void _arb_poly_evaluate_rectangular(arb_t y, arb_srcptr poly, long len, const arb_t x, long prec) { long i, j, m, r; arb_ptr xs; arb_t s, t, c; if (len < 3) { if (len == 0) { arb_zero(y); } else if (len == 1) { arb_set_round(y, poly + 0, prec); } else if (len == 2) { arb_mul(y, x, poly + 1, prec); arb_add(y, y, poly + 0, prec); } return; } m = n_sqrt(len) + 1; r = (len + m - 1) / m; xs = _arb_vec_init(m + 1); arb_init(s); arb_init(t); arb_init(c); _arb_vec_set_powers(xs, x, m + 1, prec); arb_set(y, poly + (r - 1) * m); for (j = 1; (r - 1) * m + j < len; j++) arb_addmul(y, xs + j, poly + (r - 1) * m + j, prec); for (i = r - 2; i >= 0; i--) { arb_set(s, poly + i * m); for (j = 1; j < m; j++) arb_addmul(s, xs + j, poly + i * m + j, prec); arb_mul(y, y, xs + m, prec); arb_add(y, y, s, prec); } _arb_vec_clear(xs, m + 1); arb_clear(s); arb_clear(t); arb_clear(c); }
void _arb_poly_revert_series_lagrange_fast(arb_ptr Qinv, arb_srcptr Q, long Qlen, long n, long prec) { long i, j, k, m; arb_ptr R, S, T, tmp; arb_t t; if (n <= 2) { if (n >= 1) arb_zero(Qinv); if (n == 2) arb_inv(Qinv + 1, Q + 1, prec); return; } m = n_sqrt(n); arb_init(t); R = _arb_vec_init((n - 1) * m); S = _arb_vec_init(n - 1); T = _arb_vec_init(n - 1); arb_zero(Qinv); arb_inv(Qinv + 1, Q + 1, prec); _arb_poly_inv_series(Ri(1), Q + 1, FLINT_MIN(Qlen, n) - 1, n - 1, prec); for (i = 2; i <= m; i++) _arb_poly_mullow(Ri(i), Ri((i + 1) / 2), n - 1, Ri(i / 2), n - 1, n - 1, prec); for (i = 2; i < m; i++) arb_div_ui(Qinv + i, Ri(i) + i - 1, i, prec); _arb_vec_set(S, Ri(m), n - 1); for (i = m; i < n; i += m) { arb_div_ui(Qinv + i, S + i - 1, i, prec); for (j = 1; j < m && i + j < n; j++) { arb_mul(t, S + 0, Ri(j) + i + j - 1, prec); for (k = 1; k <= i + j - 1; k++) arb_addmul(t, S + k, Ri(j) + i + j - 1 - k, prec); arb_div_ui(Qinv + i + j, t, i + j, prec); } if (i + 1 < n) { _arb_poly_mullow(T, S, n - 1, Ri(m), n - 1, n - 1, prec); tmp = S; S = T; T = tmp; } } arb_clear(t); _arb_vec_clear(R, (n - 1) * m); _arb_vec_clear(S, n - 1); _arb_vec_clear(T, n - 1); }
void _arb_poly_sinh_cosh_series_basecase(arb_ptr s, arb_ptr c, arb_srcptr h, slong hlen, slong n, slong prec) { slong j, k, alen = FLINT_MIN(n, hlen); arb_ptr a; arb_t t, u; arb_sinh_cosh(s, c, h, prec); if (hlen == 1) { _arb_vec_zero(s + 1, n - 1); _arb_vec_zero(c + 1, n - 1); return; } arb_init(t); arb_init(u); a = _arb_vec_init(alen); for (k = 1; k < alen; k++) arb_mul_ui(a + k, h + k, k, prec); for (k = 1; k < n; k++) { arb_zero(t); arb_zero(u); for (j = 1; j < FLINT_MIN(k + 1, hlen); j++) { arb_addmul(t, a + j, s + k - j, prec); arb_addmul(u, a + j, c + k - j, prec); } arb_div_ui(c + k, t, k, prec); arb_div_ui(s + k, u, k, prec); } arb_clear(t); arb_clear(u); _arb_vec_clear(a, alen); }
static void zeta_bsplit(zeta_bsplit_t L, slong a, slong b, slong n, slong s, int cont, slong bits) { if (a + 1 == b) { zeta_coeff_k(L, a, n, s); } else { zeta_bsplit_t R; slong m = (a + b) / 2; zeta_bsplit(L, m, b, n, s, 1, bits); zeta_bsplit_init(R); zeta_bsplit(R, a, m, n, s, 1, bits); arb_mul(L->B, L->B, R->D, bits); arb_addmul(L->B, L->A, R->C, bits); arb_mul(L->B, L->B, R->Q2, bits); arb_addmul(L->B, R->B, L->Q3, bits); arb_mul(L->A, L->A, R->Q3, bits); arb_addmul(L->A, R->A, L->Q3, bits); arb_mul(L->C, L->C, R->D, bits); arb_addmul(L->C, R->C, L->Q1, bits); if (cont) { arb_mul(L->D, L->D, R->D, bits); arb_mul(L->Q2, L->Q2, R->Q2, bits); } arb_mul(L->Q1, L->Q1, R->Q1, bits); arb_mul(L->Q3, L->Q3, R->Q3, bits); zeta_bsplit_clear(R); } }
void arb_mat_L2norm(arb_t out, const arb_mat_t in, slong prec) { int nrows = arb_mat_nrows(in); int ncols = arb_mat_ncols(in); arb_zero(out); for(int i = 0; i < nrows; i++) { for(int j = 0; j < ncols; j++) { arb_addmul(out, arb_mat_entry(in, i, j), arb_mat_entry(in, i, j), prec); } } arb_sqrtpos(out, out, prec); }
