&cfr,sizeof(ConstantFlowRegion)); cfr->Fsr.comp = comp; sprintf(cfr->Fsr.type,"CONSTANT_REGION"); cfr->Fsr._ComponentsMatch = equivalent_comps; cfr->Fsr._SetFlowSpecifiedState = SetConstantRegionState; cfr->Fsr._fprint_FlowSpecifiedRegion_data = fprint_ConstantFlowRegion_data; cfr->Fsr._DestroyFlowSpecifiedRegion = DestroyConstantFlowRegion; alloc_state(intfc,&cfr->state,size_of_state(intfc)); ft_assign(cfr->state,state,size_of_state(intfc)); (void) AddToFsrList(&cfr->Fsr); return cfr; } /*end SetConstantFlowRegion*/
EXPORT void set_rt_kh_comp_type( COMP_TYPE *comp_type, Front *front) { _RT_KH *extra; if (comp_type->type == RT_KH) /*ALREADY SET*/ return; if (comp_type->free_comp_type_extra != NULL) (*comp_type->free_comp_type_extra)(comp_type); comp_type->type = RT_KH; comp_type->_get_state = get_state_rt_kh; scalar(&extra,sizeof(_RT_KH)); extra->stratification_type = CONSTANT; alloc_state(front->interf,&extra->ref_state,front->sizest); comp_type->extra = (POINTER)extra; comp_type->free_comp_type_extra = free_rt_kh_comp_type; } /*end set_rt_kh_comp_type*/
/*ARGSUSED*/ EXPORT void set_up_riemann_problem_region( int layer_label, int region_label, int surf_label, int ellip_label, float *coords, float *nor, SIDE ahead_side, Locstate ahead_st, Locstate st, LAYER_SYS *layer_sys, INIT_PHYSICS *ip, INIT_DATA *init) { COMP_TYPE *ct; _RAREFACTION_WAVE_1D *rw1d; LAYER *lyr, *llyr, *ulyr; Front *front = layer_sys->front; INTERFACE *intfc = front->interf; ELLIPSOID *ellip; LAYER_SURF *lsurf; Locstate sl, sr; Locstate left, right; Locstate sml, smr; float vl, vr; float pjump; float pml, pmr, uml, umr, ml, mr; float cl, cr, cml, cmr, Wl, Wr; float W, V; float dt, dh; RIEMANN_SOLVER_WAVE_TYPE l_wave, r_wave; int i, dim = front->rect_grid->dim; int w_type; size_t sizest = front->sizest; debug_print("layer","Entered set_up_riemann_problem_region()\n"); alloc_state(intfc,&left,max(sizeof(VGas),sizest)); alloc_state(intfc,&right,max(sizeof(VGas),sizest)); alloc_state(intfc,&sml,sizest); alloc_state(intfc,&smr,sizest); if (ahead_side == POSITIVE_SIDE) { sl = st; sr = ahead_st; } else { sl = ahead_st; sr = st; } set_state(right,TGAS_STATE,sr); set_state(left,TGAS_STATE,sl); lyr = layer_sys->layer[layer_label]; if (ellip_label > 0) { if (ellip_label <= lyr->num_ellips) ellip = lyr->ellip[ellip_label]; else { screen("ERROR in set_up_riemann_problem_region(), " "invalid ellip_label %d > num_ellips %d\n", ellip_label,lyr->num_ellips); clean_up(ERROR); } lsurf = NULL; } else { ellip = NULL; if (surf_label == layer_label) { lsurf = lyr->upper_surf; llyr = lyr; ulyr = layer_sys->layer[layer_label+1]; } else if (surf_label == layer_label-1) { lsurf = lyr->lower_surf; ulyr = lyr; llyr = layer_sys->layer[layer_label-1]; } else { screen("ERROR in set_up_riemann_problem_region(), " "invalid surf_label %d layer_label %d\n", surf_label,layer_label); clean_up(ERROR); } } if (ellip != NULL) { vr = Vel(right)[0]; vl = Vel(left)[0]; pjump = -ellip->surf_tension/ distance_between_positions(coords,ellip->cen,dim); } else { vr = scalar_product(Vel(right),nor,dim); vl = scalar_product(Vel(left),nor,dim); pjump = 0.0; } zero_state_velocity(right,dim); Vel(right)[0] = vr; zero_state_velocity(left,dim); Vel(right)[0] = vl; set_state_for_find_mid_state(right,right); set_state_for_find_mid_state(left,left); if (find_mid_state(left,right,pjump,&pml,&pmr,¨,&umr,&ml,&mr, &l_wave,&r_wave) != FUNCTION_SUCCEEDED) { screen("ERROR in