int write_minc(char *filename, float *image, image_metadata *meta,VIO_BOOL binary_mask){ VIO_Volume volume; int i,j,k,index; float min=FLT_MAX,max=FLT_MIN; VIO_Real dummy[3]; if(binary_mask) { volume = create_volume(3,NULL,NC_BYTE,FALSE,0.0,1.0); printf("Writing a binary volume...\n"); } else volume = create_volume(3,NULL,NC_FLOAT,FALSE,FLT_MIN,FLT_MAX); if(!volume) return STATUS_ERR; if(!binary_mask) { for (i=0;i<meta->length[0];i++){ for (j=0;j<meta->length[1];j++){ for (k=0;k<meta->length[2];k++){ index=i*meta->length[2]*meta->length[1] + j*meta->length[2] + k; min=MIN(min,image[index]); max=MAX(max,image[index]); } } } set_volume_real_range(volume,min,max); } else { set_volume_real_range(volume,0.0,1.0); } set_volume_sizes(volume,meta->length); dummy[0]=meta->start[0]; dummy[1]=meta->start[1]; dummy[2]=meta->start[2]; set_volume_starts(volume,dummy); dummy[0]=meta->step[0]; dummy[1]=meta->step[1]; dummy[2]=meta->step[2]; set_volume_separations(volume,dummy); alloc_volume_data(volume); get_volume(image, volume, meta->length); if(!binary_mask) output_volume( filename, NC_FLOAT,FALSE,min, max,volume,meta->history,(minc_output_options *)NULL); else output_volume( filename, NC_BYTE,FALSE,0, 1.0,volume,meta->history,(minc_output_options *)NULL); delete_volume(volume); return STATUS_OK; }
int main(int argc, char *argv[]) { int v1, v2, v3, v4; int sizes[VIO_MAX_DIMENSIONS], grid_sizes[4]; int n_concat_transforms, i; VIO_STR arg_string; char *input_volume_name; char *input_xfm; VIO_STR outfile; VIO_Real w1, w2, w3; VIO_Real nw1, nw2, nw3; VIO_Real original[3], transformed[3]; VIO_Real value; VIO_Real cosine[3]; VIO_Real original_separation[3], grid_separation[4]; VIO_Real original_starts[3], grid_starts[4]; VIO_Volume eval_volume, new_grid; VIO_General_transform xfm, *voxel_to_world; VIO_STR *dimnames, dimnames_grid[4]; VIO_progress_struct progress; arg_string = time_stamp(argc, argv); /* Check arguments */ if(ParseArgv(&argc, argv, argTable, 0) || (argc != 4)){ fprintf(stderr, "\nUsage: %s [options] input.mnc input.xfm output_grid.mnc\n", argv[0]); fprintf(stderr, " %s -help\n\n", argv[0]); exit(EXIT_FAILURE); } input_volume_name = argv[1]; input_xfm = argv[2]; outfile = argv[3]; /* check for the infile and outfile */ if(access(input_volume_name, F_OK) != 0){ fprintf(stderr, "%s: Couldn't find %s\n\n", argv[0], input_volume_name); exit(EXIT_FAILURE); } if(access(input_xfm, F_OK) != 0) { fprintf(stderr, "%s: Couldn't find %s\n\n", argv[0], input_xfm); exit(EXIT_FAILURE); } if(access(outfile, F_OK) == 0 && !clobber){ fprintf(stderr, "%s: %s exists! (use -clobber to overwrite)\n\n", argv[0], outfile); exit(EXIT_FAILURE); } /*--- input the volume */ /* if( input_volume( input_volume_name, 3, NULL, MI_ORIGINAL_TYPE, FALSE, 0.0, 0.0, TRUE, &eval_volume,(minc_input_options *) NULL ) != OK ) return( 1 ); */ if (input_volume_header_only( input_volume_name, 3, NULL, &eval_volume,(minc_input_options *) NULL ) != VIO_OK ) { return( 1 ); } /* get information about the volume */ get_volume_sizes( eval_volume, sizes ); voxel_to_world = get_voxel_to_world_transform(eval_volume); dimnames = get_volume_dimension_names(eval_volume); get_volume_separations(eval_volume, original_separation); get_volume_starts(eval_volume, original_starts); /* create new 4D volume, last three dims same as other volume, first dimension being the vector dimension. */ for(i=1; i < 4; i++) { dimnames_grid[i] = dimnames[i-1]; grid_separation[i] = original_separation[i-1]; grid_sizes[i] = sizes[i-1]; grid_starts[i] = original_starts[i-1]; } dimnames_grid[0] = "vector_dimension"; grid_sizes[0] = 3; grid_separation[0] = 1; grid_starts[0] = 0; new_grid = create_volume(4, dimnames_grid, NC_SHORT, FALSE, 0.0, 0.0); //set_voxel_to_world_transform(new_grid, voxel_to_world); // initialize