예제 #1
0
/*
 * Downgrade an unrecursed exclusive lock into a single shared lock.
 */
void
_sx_downgrade(struct sx *sx, const char *file, int line)
{
	uintptr_t x;
	int wakeup_swapper;

	KASSERT(sx->sx_lock != SX_LOCK_DESTROYED,
	    ("sx_downgrade() of destroyed sx @ %s:%d", file, line));
	_sx_assert(sx, SA_XLOCKED | SA_NOTRECURSED, file, line);
#ifndef INVARIANTS
	if (sx_recursed(sx))
		panic("downgrade of a recursed lock");
#endif

	WITNESS_DOWNGRADE(&sx->lock_object, 0, file, line);

	/*
	 * Try to switch from an exclusive lock with no shared waiters
	 * to one sharer with no shared waiters.  If there are
	 * exclusive waiters, we don't need to lock the sleep queue so
	 * long as we preserve the flag.  We do one quick try and if
	 * that fails we grab the sleepq lock to keep the flags from
	 * changing and do it the slow way.
	 *
	 * We have to lock the sleep queue if there are shared waiters
	 * so we can wake them up.
	 */
	x = sx->sx_lock;
	if (!(x & SX_LOCK_SHARED_WAITERS) &&
	    atomic_cmpset_rel_ptr(&sx->sx_lock, x, SX_SHARERS_LOCK(1) |
	    (x & SX_LOCK_EXCLUSIVE_WAITERS))) {
		LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
		return;
	}

	/*
	 * Lock the sleep queue so we can read the waiters bits
	 * without any races and wakeup any shared waiters.
	 */
	sleepq_lock(&sx->lock_object);

	/*
	 * Preserve SX_LOCK_EXCLUSIVE_WAITERS while downgraded to a single
	 * shared lock.  If there are any shared waiters, wake them up.
	 */
	wakeup_swapper = 0;
	x = sx->sx_lock;
	atomic_store_rel_ptr(&sx->sx_lock, SX_SHARERS_LOCK(1) |
	    (x & SX_LOCK_EXCLUSIVE_WAITERS));
	if (x & SX_LOCK_SHARED_WAITERS)
		wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
		    0, SQ_SHARED_QUEUE);
	sleepq_release(&sx->lock_object);

	LOCK_LOG_LOCK("XDOWNGRADE", &sx->lock_object, 0, 0, file, line);
	LOCKSTAT_RECORD0(LS_SX_DOWNGRADE_DOWNGRADE, sx);

	if (wakeup_swapper)
		kick_proc0();
}
예제 #2
0
void
_rw_runlock_cookie(volatile uintptr_t *c, const char *file, int line)
{
	struct rwlock *rw;
	struct turnstile *ts;
	uintptr_t x, v, queue;

	if (SCHEDULER_STOPPED())
		return;

	rw = rwlock2rw(c);

	KASSERT(rw->rw_lock != RW_DESTROYED,
	    ("rw_runlock() of destroyed rwlock @ %s:%d", file, line));
	__rw_assert(c, RA_RLOCKED, file, line);
	WITNESS_UNLOCK(&rw->lock_object, 0, file, line);
	LOCK_LOG_LOCK("RUNLOCK", &rw->lock_object, 0, 0, file, line);

	/* TODO: drop "owner of record" here. */

	for (;;) {
		/*
		 * See if there is more than one read lock held.  If so,
		 * just drop one and return.
		 */
		x = rw->rw_lock;
		if (RW_READERS(x) > 1) {
			if (atomic_cmpset_rel_ptr(&rw->rw_lock, x,
			    x - RW_ONE_READER)) {
				if (LOCK_LOG_TEST(&rw->lock_object, 0))
					CTR4(KTR_LOCK,
					    "%s: %p succeeded %p -> %p",
					    __func__, rw, (void *)x,
					    (void *)(x - RW_ONE_READER));
				break;
			}
			continue;
		}
		/*
		 * If there aren't any waiters for a write lock, then try
		 * to drop it quickly.
		 */
		if (!(x & RW_LOCK_WAITERS)) {
			MPASS((x & ~RW_LOCK_WRITE_SPINNER) ==
			    RW_READERS_LOCK(1));
			if (atomic_cmpset_rel_ptr(&rw->rw_lock, x,
			    RW_UNLOCKED)) {
				if (LOCK_LOG_TEST(&rw->lock_object, 0))
					CTR2(KTR_LOCK, "%s: %p last succeeded",
					    __func__, rw);
				break;
			}
			continue;
		}
		/*
		 * Ok, we know we have waiters and we think we are the
		 * last reader, so grab the turnstile lock.
		 */
		turnstile_chain_lock(&rw->lock_object);
		v = rw->rw_lock & (RW_LOCK_WAITERS | RW_LOCK_WRITE_SPINNER);
		MPASS(v & RW_LOCK_WAITERS);