set_up_riemann_problem_region(), " "find_mid_state() did not converge\n"); verbose_print_state("left",left); verbose_print_state("right",right); (void) printf("pjump = %g\n" "pml = %g, pmr = %g\n" "uml = %g, umr = %g\n" "ml = %g, mr = %g\n", pjump,pml,pmr,uml,umr,ml,mr); (void) printf("l_wave = %s, r_wave = %s\n", rsoln_wave_name(l_wave),rsoln_wave_name(r_wave)); clean_up(ERROR); } w_type = (l_wave == RAREFACTION) ? BACKWARD_SOUND_WAVE_TE : BACKWARD_SHOCK_WAVE; state_behind_sound_wave(left,sml,&cml,&Wl,0.0,ml,uml,pml,TGAS_STATE, w_type,l_wave,LEFT_FAMILY); w_type = (r_wave == RAREFACTION) ? FORWARD_SOUND_WAVE_TE : FORWARD_SHOCK_WAVE; state_behind_sound_wave(right,smr,&cmr,&Wr,0.0,mr,umr,pmr,TGAS_STATE, w_type,r_wave,RIGHT_FAMILY); cl = sound_speed(left); cr = sound_speed(right); W = max(fabs(Wl),fabs(Wr)); V = fabs(vl) + cl; W = max(W,V); V = fabs(vr) + cr; W = max(W,V); V = fabs(uml) + cml; W = max(W,V); V = fabs(umr) + cmr; W = max(W,V); for (dh = HUGE_VAL, i = 0; i < dim; ++i) dh = min(dh,front->rect_grid->h[i]); dt = 0.1*dh/W;/*TOLERANCE*/ layer_sys->dt = min(layer_sys->dt,dt); if (debugging("layer")) { (void) printf("States from Riemann solution\n"); verbose_print_state("left state",left); verbose_print_state("left mid state",sml); verbose_print_state("right mid state",smr); verbose_print_state("right state",right); (void) printf("l_wave = %s, r_wave = %s\n", rsoln_wave_name(l_wave),rsoln_wave_name(r_wave)); (void) printf("Wave speeds\n"); if (l_wave == RAREFACTION) { (void) printf("Left rarefaction leading edge speed = %g\n", vl-cl); (void) printf("Left rarefaction trailing edge speed = %g\n", uml-cml); } else if (l_wave == SHOCK) (void) printf("Left shock speed = %g\n",Wl); (void) printf("Contact speed = %g (uml = %g, umr = %g)\n", 0.5*(uml+umr),uml,umr); if (r_wave == RAREFACTION) { (void) printf("Right rarefaction trailing edge speed = %g\n", umr+cmr); (void) printf("Right rarefaction leading edge speed = %g\n", vr+cr); } else if (r_wave == SHOCK) (void) printf("Right shock speed = %g\n",Wr); } if (ellip == NULL) { LAYER *rlyr, *mlyr; LAYER_SURF *rlyr_le, *rlyr_te, *shock; float *nor = lsurf->nor; float vml, vmr; vml = Vel(sml)[0]; vmr = Vel(smr)[0]; for (i = 0; i < dim; ++i) { Vel(sml)[i] = vel(i,sl) + (vml-vl)*nor[i]; Vel(smr)[i] = vel(i,sr) + (vmr-vr)*nor[i]; } if (l_wave == RAREFACTION) { rlyr = add_new_layer(layer_sys,new_component(NEW_COMP)); rlyr->lower_surf = alloc_layer_surf(); rlyr->upper_surf = alloc_layer_surf(); *rlyr->upper_surf = *lsurf; *rlyr->lower_surf = *lsurf; rlyr->lower_surf->reset_position = YES; rlyr->upper_surf->reset_position = YES; rlyr->lower_surf->surf_ten = 0.0; rlyr->upper_surf->surf_ten = 0.0; ct = comp_type(rlyr->comp); set_rarefaction_wave_1d_comp_type(ct,front); rw1d = Rarefaction_wave_1d(ct); rw1d->l_or_r = LEFT_FAMILY; rw1d->zbar = lsurf->pbar[dim-1]; rw1d->tbar = -HUGE_VAL; /*To be set later */ rw1d->el_lead = rw1d->el_trail = NULL; set_state(rw1d->stl,TGAS_STATE,sl); set_state(rw1d->stt,TGAS_STATE,sml); rw1d->spl = vl-cl; rw1d->spt = vml-cml; mlyr = add_new_layer(layer_sys,new_component(NEW_COMP)); if (nor[dim-1] < 0.0) { rlyr_le = rlyr->upper_surf; rlyr_te = rlyr->lower_surf; mlyr->upper_surf = rlyr_te; mlyr->lower_surf = lsurf; rw1d->zt = rw1d->zmin = -HUGE_VAL;/*To be set later*/ rw1d->stmin = rw1d->stt; rw1d->zl = rw1d->zmax = HUGE_VAL;/*To be set later*/ rw1d->stmax = rw1d->stl; ulyr->lower_surf = rlyr_le; } else { rlyr_le = rlyr->lower_surf; rlyr_te = rlyr->upper_surf; mlyr->lower_surf = rlyr_te; mlyr->upper_surf = lsurf; rw1d->zl = rw1d->zmin = -HUGE_VAL;/*To be set later*/ rw1d->stmin = rw1d->stl; rw1d->zt = rw1d->zmax = HUGE_VAL;/*To be set later*/ rw1d->stmax = rw1d->stt; llyr->upper_surf = rlyr_le; } rw1d->lead = rlyr_le; rw1d->trail = rlyr_te; rlyr_le->l_comp = lsurf->l_comp; rlyr_le->r_comp = rlyr_te->l_comp = rlyr->comp; rlyr_le->wv_type = BACKWARD_SOUND_WAVE_LE; rlyr_te->wv_type = BACKWARD_SOUND_WAVE_TE; rlyr_te->r_comp = lsurf->l_comp = mlyr->comp; for (i = 0; i < dim; ++i) { rlyr_le->velocity[i] = rw1d->spl*nor[i]; rlyr_te->velocity[i] = rw1d->spt*nor[i]; } } else { mlyr = add_new_layer(layer_sys,new_component(NEW_COMP)); shock = alloc_layer_surf(); *shock = *lsurf; if (nor[dim-1] < 0.0) { mlyr->upper_surf = shock; mlyr->lower_surf = lsurf; ulyr->lower_surf = shock; } else { mlyr->lower_surf = shock; mlyr->upper_surf = lsurf; llyr->upper_surf = shock; } shock->l_comp = lsurf->l_comp; shock->wv_type = BACKWARD_SHOCK_WAVE; shock->r_comp = lsurf->l_comp = mlyr->comp; shock->reset_position = YES; for (i = 0; i < dim; ++i) shock->velocity[i] = Wl*nor[i]; } ct = comp_type(mlyr->comp); set_ambient_comp_type(ct,front); set_state(Ambient(ct),GAS_STATE,sml); if (r_wave == RAREFACTION) { rlyr = add_new_layer(layer_sys,new_component(NEW_COMP)); rlyr->lower_surf = alloc_layer_surf(); rlyr->upper_surf = alloc_layer_surf(); *rlyr->upper_surf = *lsurf; *rlyr->lower_surf = *lsurf; rlyr->lower_surf->reset_position = YES; rlyr->upper_surf->reset_position = YES; rlyr->lower_surf->surf_ten = 0.0; rlyr->upper_surf->surf_ten = 0.0; ct = comp_type(rlyr->comp); set_rarefaction_wave_1d_comp_type(ct,front); rw1d = Rarefaction_wave_1d(ct); rw1d->l_or_r = RIGHT_FAMILY; rw1d->zbar = lsurf->pbar[dim-1]; rw1d->tbar = -HUGE_VAL; /*To be set later */ rw1d->el_lead = rw1d->el_trail = NULL; set_state(rw1d->stl,TGAS_STATE,sr); set_state(rw1d->stt,TGAS_STATE,smr); rw1d->spl = vr+cr; rw1d->spt = vmr+cmr; rw1d->lead = rlyr_le; rw1d->trail = rlyr_te; mlyr = add_new_layer(layer_sys,new_component(NEW_COMP)); if (nor[dim-1] < 0.0) { rlyr_le = rlyr->lower_surf; rlyr_te = rlyr->upper_surf; mlyr->lower_surf = rlyr_te; mlyr->upper_surf = lsurf; rw1d->zl = rw1d->zmin = -HUGE_VAL;/*To be set later*/ rw1d->stmin = rw1d->stl; rw1d->zt = rw1d->zmax = HUGE_VAL;/*To be set later*/ rw1d->stmax = rw1d->stt; llyr->upper_surf = rlyr_le; } else { rlyr_le = rlyr->upper_surf; rlyr_te = rlyr->lower_surf; mlyr->upper_surf = rlyr_te; mlyr->lower_surf = lsurf; rw1d->zt = rw1d->zmin = -HUGE_VAL;/*To be set later*/ rw1d->stmin = rw1d->stt; rw1d->zl = rw1d->zmax = HUGE_VAL;/*To be set later*/ rw1d->stmax = rw1d->stl; ulyr->lower_surf = rlyr_le; } rlyr_le->r_comp = lsurf->r_comp; rlyr_le->l_comp = rlyr_te->r_comp = rlyr->comp; rlyr_le->wv_type = FORWARD_SOUND_WAVE_LE; rlyr_te->wv_type = FORWARD_SOUND_WAVE_TE; rlyr_te->l_comp = lsurf->r_comp = mlyr->comp; for (i = 0; i < dim; ++i) { rlyr_le->velocity[i] = rw1d->spl*nor[i]; rlyr_te->velocity[i] = rw1d->spt*nor[i]; } } else { mlyr = add_new_layer(layer_sys,new_component(NEW_COMP)); shock = alloc_layer_surf(); *shock = *lsurf; if (nor[dim-1] < 0.0) { mlyr->lower_surf = shock; mlyr->upper_surf = lsurf; llyr->upper_surf = shock; } else { mlyr->upper_surf = shock; mlyr->lower_surf = lsurf; ulyr->lower_surf = shock; } shock->r_comp = lsurf->r_comp; shock->wv_type = FORWARD_SHOCK_WAVE; shock->l_comp = lsurf->r_comp = mlyr->comp; shock->reset_position = YES; for (i = 0; i < dim; ++i) shock->velocity[i] = Wr*nor[i]; } ct = comp_type(mlyr->comp); set_ambient_comp_type(ct,front); set_state(Ambient(ct),GAS_STATE,smr); lsurf->wv_type = CONTACT; lsurf->reset_position = YES; for (i = 0; i < dim; ++i) lsurf->velocity[i] = 0.5*(vml+vmr)*nor[i]; } else { set_riemann_problem_ellipsoid(front,lyr,ellip,l_wave,r_wave, Wl,Wr,sl,sml,smr,sr,ip); } free_these(4,left,right,sml,smr); debug_print("layer","Left set_up_riemann_problem_region()\n"); } /*end set_up_riemann_problem_region*/