the new grid volume, otherwise the output will be // garbage... set_volume_real_range(new_grid, -100, 100); set_volume_sizes(new_grid, grid_sizes); set_volume_separations(new_grid, grid_separation); set_volume_starts(new_grid, grid_starts); /* for (i=0; i < 3; i++) { get_volume_direction_cosine(eval_volume, i, cosine); set_volume_direction_cosine(new_grid, i+1, cosine); } */ alloc_volume_data(new_grid); /* get the transforms */ if( input_transform_file( input_xfm, &xfm ) != VIO_OK ) return( 1 ); /* see how many transforms will be applied */ n_concat_transforms = get_n_concated_transforms( &xfm ); printf("Number of transforms to be applied: %d\n", n_concat_transforms); initialize_progress_report(&progress, FALSE, sizes[0], "Processing"); /* evaluate the transform at every voxel, keep the displacement in the three cardinal directions */ for( v1 = 0; v1 < sizes[0]; ++v1 ) { update_progress_report(&progress, v1 + 1); for( v2 = 0; v2 < sizes[1]; ++v2 ) { for( v3 = 0; v3 < sizes[2]; ++v3 ) { convert_3D_voxel_to_world(eval_volume, v1, v2, v3, &original[0], &original[1], &original[2]); general_transform_point(&xfm, original[0], original[1], original[2], &transformed[0], &transformed[1], &transformed[2]); for(i=0; i < 3; i++) { value = transformed[i] - original[i]; set_volume_real_value(new_grid, i, v1, v2, v3, 0, value); } } } } terminate_progress_report(&progress); printf("Outputting volume.\n"); output_volume(outfile, MI_ORIGINAL_TYPE, TRUE, 0.0, 0.0, new_grid, arg_string, NULL); return(0); }
/* 16Feb07 Phil McDonald */ int make_volume (Context data_ctx, int itime, int ivar) { int new_dims[3], use_grid_z; struct volume *v; if ((data_ctx == NULL) || (data_ctx->Volume == NULL)) return 0; v = data_ctx->Volume; #ifdef TIME_TEST double usec; usec = vis5d_time_usec (0.0); #endif wait_write_lock (&(v->lock)); #ifdef TIME_TEST vis5d_time_msg (usec, "make_vol", "wait"); #endif /* * Check to see if new volume grid dimensions have been specified. * If so, get rid of the old vertex and quad arrays, allocate * new ones, and find the verts for the new grid. */ if (volume_new_dims (data_ctx, new_dims, &use_grid_z)) { free_volume_data (data_ctx); v->nx = new_dims[0]; v->ny = new_dims[1]; v->nz = new_dims[2]; alloc_volume_data (data_ctx); } if ((itime != v->itime) || (ivar != v->ivar) || (v->valid == 0)) { if (ivar >= 0) { if (v->ivar < 0) volume_verts (data_ctx, use_grid_z); volume_colors (data_ctx, itime, ivar); v->valid = 1; } v->itime = itime; v->ivar = ivar; } done_write_lock (&(v->lock)); #ifdef TIME_TEST vis5d_time_msg (usec, "make_vol", "total"); #endif return 1; }
int main(int argc, char *argv[]) { VIO_General_transform transform, *grid_transform_ptr, forward_transform; VIO_Volume target_vol, volume; volume_input_struct input_info; VIO_Real voxel[VIO_MAX_DIMENSIONS], steps[VIO_MAX_DIMENSIONS], start[VIO_N_DIMENSIONS], target_steps[VIO_MAX_DIMENSIONS], wx,wy,wz, inv_x, inv_y, inv_z, def_values[VIO_MAX_DIMENSIONS]; static int clobber_flag = FALSE, verbose = TRUE, debug = FALSE; static char *target_file; int parse_flag, prog_count, sizes[VIO_MAX_DIMENSIONS], target_sizes[VIO_MAX_DIMENSIONS], xyzv[VIO_MAX_DIMENSIONS], target_xyzv[VIO_MAX_DIMENSIONS], index[VIO_MAX_DIMENSIONS], i, trans_count; VIO_progress_struct progress; static ArgvInfo argTable[] = { {"-like", ARGV_STRING, (char *) 0, (char *) &target_file, "Specify target volume sampling information."}, {"-no_clobber", ARGV_CONSTANT, (char *) FALSE, (char *) &clobber_flag, "Do not overwrite output file (default)."}, {"-clobber", ARGV_CONSTANT, (char *) TRUE, (char *) &clobber_flag, "Overwrite output file."}, {"-verbose", ARGV_CONSTANT, (char *) TRUE, (char *) &verbose, "Write messages indicating progress (default)"}, {"-quiet", ARGV_CONSTANT, (char *) FALSE, (char *) &verbose, "Do not write log messages"}, {"-debug", ARGV_CONSTANT, (char *) TRUE, (char *) &debug, "Print out debug info."