		/*
		 * Try to drop our lock leaving the lock in a unlocked
		 * state.
		 *
		 * If you wanted to do explicit lock handoff you'd have to
		 * do it here.  You'd also want to use turnstile_signal()
		 * and you'd have to handle the race where a higher
		 * priority thread blocks on the write lock before the
		 * thread you wakeup actually runs and have the new thread
		 * "steal" the lock.  For now it's a lot simpler to just
		 * wakeup all of the waiters.
		 *
		 * As above, if we fail, then another thread might have
		 * acquired a read lock, so drop the turnstile lock and
		 * restart.
		 */
		x = RW_UNLOCKED;
		if (v & RW_LOCK_WRITE_WAITERS) {
			queue = TS_EXCLUSIVE_QUEUE;
			x |= (v & RW_LOCK_READ_WAITERS);
		} else
			queue = TS_SHARED_QUEUE;
		if (!atomic_cmpset_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v,
		    x)) {
			turnstile_chain_unlock(&rw->lock_object);
			continue;
		}
		if (LOCK_LOG_TEST(&rw->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p last succeeded with waiters",
			    __func__, rw);

		/*
		 * Ok.  The lock is released and all that's left is to
		 * wake up the waiters.  Note that the lock might not be
		 * free anymore, but in that case the writers will just
		 * block again if they run before the new lock holder(s)
		 * release the lock.
		 */
		ts = turnstile_lookup(&rw->lock_object);
		MPASS(ts != NULL);
		turnstile_broadcast(ts, queue);
		turnstile_unpend(ts, TS_SHARED_LOCK);
		turnstile_chain_unlock(&rw->lock_object);
		break;
	}
	LOCKSTAT_PROFILE_RELEASE_RWLOCK(rw__release, rw, LOCKSTAT_READER);
	curthread->td_locks--;
	curthread->td_rw_rlocks--;
}
예제 #3
0
/*
 * Downgrade a write lock into a single read lock.
 */
void
__rw_downgrade(volatile uintptr_t *c, const char *file, int line)
{
	struct rwlock *rw;
	struct turnstile *ts;
	uintptr_t tid, v;
	int rwait, wwait;

	if (SCHEDULER_STOPPED())
		return;

	rw = rwlock2rw(c);

	KASSERT(rw->rw_lock != RW_DESTROYED,
	    ("rw_downgrade() of destroyed rwlock @ %s:%d", file, line));
	__rw_assert(c, RA_WLOCKED | RA_NOTRECURSED, file, line);
#ifndef INVARIANTS
	if (rw_recursed(rw))
		panic("downgrade of a recursed lock");
#endif

	WITNESS_DOWNGRADE(&rw->lock_object, 0, file, line);

	/*
	 * Convert from a writer to a single reader.  First we handle
	 * the easy case with no waiters.  If there are any waiters, we
	 * lock the turnstile and "disown" the lock.
	 */
	tid = (uintptr_t)curthread;
	if (atomic_cmpset_rel_ptr(&rw->rw_lock, tid, RW_READERS_LOCK(1)))
		goto out;

	/*
	 * Ok, we think we have waiters, so lock the turnstile so we can
	 * read the waiter flags without any races.
	 */
	turnstile_chain_lock(&rw->lock_object);
	v = rw->rw_lock & RW_LOCK_WAITERS;
	rwait = v & RW_LOCK_READ_WAITERS;
	wwait = v & RW_LOCK_WRITE_WAITERS;
	MPASS(rwait | wwait);