static void bsplit(arb_poly_t pol, const arb_t sqrtD, const slong * qbf, slong a, slong b, slong prec) { if (b - a == 0) { arb_poly_one(pol); } else if (b - a == 1) { acb_t z; acb_init(z); /* j((-b+sqrt(-D))/(2a)) */ arb_set_si(acb_realref(z), -FLINT_ABS(qbf[3 * a + 1])); arb_set(acb_imagref(z), sqrtD); acb_div_si(z, z, 2 * qbf[3 * a], prec); acb_modular_j(z, z, prec); if (qbf[3 * a + 1] < 0) { /* (x^2 - 2re(j) x + |j|^2) */ arb_poly_fit_length(pol, 3); arb_mul(pol->coeffs, acb_realref(z), acb_realref(z), prec); arb_addmul(pol->coeffs, acb_imagref(z), acb_imagref(z), prec); arb_mul_2exp_si(pol->coeffs + 1, acb_realref(z), 1); arb_neg(pol->coeffs + 1, pol->coeffs + 1); arb_one(pol->coeffs + 2); _arb_poly_set_length(pol, 3); } else { /* (x-j) */ arb_poly_fit_length(pol, 2); arb_neg(pol->coeffs, acb_realref(z)); arb_one(pol->coeffs + 1); _arb_poly_set_length(pol, 2); } acb_clear(z); } else { arb_poly_t tmp; arb_poly_init(tmp); bsplit(pol, sqrtD, qbf, a, a + (b - a) / 2, prec); bsplit(tmp, sqrtD, qbf, a + (b - a) / 2, b, prec); arb_poly_mul(pol, pol, tmp, prec); arb_poly_clear(tmp); } }
void arb_mat_mul_classical(arb_mat_t C, const arb_mat_t A, const arb_mat_t B, long prec) { long ar, ac, br, bc, i, j, k; ar = arb_mat_nrows(A); ac = arb_mat_ncols(A); br = arb_mat_nrows(B); bc = arb_mat_ncols(B); if (ac != br || ar != arb_mat_nrows(C) || bc != arb_mat_ncols(C)) { printf("arb_mat_mul: incompatible dimensions\n"); abort(); } if (br == 0) { arb_mat_zero(C); return; } if (A == C || B == C) { arb_mat_t T; arb_mat_init(T, ar, bc); arb_mat_mul(T, A, B, prec); arb_mat_swap(T, C); arb_mat_clear(T); return; } for (i = 0; i < ar; i++) { for (j = 0; j < bc; j++) { arb_mul(arb_mat_entry(C, i, j), arb_mat_entry(A, i, 0), arb_mat_entry(B, 0, j), prec); for (k = 1; k < br; k++) { arb_addmul(arb_mat_entry(C, i, j), arb_mat_entry(A, i, k), arb_mat_entry(B, k, j), prec); } } } }
void custom_rate_mixture_expectation(arb_t rate, const custom_rate_mixture_t x, slong prec) { if (x->mode == RATE_MIXTURE_UNDEFINED) { flint_fprintf(stderr, "internal error: undefined rate mixture\n"); abort(); } else if (x->mode == RATE_MIXTURE_NONE) { arb_one(rate); } else if (x->mode == RATE_MIXTURE_UNIFORM || x->mode == RATE_MIXTURE_CUSTOM) { slong i; arb_t tmp, tmpb; arb_init(tmp); arb_init(tmpb); arb_zero(rate); if (x->mode == RATE_MIXTURE_UNIFORM) { for (i = 0; i < x->n; i++) { arb_set_d(tmp, x->rates[i]); arb_add(rate, rate, tmp, prec); } arb_div_si(rate, rate, x->n, prec); } else if (x->mode == RATE_MIXTURE_CUSTOM) { for (i = 0; i < x->n; i++) { arb_set_d(tmp, x->rates[i]); arb_set_d(tmpb, x->prior[i]); arb_addmul(rate, tmp, tmpb, prec); } } arb_clear(tmp); arb_clear(tmpb); } else { flint_fprintf(stderr, "internal error: " "unrecognized rate mixture mode\n"); abort(); } }
void _arb_poly_mullow_classical(arb_ptr res, arb_srcptr poly1, long len1, arb_srcptr poly2, long len2, long n, long prec) { len1 = FLINT_MIN(len1, n); len2 = FLINT_MIN(len2, n); if (n == 1) { arb_mul(res, poly1, poly2, prec); } else if (poly1 == poly2 && len1 == len2) { long i; _arb_vec_scalar_mul(res, poly1, FLINT_MIN(len1, n), poly1, prec); _arb_vec_scalar_mul(res + len1, poly1 + 1, n - len1, poly1 + len1 - 1, prec); for (i = 1; i < len1 - 1; i++) _arb_vec_scalar_addmul(res + i + 1, poly1 + 1, FLINT_MIN(i - 1, n - (i + 1)), poly1 + i, prec); for (i = 1; i < FLINT_MIN(2 * len1 - 2, n); i++) arb_mul_2exp_si(res + i, res + i, 1); for (i = 1; i < FLINT_MIN(len1 - 1, (n + 1) / 2); i++) arb_addmul(res + 2 * i, poly1 + i, poly1 + i, prec); } else { long i; _arb_vec_scalar_mul(res, poly1, FLINT_MIN(len1, n), poly2, prec); if (n > len1) _arb_vec_scalar_mul(res + len1, poly2 + 1, n - len1, poly1 + len1 - 1, prec); for (i = 0; i < FLINT_MIN(len1, n) - 1; i++) _arb_vec_scalar_addmul(res + i + 1, poly2 + 1, FLINT_MIN(len2, n - i) - 1, poly1 + i, prec); } }