}, {NULL, ARGV_END, NULL, NULL, NULL} }; prog_name = argv[0]; target_file = malloc(1024); strcpy(target_file,""); /* Call ParseArgv to interpret all command line args (returns TRUE if error) */ parse_flag = ParseArgv(&argc, argv, argTable, 0); /* Check remaining arguments */ if (parse_flag || argc != 3) print_usage_and_exit(prog_name); /* Read in file that has a def field to invert */ if (input_transform_file(argv[1], &transform) != OK) { (void) fprintf(stderr, "%s: Error reading transform file %s\n", argv[0], argv[1]); exit(EXIT_FAILURE); } for(trans_count=0; trans_count<get_n_concated_transforms(&transform); trans_count++ ) { grid_transform_ptr = get_nth_general_transform(&transform, trans_count ); if (grid_transform_ptr->type == GRID_TRANSFORM) { copy_general_transform(grid_transform_ptr, &forward_transform); /* this is the call that should be made with the latest version of internal_libvolume_io invert_general_transform(&forward_transform); */ forward_transform.inverse_flag = !(forward_transform.inverse_flag); volume = grid_transform_ptr->displacement_volume; if (strlen(target_file)!=0) { if (debug) print ("Def field will be resampled like %s\n",target_file); if (!file_exists( target_file ) ) { (void) fprintf(stderr, "%s: Target file '%s' does not exist\n", prog_name,target_file); exit(EXIT_FAILURE); } start_volume_input(target_file, 3, (char **)NULL, NC_UNSPECIFIED, FALSE, 0.0, 0.0, TRUE, &target_vol, (minc_input_options *)NULL, &input_info); get_volume_XYZV_indices(volume, xyzv); get_volume_separations (volume, steps); get_volume_sizes (volume, sizes); get_volume_XYZV_indices(target_vol, target_xyzv); get_volume_separations (target_vol, target_steps); get_volume_sizes (target_vol, target_sizes); for(i=0; i<VIO_MAX_DIMENSIONS; i++) { index[i] = 0; voxel[i] = 0.0; } convert_voxel_to_world(target_vol, voxel, &start[VIO_X], &start[VIO_Y], &start[VIO_Z]); if( volume != (void *) NULL ){ free_volume_data( volume ); } for(i=VIO_X; i<=VIO_Z; i++) { steps[ xyzv[i] ] = target_steps[ target_xyzv[i] ] ; sizes[ xyzv[i] ] = target_sizes[ target_xyzv[i] ] ; } set_volume_separations(volume, steps); set_volume_sizes( volume, sizes); set_volume_starts(volume, start); alloc_volume_data( volume ); } get_volume_sizes(volume, sizes); get_volume_XYZV_indices(volume,xyzv); for(i=0; i<VIO_MAX_DIMENSIONS; i++){ index[i] = 0; } if (verbose){ initialize_progress_report(&progress, FALSE, sizes[xyzv[VIO_X]]*sizes[xyzv[VIO_Y]]*sizes[xyzv[VIO_Z]]+1, "Inverting def field"); } prog_count = 0; for(index[xyzv[VIO_X]]=0; index[xyzv[VIO_X]]<sizes[xyzv[VIO_X]]; index[xyzv[VIO_X]]++) for(index[xyzv[VIO_Y]]=0; index[xyzv[VIO_Y]]<sizes[xyzv[VIO_Y]]; index[xyzv[VIO_Y]]++) for(index[xyzv[VIO_Z]]=0; index[xyzv[VIO_Z]]<sizes[xyzv[VIO_Z]]; index[xyzv[VIO_Z]]++) { index[ xyzv[VIO_Z+1] ] = 0; for(i=0; i<VIO_MAX_DIMENSIONS; i++) voxel[i] = (VIO_Real)index[i]; convert_voxel_to_world(volume, voxel, &wx, &wy, &wz); if (sizes[ xyzv[VIO_Z] ] ==1) general_inverse_transform_point_in_trans_plane(&forward_transform, wx, wy, wz, &inv_x, &inv_y, &inv_z); else grid_inverse_transform_point(&forward_transform, wx, wy, wz, &inv_x, &inv_y, &inv_z); def_values[VIO_X] = inv_x - wx; def_values[VIO_Y] = inv_y - wy; def_values[VIO_Z] = inv_z - wz; for(index[xyzv[VIO_Z+1]]=0; index[xyzv[VIO_Z+1]]<3; index[xyzv[VIO_Z+1]]++) set_volume_real_value(volume, index[0],index[1],index[2],index[3],index[4], def_values[ index[ xyzv[VIO_Z+1] ]]); prog_count++; if (verbose) update_progress_report(&progress, prog_count); } if (verbose) terminate_progress_report(&progress); delete_general_transform(&forward_transform); grid_transform_ptr->inverse_flag = !(grid_transform_ptr->inverse_flag); } } /* Write out the transform */ if (output_transform_file(argv[2], NULL, &transform) != OK) { (void) fprintf(stderr, "%s: Error writing transform file %s\n", argv[0], argv[2]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); }