	/*
	 * Downgrade from a write lock while preserving waiters flag
	 * and give up ownership of the turnstile.
	 */
	ts = turnstile_lookup(&rw->lock_object);
	MPASS(ts != NULL);
	if (!wwait)
		v &= ~RW_LOCK_READ_WAITERS;
	atomic_store_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v);
	/*
	 * Wake other readers if there are no writers pending.  Otherwise they
	 * won't be able to acquire the lock anyway.
	 */
	if (rwait && !wwait) {
		turnstile_broadcast(ts, TS_SHARED_QUEUE);
		turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
	} else
		turnstile_disown(ts);
	turnstile_chain_unlock(&rw->lock_object);
out:
	curthread->td_rw_rlocks++;
	LOCK_LOG_LOCK("WDOWNGRADE", &rw->lock_object, 0, 0, file, line);
	LOCKSTAT_RECORD0(rw__downgrade, rw);
}
예제 #4
0
파일: kern_sx.c 프로젝트: jmgurney/freebsd
/*
 * This function represents the so-called 'hard case' for sx_sunlock
 * operation.  All 'easy case' failures are redirected to this.  Note
 * that ideally this would be a static function, but it needs to be
 * accessible from at least sx.h.
 */
void
_sx_sunlock_hard(struct sx *sx, const char *file, int line)
{
	uintptr_t x;
	int wakeup_swapper;

	if (SCHEDULER_STOPPED())
		return;

	for (;;) {
		x = sx->sx_lock;

		/*
		 * We should never have sharers while at least one thread
		 * holds a shared lock.
		 */
		KASSERT(!(x & SX_LOCK_SHARED_WAITERS),
		    ("%s: waiting sharers", __func__));

		/*
		 * See if there is more than one shared lock held.  If
		 * so, just drop one and return.
		 */
		if (SX_SHARERS(x) > 1) {
			if (atomic_cmpset_rel_ptr(&sx->sx_lock, x,
			    x - SX_ONE_SHARER)) {
				if (LOCK_LOG_TEST(&sx->lock_object, 0))
					CTR4(KTR_LOCK,
					    "%s: %p succeeded %p -> %p",
					    __func__, sx, (void *)x,
					    (void *)(x - SX_ONE_SHARER));
				break;
			}
			continue;
		}

		/*
		 * If there aren't any waiters for an exclusive lock,
		 * then try to drop it quickly.
		 */
		if (!(x & SX_LOCK_EXCLUSIVE_WAITERS)) {
			MPASS(x == SX_SHARERS_LOCK(1));
			if (atomic_cmpset_rel_ptr(&sx->sx_lock,
			    SX_SHARERS_LOCK(1), SX_LOCK_UNLOCKED)) {
				if (LOCK_LOG_TEST(&sx->lock_object, 0))
					CTR2(KTR_LOCK, "%s: %p last succeeded",
					    __func__, sx);
				break;
			}
			continue;
		}

		/*
		 * At this point, there should just be one sharer with
		 * exclusive waiters.
		 */
		MPASS(x == (SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS));

		sleepq_lock(&sx->lock_object);

		/*
		 * Wake up semantic here is quite simple:
		 * Just wake up all the exclusive waiters.
		 * Note that the state of the lock could have changed,
		 * so if it fails loop back and retry.
		 */
		if (!atomic_cmpset_rel_ptr(&sx->sx_lock,
		    SX_SHARERS_LOCK(1) | SX_LOCK_EXCLUSIVE_WAITERS,
		    SX_LOCK_UNLOCKED)) {
			sleepq_release(&sx->lock_object);
			continue;
		}
		if (LOCK_LOG_TEST(&sx->lock_object, 0))
			CTR2(KTR_LOCK, "%s: %p waking up all thread on"
			    "exclusive queue", __func__, sx);
		wakeup_swapper = sleepq_broadcast(&sx->lock_object, SLEEPQ_SX,
		    0, SQ_EXCLUSIVE_QUEUE);
		sleepq_release(&sx->lock_object);
		if (wakeup_swapper)
			kick_proc0();
		break;
	}
}