void arb_twobytwo_diag(arb_t u1, arb_t u2, const arb_t a, const arb_t b, const arb_t d, slong prec) { // Compute the orthogonal matrix that diagonalizes // // A = [a b] // [b d] // // This matrix will have the form // // U = [cos x , -sin x] // [sin x, cos x] // // where the diagonal matrix is U^t A U. // We set u1 = cos x, u2 = -sin x. if(arb_contains_zero(b)) { // this is not quite right (doesn't set error intervals) arb_set_ui(u1, 1); arb_set_ui(u2, 0); return; } arb_t x; arb_init(x); arb_mul(u1, b, b, prec); // u1 = b^2 arb_sub(u2, a, d, prec); // u2 = a - d arb_mul_2exp_si(u2, u2, -1); // u2 = (a - d)/2 arb_mul(u2, u2, u2, prec); // u2 = ( (a - d)/2 )^2 arb_add(u1, u1, u2, prec); // u1 = b^2 + ( (a-d)/2 )^2 arb_sqrt(u1, u1, prec); // u1 = sqrt(above) arb_mul_2exp_si(u1, u1, 1); // u1 = 2 (sqrt (above) ) arb_add(u1, u1, d, prec); // u1 += d arb_sub(u1, u1, a, prec); // u1 -= a arb_mul_2exp_si(u1, u1, -1); // u1 = (d - a)/2 + sqrt(b^2 + ( (a-d)/2 )^2) arb_mul(x, u1, u1, prec); arb_addmul(x, b, b, prec); // x = u1^2 + b^2 arb_sqrt(x, x, prec); // x = sqrt(u1^2 + b^2) arb_div(u2, u1, x, prec); arb_div(u1, b, x, prec); arb_neg(u1, u1); arb_clear(x); }
void evaluate_site_frechet( arb_struct *lhood_scaled_edge_expectations, const arb_mat_struct *lhood_node_vectors, const arb_mat_struct *forward_edge_vectors, const arb_mat_struct *frechet_matrices, const csr_graph_t g, int *preorder, int node_count, int state_count, slong prec) { slong u, idx, state; arb_mat_t fvec; arb_mat_init(fvec, state_count, 1); for (u = 0; u < node_count; u++) { slong a = preorder[u]; slong start = g->indptr[a]; slong stop = g->indptr[a+1]; for (idx = start; idx < stop; idx++) { slong b = g->indices[idx]; const arb_mat_struct *lvec = lhood_node_vectors + b; const arb_mat_struct *evec = forward_edge_vectors + idx; arb_zero(lhood_scaled_edge_expectations + idx); arb_mat_mul(fvec, frechet_matrices + idx, lvec, prec); for (state = 0; state < state_count; state++) { arb_addmul(lhood_scaled_edge_expectations + idx, arb_mat_entry(fvec, state, 0), arb_mat_entry(evec, state, 0), prec); } } } arb_mat_clear(fvec); }
void arb_mat_frobenius_norm(arb_t res, const arb_mat_t A, slong prec) { slong i, j, r, c; r = arb_mat_nrows(A); c = arb_mat_ncols(A); arb_zero(res); if (r == 0 || c == 0) return; for (i = 0; i < r; i++) { for (j = 0; j < c; j++) { arb_srcptr x = arb_mat_entry(A, i, j); arb_addmul(res, x, x, prec); } } arb_sqrtpos(res, res, prec); }
void _arb_poly_taylor_shift_horner(arb_ptr poly, const arb_t c, slong n, slong prec) { slong i, j; if (arb_is_one(c)) { for (i = n - 2; i >= 0; i--) for (j = i; j < n - 1; j++) arb_add(poly + j, poly + j, poly + j + 1, prec); } else if (arb_equal_si(c, -1)) { for (i = n - 2; i >= 0; i--) for (j = i; j < n - 1; j++) arb_sub(poly + j, poly + j, poly + j + 1, prec); } else if (!arb_is_zero(c)) { for (i = n - 2; i >= 0; i--) for (j = i; j < n - 1; j++) arb_addmul(poly + j, poly + j + 1, c, prec); } }
void _arb_bell_sum_taylor(arb_t res, const fmpz_t n, const fmpz_t a, const fmpz_t b, const fmpz_t mmag, long tol) { fmpz_t m, r, R, tmp; mag_t B, C, D, bound; arb_t t, u; long wp, k, N; if (_fmpz_sub_small(b, a) < 5) { arb_bell_sum_bsplit(res, n, a, b, mmag, tol); return; } fmpz_init(m); fmpz_init(r); fmpz_init(R); fmpz_init(tmp); /* r = max(m - a, b - m) */ /* m = a + (b - a) / 2 */ fmpz_sub(r, b, a); fmpz_cdiv_q_2exp(r, r, 1); fmpz_add(m, a, r); fmpz_mul_2exp(R, r, RADIUS_BITS); mag_init(B); mag_init(C); mag_init(D); mag_init(bound); arb_init(t); arb_init(u); if (fmpz_cmp(R, m) >= 0) { mag_inf(C); mag_inf(D); } else { /* C = exp(R * |F'(m)| + (1/2) R^2 * (n/(m-R)^2 + 1/(m-R))) */ /* C = exp(R * (|F'(m)| + (1/2) R * (n/(m-R) + 1)/(m-R))) */ /* D = (1/2) R * (n/(m-R) + 1)/(m-R) */ fmpz_sub(tmp, m, R); mag_set_fmpz(D, n); mag_div_fmpz(D, D, tmp); mag_one(C); mag_add(D, D, C); mag_div_fmpz(D, D, tmp); mag_mul_fmpz(D, D, R); mag_mul_2exp_si(D, D, -1); /* C = |F'(m)| */ wp = 20 + 1.05 * fmpz_bits(n); arb_set_fmpz(t, n); arb_div_fmpz(t, t, m, wp); fmpz_add_ui(tmp, m, 1); arb_set_fmpz(u, tmp); arb_digamma(u, u, wp); arb_sub(t, t, u, wp); arb_get_mag(C, t); /* C = exp(R * (C + D)) */ mag_add(C, C, D); mag_mul_fmpz(C, C, R); mag_exp(C, C); } if (mag_cmp_2exp_si(C, tol / 4 + 2) > 0) { _arb_bell_sum_taylor(res, n, a, m, mmag, tol); _arb_bell_sum_taylor(t, n, m, b, mmag, tol); arb_add(res, res, t, 2 * tol); } else { arb_ptr mx, ser1, ser2, ser3; /* D = T(m) */ wp = 20 + 1.05 * fmpz_bits(n); arb_set_fmpz(t, m); arb_pow_fmpz(t, t, n, wp); fmpz_add_ui(tmp, m, 1); arb_gamma_fmpz(u, tmp, wp); arb_div(t, t, u, wp); arb_get_mag(D, t); /* error bound: (b-a) * C * D * B^N / (1 - B), B = r/R */ /* ((b-a) * C * D * 2) * 2^(-N*RADIUS_BITS) */ /* ((b-a) * C * D * 2) */ mag_mul(bound, C, D); mag_mul_2exp_si(bound, bound, 1); fmpz_sub(tmp, b, a); mag_mul_fmpz(bound, bound, tmp); /* N = (tol + log2((b-a)*C*D*2) - mmag) / RADIUS_BITS */ if (mmag == NULL) { /* estimate D ~= 2^mmag */ fmpz_add_ui(tmp, MAG_EXPREF(C), tol); fmpz_cdiv_q_ui(tmp, tmp, RADIUS_BITS); } else { fmpz_sub(tmp, MAG_EXPREF(bound), mmag); fmpz_add_ui(tmp, tmp, tol); fmpz_cdiv_q_ui(tmp, tmp, RADIUS_BITS); } if (fmpz_cmp_ui(tmp, 5 * tol / 4) > 0) N = 5 * tol / 4; else if (fmpz_cmp_ui(tmp, 2) < 0) N = 2; else N = fmpz_get_ui(tmp); /* multiply by 2^(-N*RADIUS_BITS) */ mag_mul_2exp_si(bound, bound, -N * RADIUS_BITS); mx = _arb_vec_init(2); ser1 = _arb_vec_init(N); ser2 = _arb_vec_init(N); ser3 = _arb_vec_init(N); /* estimate (this should work for moderate n and tol) */ wp = 1.1 * tol + 1.05 * fmpz_bits(n) + 5; /* increase precision until convergence */ while (1) { /* (m+x)^n / gamma(m+1+x) */ arb_set_fmpz(mx, m); arb_one(mx + 1); _arb_poly_log_series(ser1, mx, 2, N, wp); for (k = 0; k < N; k++) arb_mul_fmpz(ser1 + k, ser1 + k, n, wp); arb_add_ui(mx, mx, 1, wp); _arb_poly_lgamma_series(ser2, mx, 2, N, wp); _arb_vec_sub(ser1, ser1, ser2, N, wp); _arb_poly_exp_series(ser3, ser1, N, N, wp); /* t = a - m, u = b - m */ arb_set_fmpz(t, a); arb_sub_fmpz(t, t, m, wp); arb_set_fmpz(u, b); arb_sub_fmpz(u, u, m, wp); arb_power_sum_vec(ser1, t, u, N, wp); arb_zero(res); for (k = 0; k < N; k++) arb_addmul(res, ser3 + k, ser1 + k, wp); if (mmag != NULL) { if (_fmpz_sub_small(MAG_EXPREF(arb_radref(res)), mmag) <= -tol) break; } else { if (arb_rel_accuracy_bits(res) >= tol) break; } wp = 2 * wp; } /* add the series truncation bound */ arb_add_error_mag(res, bound); _arb_vec_clear(mx, 2); _arb_vec_clear(ser1, N); _arb_vec_clear(ser2, N); _arb_vec_clear(ser3, N); } mag_clear(B); mag_clear(C); mag_clear(D); mag_clear(bound); arb_clear(t); arb_clear(u); fmpz_clear(m); fmpz_clear(r); fmpz_clear(R); fmpz_clear(tmp); }
/* * Note that the expectations are multiplied by the rates. * This is a difference from the analogous function in arbplfdwell.c. */ static void _update_site(nd_accum_t arr, likelihood_ws_t w, cross_site_ws_t csw, model_and_data_t m, int *coords, slong site, slong prec) { int edge, idx, cat; arb_t site_lhood, cat_lhood, lhood; arb_t tmp; slong state_count = model_and_data_state_count(m); slong edge_count = model_and_data_edge_count(m); slong node_count = model_and_data_node_count(m); slong rate_category_count = model_and_data_rate_category_count(m); arb_init(site_lhood); arb_init(cat_lhood); arb_init(lhood); arb_init(tmp); /* only the edge axis is handled at this depth */ nd_axis_struct *edge_axis = arr->axes + EDGE_AXIS; /* update base node vectors */ pmat_update_base_node_vectors(w->base_node_vectors, m->p, site); /* clear cross-category expectations and site lhood */ _arb_vec_zero(w->cc_edge_expectations, edge_count); arb_zero(site_lhood); for (cat = 0; cat < rate_category_count; cat++) { const arb_struct * cat_rate = csw->rate_mix_rates + cat; const arb_struct * prior_prob = csw->rate_mix_prior + cat; arb_mat_struct *tmat_base, *fmat_base; tmat_base = cross_site_ws_transition_matrix(csw, cat, 0); fmat_base = cross_site_ws_trans_frechet_matrix(csw, cat, 0); /* * Update per-node and per-edge likelihood vectors. * Actually the likelihood vectors on edges are not used. * This is a backward pass from the leaves to the root. */ evaluate_site_lhood(lhood, w->lhood_node_vectors, w->lhood_edge_vectors, w->base_node_vectors, m->root_prior, csw->equilibrium, tmat_base, m->g, m->navigation->preorder, node_count, prec); /* Update forward vectors. */ evaluate_site_forward( w->forward_edge_vectors, w->forward_node_vectors, w->base_node_vectors, w->lhood_edge_vectors, m->root_prior, csw->equilibrium, tmat_base, m->g, m->navigation, csw->node_count, csw->state_count, prec); /* Update expectations at edges. */ evaluate_site_frechet( w->edge_expectations, w->lhood_node_vectors, w->forward_edge_vectors, fmat_base, m->g, m->navigation->preorder, node_count, state_count, prec); /* compute category likelihood */ arb_mul(cat_lhood, lhood, prior_prob, prec); arb_add(site_lhood, site_lhood, cat_lhood, prec); /* Accumulate cross-category expectations. */ for (edge = 0; edge < edge_count; edge++) { if (!edge_axis->request_update[edge]) continue; idx = m->edge_map->order[edge]; /* * Multiply by the product of the category rate, * the edge rate, and the prior category probability. * In the analogous 'dwell' function (as opposed to 'trans'), * only the prior category probability is included. */ arb_mul(tmp, cat_rate, csw->edge_rates + idx, prec); arb_mul(tmp, tmp, prior_prob, prec); arb_addmul(w->cc_edge_expectations + idx, w->edge_expectations + idx, tmp, prec); } } /* Divide cross-category expectations by site lhood */ for (edge = 0; edge < edge_count; edge++) { if (!edge_axis->request_update[edge]) continue; idx = m->edge_map->order[edge]; arb_div(w->cc_edge_expectations + idx, w->cc_edge_expectations + idx, site_lhood, prec); } /* Update the nd accumulator. */ for (edge = 0; edge < edge_count; edge++) { /* skip edges that are not requested */ if (!edge_axis->request_update[edge]) continue; coords[EDGE_AXIS] = edge; /* * Accumulate. * Note that the axes, accumulator, and json interface * work with "user" edge indices, * whereas the workspace arrays work with * tree graph preorder edge indices. */ idx = m->edge_map->order[edge]; nd_accum_accumulate(arr, coords, w->cc_edge_expectations + idx, prec); } arb_clear(site_lhood); arb_clear(cat_lhood); arb_clear(lhood); arb_clear(tmp); }
void acb_modular_transform(acb_t w, const psl2z_t g, const acb_t z, slong prec) { #define a (&g->a) #define b (&g->b) #define c (&g->c) #define d (&g->d) #define x acb_realref(z) #define y acb_imagref(z) if (fmpz_is_zero(c)) { /* (az+b)/d, where we must have a = d = 1 */ acb_add_fmpz(w, z, b, prec); } else if (fmpz_is_zero(a)) { /* b/(cz+d), where -bc = 1, c = 1 => -1/(z+d) */ acb_add_fmpz(w, z, d, prec); acb_inv(w, w, prec); acb_neg(w, w); } else if (0) { acb_t t, u; acb_init(t); acb_init(u); acb_set_fmpz(t, b); acb_addmul_fmpz(t, z, a, prec); acb_set_fmpz(u, d); acb_addmul_fmpz(u, z, c, prec); acb_div(w, t, u, prec); acb_clear(t); acb_clear(u); } else { /* (az+b)/(cz+d) = (re+im*i)/den where re = bd + (bc+ad)x + ac(x^2+y^2) im = (ad-bc)y den = c^2(x^2+y^2) + 2cdx + d^2 */ fmpz_t t; arb_t