int main(int argc, char *argv[]) { char **infiles; int n_infiles; char *out_fn; char *history; VIO_progress_struct progress; VIO_Volume totals, weights; int i, j, k, v; double min, max; double w_min, w_max; long num_missed; double weight, value; double initial_weight; VIO_Real dummy[3]; int sizes[MAX_VAR_DIMS]; double starts[MAX_VAR_DIMS]; double steps[MAX_VAR_DIMS]; long t = 0; /* start the time counter */ current_realtime_seconds(); /* get the history string */ history = time_stamp(argc, argv); /* get args */ if(ParseArgv(&argc, argv, argTable, 0) || (argc < 3)){ fprintf(stderr, "\nUsage: %s [options] <in1.mnc> [<in2.mnc> [...]] <out.mnc>\n", argv[0]); fprintf(stderr, " %s [options] -arb_path pth.conf <infile.raw> <out.mnc>\n", argv[0]); fprintf(stderr, " %s -help\n\n", argv[0]); exit(EXIT_FAILURE); } /* get file names */ n_infiles = argc - 2; infiles = (char **)malloc(sizeof(char *) * n_infiles); for(i = 0; i < n_infiles; i++){ infiles[i] = argv[i + 1]; } out_fn = argv[argc - 1]; /* check for infiles and outfile */ for(i = 0; i < n_infiles; i++){ if(!file_exists(infiles[i])){ fprintf(stderr, "%s: Couldn't find input file %s.\n\n", argv[0], infiles[i]); exit(EXIT_FAILURE); } } if(!clobber && file_exists(out_fn)){ fprintf(stderr, "%s: %s exists, -clobber to overwrite.\n\n", argv[0], out_fn); exit(EXIT_FAILURE); } /* check for weights_fn if required */ if(weights_fn != NULL){ if(!clobber && file_exists(weights_fn)){ fprintf(stderr, "%s: %s exists, -clobber to overwrite.\n\n", argv[0], weights_fn); exit(EXIT_FAILURE); } } /* set up parameters for reconstruction */ if(out_dtype == NC_UNSPECIFIED){ out_dtype = in_dtype; } if(out_is_signed == DEF_BOOL){ out_is_signed = in_is_signed; } /* check vector dimension size */ if(vect_size < 1){ fprintf(stderr, "%s: -vector (%d) must be 1 or greater.\n\n", argv[0], vect_size); exit(EXIT_FAILURE); } /* check sigma */ if(regrid_sigma[0] <= 0 || regrid_sigma[1] <= 0 || regrid_sigma[2] <= 0 ){ fprintf(stderr, "%s: -sigma must be greater than 0\n\n", argv[0]); exit(EXIT_FAILURE); } /* read in the output file config from a file is specified */ if(out_config_fn != NULL){ int ext_args_c; char *ext_args[32]; /* max possible is 32 arguments */ ext_args_c = read_config_file(out_config_fn, ext_args); if(ParseArgv(&ext_args_c, ext_args, argTable, ARGV_DONT_SKIP_FIRST_ARG | ARGV_NO_LEFTOVERS | ARGV_NO_DEFAULTS)){ fprintf(stderr, "\nError in parameters in %s\n", out_config_fn); exit(EXIT_FAILURE); } } if(verbose){ fprintf_vol_def(stdout, &out_inf); } /* transpose the geometry arrays */ /* out_inf.*[] are in world xyz order, perm[] is the permutation array to map world xyz to the right voxel order in the volume */ for(i = 0; i < WORLD_NDIMS; i++){ sizes[i] = out_inf.nelem[perm[i]]; /* sizes, starts, steps are in voxel volume order. */ starts[i] = out_inf.start[perm[i]]; steps[i] = out_inf.step[perm[i]]; } sizes[WORLD_NDIMS] = vect_size; /* create the totals volume */ totals = create_volume((vect_size > 1) ? 