static void do_state(pip_ref_t *ref, state_t *state, void *dat) { alloc_state(state, dat); init_state(state); }
/*---------------------------------------------------------------------------*/ void httpd_appcall(void) { #if PORT_APP_MAPPER struct httpd_state *s; #else struct httpd_state *s = (struct httpd_state *)&(uip_conn->appstate); #endif if(uip_closed() || uip_aborted() || uip_timedout()) { #if PORT_APP_MAPPER //sendString("uip close/abort/timeout\r\n"); if (uip_conn->appstate != -1) { //sendString("uip close/abort/timeout - cleanup\r\n"); httpd_state_list[((int8_t)uip_conn->appstate)].state = STATE_UNUSED; uip_conn->appstate = -1; } #endif } else if(uip_connected()) { #if PORT_APP_MAPPER if ((uip_conn->appstate = alloc_state()) == -1) { // we are out of state space. close the connection // hope the client tries back again //sendString("Out of http stats\r\n"); uip_abort(); return; } // set the app state s = &(httpd_state_list[((int8_t)uip_conn->appstate)]); #endif PSOCK_INIT(&s->sin, s->inputbuf, sizeof(s->inputbuf) - 1); PSOCK_INIT(&s->sout, s->inputbuf, sizeof(s->inputbuf) - 1); PT_INIT(&s->outputpt); s->state = STATE_WAITING; /* timer_set(&s->timer, CLOCK_SECOND * 100);*/ s->timer = 0; handle_connection(s); #if PORT_APP_MAPPER } else if (uip_conn->appstate != -1) { s = &(httpd_state_list[((int8_t)uip_conn->appstate)]); #else } else if(s != NULL) { #endif if(uip_poll()) { ++s->timer; // if the client just hasn't sent // anything in a while we end up here // this is where we can clean up dead connections. // 20 seems like a long time - if(s->timer >= 20) { // 16 seems to be a good number wtih 5 status if(s->timer >= 16) { #if PORT_APP_MAPPER if (uip_conn->appstate != -1) { httpd_state_list[((int8_t)uip_conn->appstate)].state = STATE_UNUSED; uip_conn->appstate = -1; } #endif uip_abort(); } } else { s->timer = 0; } handle_connection(s); } else { #if PORT_APP_MAPPER if (uip_conn->appstate != -1) { httpd_state_list[((int8_t)uip_conn->appstate)].state = STATE_UNUSED; uip_conn->appstate = -1; } #endif uip_abort(); } }
/*-----------------------------------------------------------------------------------*/ DISPATCHER_UIPCALL(httpd_appcall, state) { struct httpd_fs_file fsfile; u8_t i; DISPATCHER_UIPCALL_ARG(state); hs = (struct httpd_state *)(state); /* We use the uip_ test functions to deduce why we were called. If uip_connected() is non-zero, we were called because a remote host has connected to us. If uip_newdata() is non-zero, we were called because the remote host has sent us new data, and if uip_acked() is non-zero, the remote host has acknowledged the data we previously sent to it. */ if(uip_connected()) { /* Since we've just been connected, the state pointer should be NULL and we need to allocate a new state object. If we have run out of memory for state objects, we'll have to abort the connection and return. */ if(hs == NULL) { hs = alloc_state(); if(hs == NULL) { uip_close(); return; } dispatcher_markconn(uip_conn, (void *)hs); } /* Since we have just been connected with the remote host, we reset the state for this connection. The ->count variable contains the amount of data that is yet to be sent to the remote host, and the ->state is set to HTTP_NOGET to signal that we haven't received any HTTP GET request for this connection yet. */ hs->state = HTTP_NOGET; hs->count = 0; hs->poll = 0; } else if(uip_closed() || uip_aborted()) { if(hs != NULL) { dealloc_state(hs); } return; } else if(uip_poll()) { /* If we are polled ten times, we abort the connection. This is because we don't want connections lingering indefinately in the system. */ if(hs != NULL) { if(hs->state == HTTP_DEALLOCATED) { uip_abort(); } else if(hs->poll++ >= 100) { uip_abort(); dealloc_state(hs); } } return; } if(uip_newdata() && hs->state == HTTP_NOGET) { hs->poll = 0; /* This is the first data we receive, and it should contain a GET. */ /* Check for GET. */ if(uip_appdata[0] != ISO_G || uip_appdata[1] != ISO_E || uip_appdata[2] != ISO_T || uip_appdata[3] != ISO_space) { /* If it isn't a GET, we abort the connection. */ uip_abort(); dealloc_state(hs); return; } beep(); /* Find the file we are looking for. */ for(i = 4; i < 40; ++i) { if(uip_appdata[i] == ISO_space || uip_appdata[i] == ISO_cr || uip_appdata[i] == ISO_nl) { uip_appdata[i] = 0; break; } } PRINT("request for file "); PRINTLN(&uip_appdata[4]); webserver_log_file(uip_conn->ripaddr, &uip_appdata[4]); /* Check for a request for "/". */ if(uip_appdata[4] == ISO_slash && uip_appdata[5] == 0) { httpd_fs_open(file_index_html.name, &fsfile); } else { if(!httpd_fs_open((const char *)&uip_appdata[4], &fsfile)) { PRINTLN("couldn't open file"); httpd_fs_open(file_404_html.name, &fsfile); } } if(uip_appdata[4] == ISO_slash && uip_appdata[5] == ISO_c && uip_appdata[6] == ISO_g && uip_appdata[7] == ISO_i && uip_appdata[8] == ISO_slash) { /* If the request is for a file that starts with "/cgi/", we prepare for invoking a script. */ hs->script = fsfile.data; next_scriptstate(); } else { hs->script = NULL; /* The web server is now no longer in the HTTP_NOGET state, but in the HTTP_FILE state since is has now got the GET from the client and will start transmitting the file. */ hs->state = HTTP_FILE; /* Point the file pointers in the connection state to point to the first byte of the file. */ hs->dataptr = fsfile.data; hs->count = fsfile.len; } } if(hs->state != HTTP_FUNC) { /* Check if the client (remote end) has acknowledged any data that we've previously sent. If so, we move the file pointer further into the file and send back more data. If we are out of data to send, we close the connection. */ if(uip_acked()) { hs->poll = 0; if(hs->count >= uip_mss()) { hs->count -= uip_mss(); hs->dataptr += uip_mss(); } else { hs->count = 0; } if(hs->count == 0) { if(hs->script != NULL) { next_scriptline(); next_scriptstate(); } else { uip_close(); dealloc_state(hs); } } } } if(hs->state == HTTP_FUNC) { /* Call the CGI function. */ #if 1 if(httpd_cgitab[hs->script[2] - ISO_a]()) { /* If the function returns non-zero, we jump to the next line in the script. */ next_scriptline(); next_scriptstate(); } #endif } if(hs->state != HTTP_FUNC && !uip_poll()) { hs->poll = 0; /* Send a piece of data, but not more than the MSS of the connection. */ uip_send(hs->dataptr, hs->count > uip_mss()? uip_mss(): hs->count); } /* Finally, return to uIP. Our outgoing packet will soon be on its way... */ }