re, im, den; arb_init(re); arb_init(im); arb_init(den); fmpz_init(t); arb_mul(im, x, x, prec); arb_addmul(im, y, y, prec); fmpz_mul(t, b, d); arb_set_fmpz(re, t); fmpz_mul(t, b, c); fmpz_addmul(t, a, d); arb_addmul_fmpz(re, x, t, prec); fmpz_mul(t, a, c); arb_addmul_fmpz(re, im, t, prec); fmpz_mul(t, d, d); arb_set_fmpz(den, t); fmpz_mul(t, c, d); fmpz_mul_2exp(t, t, 1); arb_addmul_fmpz(den, x, t, prec); fmpz_mul(t, c, c); arb_addmul_fmpz(den, im, t, prec); fmpz_mul(t, a, d); fmpz_submul(t, b, c); arb_mul_fmpz(im, y, t, prec); arb_div(acb_realref(w), re, den, prec); arb_div(acb_imagref(w), im, den, prec); arb_clear(re); arb_clear(im); arb_clear(den); fmpz_clear(t); } #undef a #undef b #undef c #undef d #undef x #undef y }
int main() { slong iter, iter2; flint_rand_t state; flint_printf("addmul...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { arb_t a, b, c; fmpq_t x, y, z; arb_init(a); arb_init(b); arb_init(c); fmpq_init(x); fmpq_init(y); fmpq_init(z); arb_randtest(a, state, 1 + n_randint(state, 200), 10); arb_randtest(b, state, 1 + n_randint(state, 200), 10); arb_randtest(c, state, 1 + n_randint(state, 200), 10); arb_get_rand_fmpq(x, state, a, 1 + n_randint(state, 200)); arb_get_rand_fmpq(y, state, b, 1 + n_randint(state, 200)); arb_get_rand_fmpq(z, state, c, 1 + n_randint(state, 200)); arb_addmul(c, a, b, 2 + n_randint(state, 200)); fmpq_addmul(z, x, y); if (!arb_contains_fmpq(c, z)) { flint_printf("FAIL: containment\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("x = "); fmpq_print(x); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("y = "); fmpq_print(y); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_printf("z = "); fmpq_print(z); flint_printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); fmpq_clear(x); fmpq_clear(y); fmpq_clear(z); } /* aliasing of c and a */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t a, b; fmpq_t x, y, z; arb_init(a); arb_init(b); fmpq_init(x); fmpq_init(y); fmpq_init(z); arb_randtest(a, state, 1 + n_randint(state, 200), 10); arb_randtest(b, state, 1 + n_randint(state, 200), 10); arb_get_rand_fmpq(x, state, a, 1 + n_randint(state, 200)); arb_get_rand_fmpq(y, state, b, 1 + n_randint(state, 200)); fmpq_set(z, x); arb_addmul(a, a, b, 2 + n_randint(state, 200)); fmpq_addmul(z, x, y); if (!arb_contains_fmpq(a, z)) { flint_printf("FAIL: aliasing (c, a)\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("x = "); fmpq_print(x); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("y = "); fmpq_print(y); flint_printf("\n\n"); flint_printf("z = "); fmpq_print(z); flint_printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); fmpq_clear(x); fmpq_clear(y); fmpq_clear(z); } /* aliasing of c and b */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t a, b; fmpq_t x, y, z; arb_init(a); arb_init(b); fmpq_init(x); fmpq_init(y); fmpq_init(z); arb_randtest(a, state, 1 + n_randint(state, 200), 10); arb_randtest(b, state, 1 + n_randint(state, 200), 10); arb_get_rand_fmpq(x, state, a, 1 + n_randint(state, 200)); arb_get_rand_fmpq(y, state, b, 1 + n_randint(state, 200)); fmpq_set(z, y); arb_addmul(b, a, b, 2 + n_randint(state, 200)); fmpq_addmul(z, x, y); if (!arb_contains_fmpq(b, z)) { flint_printf("FAIL: aliasing (c, b)\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("x = "); fmpq_print(x); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("y = "); fmpq_print(y); flint_printf("\n\n"); flint_printf("z = "); fmpq_print(z); flint_printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); fmpq_clear(x); fmpq_clear(y); fmpq_clear(z); } /* main test */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { arb_t x, y, z, v; slong prec; arb_init(x); arb_init(y); arb_init(z); arb_init(v); for (iter2 = 0; iter2 < 100; iter2++) { arb_randtest_special(x, state, n_randint(state,2) ? 