4 : 3, (vect_size > 1) ? std_dimorder_v : std_dimorder, out_dtype, out_is_signed, 0.0, 0.0); set_volume_sizes(totals, sizes); set_volume_starts(totals, starts); set_volume_separations(totals, steps); for(i = 0; i < WORLD_NDIMS; i++){ /* out_inf.dircos is in world x,y,z order, we have to use the perm array to map each direction to the right voxel axis. */ set_volume_direction_cosine(totals, i, out_inf.dircos[perm[i]]); } alloc_volume_data(totals); /* create the "weights" volume */ weights = create_volume(3, std_dimorder, out_dtype, out_is_signed, 0.0, 0.0); set_volume_sizes(weights, sizes); set_volume_starts(weights, starts); set_volume_separations(weights, steps); for(i = 0; i < WORLD_NDIMS; i++){ set_volume_direction_cosine(weights, i, out_inf.dircos[perm[i]]); } alloc_volume_data(weights); /* down below in regrid_loop, Andrew makes a nasty direct reference to the voxel_to_world transformation in the volume. This transformation is not necessarily up to date, particularly when non-default direction cosines are used. In volume_io, the direction cosines are set and a FLAG is also set to indicate that the voxel-to-world xform is not up to date. If the stanrd volume_io general transform code is used, it checks internally to see if the matrix is up to date, and if not it is recomputed. So here, we'll (LC + MK) force an update by calling a general transform. */ // convert_world_to_voxel(weights, (Real) 0, (Real) 0, (Real) 0, dummy); // convert_world_to_voxel(totals, (Real) 0, (Real) 0, (Real) 0, dummy); fprintf(stderr, "2Sizes: [%d:%d:%d] \n", sizes[perm[0]], sizes[perm[1]], sizes[perm[2]]); /* initialize weights to be arbitray large value if using NEAREST */ /* volume interpolation else initialize all to zero */ if(regrid_type == NEAREST_FUNC && ap_coord_fn == NULL){ initial_weight = LARGE_INITIAL_WEIGHT; } else{ initial_weight = 0.0; } /* initialize weights and totals */ for(k = sizes[Z_IDX]; k--;){ for(j = sizes[Y_IDX]; j--;){ for(i = sizes[X_IDX]; i--;){ set_volume_real_value(weights, k, j, i, 0, 0, initial_weight); for(v = vect_size; v--;){ set_volume_real_value(totals, k, j, i, v, 0, 0.0); } } } } /* if regridding via an arbitrary path */ if(ap_coord_fn != NULL){ if(n_infiles > 1){ fprintf(stderr, "%s: arb_path only works for one input file (so far).\n\n", argv[0]); exit(EXIT_FAILURE); } /* print some pretty output */ if(verbose){ fprintf(stdout, " | Input data: %s\n", infiles[0]); fprintf(stdout, " | Arb path: %s\n", ap_coord_fn); fprintf(stdout, " | Output range: [%g:%g]\n", out_range[0], out_range[1]); fprintf(stdout, " | Output file: %s\n", out_fn); } regrid_arb_path(ap_coord_fn, infiles[0], max_buffer_size_in_kb, &totals, &weights, vect_size, regrid_range[0], regrid_range[1]); } /* else if regridding via a series of input minc file(s) */ else { for(i = 0; i < n_infiles; i++){ if(verbose){ fprintf(stdout, " | Input file: %s\n", infiles[i]); } regrid_minc(infiles[i], max_buffer_size_in_kb, &totals, &weights, vect_size, regrid_range[0], regrid_range[1]); } } /* initialise min and max counters and divide totals/weights */ num_missed = 0; min = get_volume_real_value(totals, 0, 0, 0, 0, 0); max = get_volume_real_value(totals, 0, 0, 0, 0, 0); w_min = get_volume_real_value(weights, 0, 0, 0, 0, 0); w_max = get_volume_real_value(weights, 0, 0, 0, 0, 0); initialize_progress_report(&progress, FALSE, out_inf.nelem[Z_IDX], "Dividing through"); for(i = sizes[perm[0]]; i--;){ for(j = sizes[perm[1]]; j--;){ for(k = sizes[perm[2]]; k--;){ weight = get_volume_real_value(weights, k, j, i, 0, 0); if(weight < w_min){ w_min = weight; } else if(weight > w_max){ w_max = weight; } if(weight != 0){ for(v = vect_size; v--;){ value = get_volume_real_value(totals, k, j, i, v, 0) / weight; if(value < min){ min = value; } else if(value > max){ max = value; } set_volume_real_value(totals, k, j, i, v, 0, value); } } else { num_missed++; } } } update_progress_report(&progress, k + 1); } terminate_progress_report(&progress); /* set the volumes range */ if(verbose){ fprintf(stdout, " + data range: [%g:%g]\n", min, max); fprintf(stdout, " + weight range: [%g:%g]\n", w_min, w_max); } set_volume_real_range(totals, min, max); set_volume_real_range(weights, w_min, w_max); if(num_missed > 0 && verbose){ int nvox; nvox = out_inf.nelem[X_IDX] * out_inf.nelem[Y_IDX] * out_inf.nelem[Z_IDX]; fprintf(stdout, "\n-regrid_radius possibly too small, no data in %ld/%d[%2.2f%%] voxels\n\n", num_missed, nvox, ((float)num_missed / nvox * 100)); } /* rescale data if required */ if(out_range[0] != -DBL_MAX && out_range[1] != DBL_MAX){ double o_min, o_max; /* get the existing range */ get_volume_real_range(totals, &o_min, &o_max); /* rescale it */ scale_volume(&totals, o_min, o_max, out_range[0], out_range[1]); } /* output the result */ if(verbose){ fprintf(stdout, " | Outputting %s...