2000 : 200, 200); arb_randtest_special(y, state, n_randint(state,2) ? 2000 : 200, 200); arb_randtest_special(z, state, n_randint(state,2) ? 2000 : 200, 200); prec = 2 + n_randint(state, 2000); switch (n_randint(state, 5)) { case 0: arb_set(v, z); arb_addmul(z, x, y, prec); arb_addmul_naive(v, x, y, prec); if (!arf_equal(arb_midref(z), arb_midref(v)) || !mag_close(arb_radref(z), arb_radref(v))) { flint_printf("FAIL!\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("y = "); arb_print(y); flint_printf("\n\n"); flint_printf("z = "); arb_print(z); flint_printf("\n\n"); flint_printf("v = "); arb_print(v); flint_printf("\n\n"); abort(); } break; case 1: arb_set(y, x); arb_set(z, v); arb_addmul(z, x, y, prec); arb_addmul(v, x, x, prec); if (!arf_equal(arb_midref(z), arb_midref(v)) || !mag_close(arb_radref(z), arb_radref(v))) { flint_printf("FAIL (aliasing 1)!\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("z = "); arb_print(z); flint_printf("\n\n"); flint_printf("v = "); arb_print(v); flint_printf("\n\n"); abort(); } break; case 2: arb_set(v, x); arb_addmul(v, x, x, prec); arb_addmul(x, x, x, prec); if (!arf_equal(arb_midref(x), arb_midref(v)) || !mag_close(arb_radref(x), arb_radref(v))) { flint_printf("FAIL (aliasing 2)!\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("v = "); arb_print(v); flint_printf("\n\n"); abort(); } break; case 3: arb_set(v, x); arb_addmul(v, x, y, prec); arb_addmul(x, x, y, prec); if (!arf_equal(arb_midref(x), arb_midref(v)) || !mag_close(arb_radref(x), arb_radref(v))) { flint_printf("FAIL (aliasing 3)!\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("y = "); arb_print(y); flint_printf("\n\n"); flint_printf("v = "); arb_print(v); flint_printf("\n\n"); abort(); } break; default: arb_set(v, x); arb_addmul(v, x, y, prec); arb_addmul(x, y, x, prec); if (!arf_equal(arb_midref(x), arb_midref(v)) || !mag_close(arb_radref(x), arb_radref(v))) { flint_printf("FAIL (aliasing 4)!\n"); flint_printf("x = "); arb_print(x); flint_printf("\n\n"); flint_printf("y = "); arb_print(y); flint_printf("\n\n"); flint_printf("v = "); arb_print(v); flint_printf("\n\n"); abort(); } break; } } arb_clear(x); arb_clear(y); arb_clear(z); arb_clear(v); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int main() { slong iter; flint_rand_t state; flint_printf("addmul_fmpz...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 10000; iter++) { arb_t a, b, c, d; fmpz_t x; slong prec; arb_init(a); arb_init(b); arb_init(c); arb_init(d); fmpz_init(x); arb_randtest_special(a, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(b, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(c, state, 1 + n_randint(state, 2000), 100); fmpz_randtest(x, state, 1 + n_randint(state, 2000)); prec = 2 + n_randint(state, 2000); arb_set_fmpz(b, x); arb_set(d, c); arb_addmul_fmpz(c, a, x, prec); arb_addmul(d, a, b, prec); if (!arb_equal(c, d)) { flint_printf("FAIL\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); flint_printf("d = "); arb_print(d); flint_printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); arb_clear(d); fmpz_clear(x); } /* aliasing */ for (iter = 0; iter < 10000; iter++) { arb_t a, b, c; fmpz_t x; slong prec; arb_init(a); arb_init(b); arb_init(c); fmpz_init(x); arb_randtest_special(a, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(b, state, 1 + n_randint(state, 2000), 100); arb_randtest_special(c, state, 1 + n_randint(state, 2000), 100); fmpz_randtest(x, state, 1 + n_randint(state, 2000)); prec = 2 + n_randint(state, 2000); arb_set_fmpz(b, x); arb_set(c, a); arb_addmul_fmpz(c, a, x, prec); arb_addmul_fmpz(a, a, x, prec); if (!arb_equal(a, c)) { flint_printf("FAIL (aliasing)\n\n"); flint_printf("a = "); arb_print(a); flint_printf("\n\n"); flint_printf("b = "); arb_print(b); flint_printf("\n\n"); flint_printf("c = "); arb_print(c); flint_printf("\n\n"); abort(); } arb_clear(a); arb_clear(b); arb_clear(c); fmpz_clear(x); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
static void bsplit_recursive_arb(arb_t P, arb_t Q, arb_t B, arb_t T, const hypgeom_t hyp, long a, long b, int cont, long prec) { if (b - a < 4) { fmpz_t PP, QQ, BB, TT; fmpz_init(PP); fmpz_init(QQ); fmpz_init(BB); fmpz_init(TT); bsplit_recursive_fmpz(PP, QQ, BB, TT, hyp, a, b, cont); arb_set_fmpz(P, PP); arb_set_fmpz(Q, QQ); arb_set_fmpz(B, BB); arb_set_fmpz(T, TT); fmpz_clear(PP); fmpz_clear(QQ); fmpz_clear(BB); fmpz_clear(TT); } else { long m; arb_t P2, Q2, B2, T2; m = (a + b) / 2; arb_init(P2); arb_init(Q2); arb_init(B2); arb_init(T2); bsplit_recursive_arb(P, Q, B, T, hyp, a, m, 1, prec); bsplit_recursive_arb(P2, Q2, B2, T2, hyp, m, b, 1, prec); if (arb_is_one(B) && arb_is_one(B2)) { arb_mul(T, T, Q2, prec); arb_addmul(T, P, T2, prec); } else { arb_mul(T, T, B2, prec); arb_mul(T, T, Q2, prec); arb_mul(T2, T2, B, prec); arb_addmul(T, P, T2, prec); } arb_mul(B, B, B2, prec); arb_mul(Q, Q, Q2, prec); if (cont) arb_mul(P, P, P2, prec); arb_clear(P2); arb_clear(Q2); arb_clear(B2); arb_clear(T2); } }
void _arb_poly_inv_series(arb_ptr Qinv, arb_srcptr Q, slong Qlen, slong len, slong prec) { Qlen = FLINT_MIN(Qlen, len); arb_inv(Qinv, Q, prec); if (Qlen == 1) { _arb_vec_zero(Qinv + 1, len - 1); } else if (len == 2) { arb_mul(Qinv + 1, Qinv, Qinv, prec); arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec); arb_neg(Qinv + 1, Qinv + 1); } else { slong i, j, blen; /* The basecase algorithm is faster for much larger Qlen or len than this, but unfortunately also much less numerically stable. */ if (Qlen == 2 || len <= 8) blen = len; else blen = FLINT_MIN(len, 4); for (i = 1; i < blen; i++) { arb_mul(Qinv + i, Q + 1, Qinv + i - 1, prec); for (j = 2; j < FLINT_MIN(i + 1, Qlen); j++) arb_addmul(Qinv + i, Q + j, Qinv + i - j, prec); if (!arb_is_one(Qinv)) arb_mul(Qinv + i, Qinv + i, Qinv, prec); arb_neg(Qinv + i, Qinv + i); } if (len > blen) { slong Qnlen, Wlen, W2len; arb_ptr W; W = _arb_vec_init(len); NEWTON_INIT(blen, len) NEWTON_LOOP(m, n) Qnlen = FLINT_MIN(Qlen, n); Wlen = FLINT_MIN(Qnlen + m - 1, n); W2len = Wlen - m; MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec); MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec); _arb_vec_neg(Qinv + m, Qinv + m, n - m); NEWTON_END_LOOP NEWTON_END _arb_vec_clear(W, len); } } }
void arb_rising2_ui_rs(arb_t u, arb_t v, const arb_t x, ulong n, ulong m, slong prec) { if (n == 0) { arb_zero(v); arb_one(u); } else if (n == 1) { arb_set(u, x); arb_one(v); } else { slong wp; ulong i, j, a, b; arb_ptr xs; arb_t S, T, U, V; fmpz *A, *B; wp = ARF_PREC_ADD(prec, FLINT_BIT_COUNT(n)); if (m == 0) { ulong m1, m2; m1 = 0.6 * pow(wp, 0.4); m2 = n_sqrt(n); m = FLINT_MIN(m1, m2); } m = FLINT_MAX(m, 1); xs = _arb_vec_init(m + 1); A = _fmpz_vec_init(2 * m + 1); B = A + (m + 1); arb_init(S); arb_init(T); arb_init(U); arb_init(V); _arb_vec_set_powers(xs, x, m + 1, wp); for (i = 0; i < n; i += m) { a = i; b = FLINT_MIN(n, a + m); if (a == 0 || b != a + m) { _gamma_rf_bsplit(A, a, b); } else { fmpz tt = m; _fmpz_poly_taylor_shift(A, &tt, m + 1); } _fmpz_poly_derivative(B, A, b - a + 1); arb_set_fmpz(S, A); for (j = 1; j <= b - a; j++) arb_addmul_fmpz(S, xs + j, A + j, wp); arb_set_fmpz(T, B); for (j = 1; j < b - a; j++) arb_addmul_fmpz(T, xs + j, B + j, wp); if (i == 0) { arb_set(U, S); arb_set(V, T); } else { arb_mul(V, V, S, wp); arb_addmul(V, U, T, wp); arb_mul(U, U, S, wp); } } arb_set(u, U); arb_set(v, V); _arb_vec_clear(xs, m + 1); _fmpz_vec_clear(A, 2 * m + 1); arb_clear(S); arb_clear(T); arb_clear(U); arb_clear(V); } }