\n", out_fn); } if(output_volume(out_fn, out_dtype, out_is_signed, 0.0, 0.0, totals, history, NULL) != VIO_OK){ fprintf(stderr, "Problems outputing: %s\n\n", out_fn); } /* output weights volume if required */ if(weights_fn != NULL){ if(verbose){ fprintf(stdout, " | Outputting %s...\n", weights_fn); } if(output_volume(weights_fn, out_dtype, out_is_signed, 0.0, 0.0, weights, history, NULL) != VIO_OK){ fprintf(stderr, "Problems outputting: %s\n\n", weights_fn); } } delete_volume(totals); delete_volume(weights); t = current_realtime_seconds(); printf("Total reconstruction time: %ld hours %ld minutes %ld seconds\n", t/3600, (t/60)%60, t%60); return (EXIT_SUCCESS); }
static void append_new_default_deformation_field(Arg_Data *globals) { VIO_Volume new_field; VIO_Real zero, st[VIO_MAX_DIMENSIONS], wst[VIO_MAX_DIMENSIONS], step[VIO_MAX_DIMENSIONS], XYZstart[ VIO_MAX_DIMENSIONS ], XYZstep[ VIO_MAX_DIMENSIONS ], voxel[VIO_MAX_DIMENSIONS], point[VIO_N_DIMENSIONS], dir[3][3]; int index[VIO_MAX_DIMENSIONS], xyzv[VIO_MAX_DIMENSIONS], i, count[VIO_MAX_DIMENSIONS], XYZcount[VIO_MAX_DIMENSIONS], count_extended[VIO_MAX_DIMENSIONS]; VIO_General_transform *grid_trans; VectorR XYZdirections[ VIO_MAX_DIMENSIONS ]; /* build a vector volume to store the Grid VIO_Transform */ /* ALLOC(new_field,1); not needed since create volume allocs it internally and returns a pointer*/ if (globals->flags.debug) { print ("In append_new_default_deformation_field...\n"); } new_field = create_volume(4, dim_name_vector_vol, NC_DOUBLE, TRUE, 0.0, 0.0); get_volume_XYZV_indices(new_field, xyzv); /* get the global voxel count and voxel size */ for(i=0; i<VIO_N_DIMENSIONS; i++) { count[xyzv[i]] = globals->count[i]; count_extended[xyzv[i]] = count[xyzv[i]]; step[xyzv[i]] = globals->step[i]; } /* add info for the vector dimension */ count[xyzv[VIO_Z+1]] = 3; count_extended[xyzv[VIO_Z+1]] = 3; step[xyzv[VIO_Z+1]] = 0.0; set_volume_sizes( new_field, count); set_volume_separations( new_field, step); /* set_volume_voxel_range( new_field, -MY_MAX_VOX, MY_MAX_VOX); set_volume_real_range( new_field, -1.0*globals->trans_info.max_def_magnitude, globals->trans_info.max_def_magnitude); no longer needed, now using floats */ for(i=0; i<VIO_N_DIMENSIONS; i++) { dir[VIO_X][i]=globals->directions[VIO_X].coords[i]; dir[VIO_Y][i]=globals->directions[VIO_Y].coords[i]; dir[VIO_Z][i]=globals->directions[VIO_Z].coords[i]; } set_volume_direction_cosine(new_field,xyzv[VIO_X],dir[VIO_X]); set_volume_direction_cosine(new_field,xyzv[VIO_Y],dir[VIO_Y]); set_volume_direction_cosine(new_field,xyzv[VIO_Z],dir[VIO_Z]); for(i=0; i<VIO_MAX_DIMENSIONS; i++) /* set the voxel origin, used in the vol def */ voxel[i] = 0.0; set_volume_translation( new_field, voxel, globals->start); if (globals->flags.debug) { print("in append new def, the start is: %8.3f %8.3f %8.3f\n", globals->start[VIO_X], globals->start[VIO_Y], globals->start[VIO_Z]); } /* now pad the volume along the spatial axis to ensure good coverage of the data space with the deformation field */ for(i=0; i<VIO_N_DIMENSIONS; i++) { if (globals->count[i]>1) { voxel[xyzv[i]] = -2.5; count_extended[xyzv[i]] = globals->count[i]+5; } else { voxel[xyzv[i]] = 0.0; count_extended[xyzv[i]] = 1; } } if (globals->flags.debug) { print("in append_new_default_deformation_field:\n\tcount_extended= %d %d %d %d\n", count_extended[0],count_extended[1],count_extended[2],count_extended[3]); } set_volume_sizes(new_field, count_extended); for(i=0; i<VIO_MAX_DIMENSIONS; i++) count[i] = count_extended[i]; /* reset the first voxel position with the new origin */ convert_voxel_to_world(new_field, voxel, &(point[VIO_X]), &(point[VIO_Y]), &(point[VIO_Z])); for(i=0; i<VIO_MAX_DIMENSIONS; i++) voxel[i] = 0; set_volume_translation(new_field, voxel, point); if (globals->flags.debug) { print (" point: %8.3f %8.3f %8.3f \n", point[VIO_X], point[VIO_Y], point[VIO_Z]); get_volume_starts(new_field, st); print (" start: %8.3f %8.3f %8.3f \n", st[xyzv[VIO_X]], st[xyzv[VIO_Y]], st[xyzv[VIO_Z]]); voxel[0] = 0; voxel[1] = 0; voxel[2] = 0; get_volume_translation(new_field, voxel, wst); print (" wstrt: %8.3f %8.3f %8.3f \n", wst[VIO_X], wst[VIO_Y], wst[VIO_Z]); print (" voxel: %8.3f %8.3f %8.3f \n", voxel[xyzv[VIO_X]], voxel[xyzv[VIO_Y]], voxel[xyzv[VIO_Z]]); for(i=0; i<3; i++) { get_volume_direction_cosine(new_field,xyzv[i], wst); print (" dirs: %8.3f %8.3f %8.3f \n", wst[VIO_X], wst[VIO_Y], wst[VIO_Z]); } } /* allocate space for the deformation field data */ alloc_volume_data(new_field); /* Initilize the field to zero deformation */ /* zero = CONVERT_VALUE_TO_VOXEL(new_field, 0.0); not needed, defs are now doubles */ for(index[0]=0; index[0]<count[0]; index[0]++) for(index[1]=0; index[1]<count[1]; index[1]++) for(index[2]=0; index[2]<count[2]; index[2]++) for(index[3]=0; index[3]<count[3]; index[3]++) { SET_VOXEL(new_field, index[0],index[1],index[2],index[3],0, 0.0); /* was set to 'zero', but now as a double,can be set to 0.0 */ } /* build the new GRID_TRANSFORM */ ALLOC(grid_trans, 1); create_grid_transform(grid_trans, new_field, NULL); /* append the deforamation to the current transformation */ concat_general_transforms(globals->trans_info.transformation, grid_trans, globals->trans_info.transformation); delete_volume(new_field); delete_general_transform(grid_trans); }
static void resample_the_deformation_field(Arg_Data *globals) { VIO_Volume existing_field, new_field; VIO_Real vector_val[3], XYZstart[ VIO_MAX_DIMENSIONS ], wstart[ VIO_MAX_DIMENSIONS ], start[ VIO_MAX_DIMENSIONS ], XYZstep[ VIO_MAX_DIMENSIONS ], step[ VIO_MAX_DIMENSIONS ], step2[ VIO_MAX_DIMENSIONS ], s1[ VIO_MAX_DIMENSIONS ], voxel[ VIO_MAX_DIMENSIONS ], dir[3][3]; int i, siz[ VIO_MAX_DIMENSIONS ], index[ VIO_MAX_DIMENSIONS ], xyzv[ VIO_MAX_DIMENSIONS ], XYZcount[ VIO_MAX_DIMENSIONS ], count[ VIO_MAX_DIMENSIONS ]; VIO_General_transform *non_lin_part; VectorR XYZdirections[ VIO_MAX_DIMENSIONS ]; VIO_Real del_x, del_y, del_z, wx, wy,wz; VIO_progress_struct progress; char **data_dim_names; /* get the nonlinear part of the transformation */ existing_field = (VIO_Volume)NULL; non_lin_part = get_nth_general_transform(globals->trans_info.transformation, get_n_concated_transforms( globals->trans_info.transformation) -1); if (get_transform_type( non_lin_part ) == GRID_TRANSFORM){ existing_field = (VIO_Volume)(non_lin_part->displacement_volume); } else { for(i=0; i<get_n_concated_transforms(globals->trans_info.transformation); i++) print ("Transform %d is of type %d\n",i, get_transform_type( get_nth_general_transform(globals->trans_info.transformation, i) )); print_error_and_line_num("Cannot find the deformation field transform to resample", __FILE__, __LINE__); } /* build a vector volume to store the Grid VIO_Transform */ new_field = create_volume(4, dim_name_vector_vol, NC_DOUBLE, TRUE, 0.0, 0.0); get_volume_XYZV_indices(new_field, xyzv); for(i=0; i<VIO_N_DIMENSIONS; i++) step2[i] = globals->step[i]; /* get new start, count, step and directions, all returned in X, Y, Z order. */ set_up_lattice(existing_field, step2, XYZstart, wstart, XYZcount, XYZstep, XYZdirections); /* reset count and step to be in volume order */ for(i=0; i<VIO_N_DIMENSIONS; i++) { start[ i ] = wstart[ i ]; count[ xyzv[i] ] = XYZcount[ i ]; step[ xyzv[i] ] = XYZstep[ i ]; } /* add info for the vector dimension */ count[xyzv[VIO_Z+1]] = 3; step[xyzv[VIO_Z+1]] = 0.0; /* use the sign of the step returned to set the true step size */ for(i=0; i<VIO_N_DIMENSIONS; i++) { if (step[xyzv[i]]<0) step[xyzv[i]] = -1.0 * fabs(globals->step[i]); else step[xyzv[i]] = fabs(globals->step[i]); } for(i=0; i<VIO_MAX_DIMENSIONS; i++) /* set the voxel origin, used in the vol def */ voxel[i] = 0.0; set_volume_sizes( new_field, count); set_volume_separations( new_field, step); /* set_volume_voxel_range( new_field, -MY_MAX_VOX, MY_MAX_VOX); set_volume_real_range( new_field, -1.0*globals->trans_info.max_def_magnitude, globals->trans_info.max_def_magnitude); - no longer needed, because now using doubles*/ set_volume_translation( new_field, voxel, start); for(i=0; i<VIO_N_DIMENSIONS; i++) { dir[VIO_X][i]=XYZdirections[VIO_X].coords[i]; dir[VIO_Y][i]=XYZdirections[VIO_Y].coords[i]; dir[VIO_Z][i]=XYZdirections[VIO_Z].coords[i]; } set_volume_direction_cosine(new_field,xyzv[VIO_X],dir[VIO_X]); set_volume_direction_cosine(new_field,xyzv[VIO_Y],dir[VIO_Y]); set_volume_direction_cosine(new_field,xyzv[VIO_Z],dir[VIO_Z]); /* make sure that the vector dimension is named! */ data_dim_names = get_volume_dimension_names(new_field); if( strcmp( data_dim_names[ xyzv[VIO_Z+1] ] , MIvector_dimension ) != 0 ) { ALLOC((new_field)->dimension_names[xyzv[VIO_Z+1]], \ strlen(MIvector_dimension ) + 1 ); (void) strcpy( (new_field)->dimension_names[xyzv[VIO_Z+1]], MIvector_dimension ); } delete_dimension_names(new_field, data_dim_names); if (globals->flags.debug) { print ("in resample_deformation_field:\n"); print ("xyzv[axes] = %d, %d, %d, %d\n",xyzv[VIO_X],xyzv[VIO_Y],xyzv[VIO_Z],xyzv[VIO_Z+1]); get_volume_sizes(new_field, siz); get_volume_separations(new_field, s1); print ("seps: %7.3f %7.3f %7.3f %7.3f %7.3f \n",s1[0],s1[1],s1[2],s1[3],s1[4]); print ("size: %7d %7d %7d %7d %7d \n",siz[0],siz[1],siz[2],siz[3],siz[4]); } alloc_volume_data(new_field); if (globals->flags.verbose>0) initialize_progress_report( &progress, FALSE, count[xyzv[VIO_X]], "Interpolating new field" ); /* now resample the values from the input deformation */ for(i=0; i<VIO_MAX_DIMENSIONS; i++) { voxel[i] = 0.0; index[i] = 0; } for(index[xyzv[VIO_X]]=0; index[xyzv[VIO_X]]<count[xyzv[VIO_X]]; index[xyzv[VIO_X]]++) { voxel[xyzv[VIO_X]] = (VIO_Real)index[xyzv[VIO_X]]; for(index[xyzv[VIO_Y]]=0; index[xyzv[VIO_Y]]<count[xyzv[VIO_Y]]; index[xyzv[VIO_Y]]++) { voxel[xyzv[VIO_Y]] = (VIO_Real)index[xyzv[VIO_Y]]; for(index[xyzv[VIO_Z]]=0; index[xyzv[VIO_Z]]<count[xyzv[VIO_Z]]; index[xyzv[VIO_Z]]++) { voxel[xyzv[VIO_Z]] = (VIO_Real)index[xyzv[VIO_Z]]; convert_voxel_to_world(new_field, voxel, &wx,&wy,&wz); grid_transform_point(non_lin_part, wx, wy, wz, &del_x, &del_y, &del_z); /* get just the deformation part */ del_x = del_x - wx; del_y = del_y - wy; del_z = del_z - wz; /* del_x = del_y = del_z = 0.0; */ vector_val[0] = CONVERT_VALUE_TO_VOXEL(new_field, del_x); vector_val[1] = CONVERT_VALUE_TO_VOXEL(new_field, del_y); vector_val[2] = CONVERT_VALUE_TO_VOXEL(new_field, del_z); for(index[xyzv[VIO_Z+1]]=0; index[xyzv[VIO_Z+1]]<3; index[xyzv[VIO_Z+1]]++) { SET_VOXEL(new_field, \ index[0], index[1], index[2], index[3], index[4], \ vector_val[ index[ xyzv[ VIO_Z+1] ] ]); } } } if (globals->flags.verbose>0) update_progress_report( &progress,index[xyzv[VIO_X]]+1); } if (globals->flags.verbose>0) terminate_progress_report( &progress ); /* delete and free up old data */ delete_volume(non_lin_part->displacement_volume); /* set new volumes into transform */ non_lin_part->displacement_volume = new_field; }