예제 #1
0
/*
 * virtballoon_migratepage - perform the balloon page migration on behalf of
 *			     a compation thread.     (called under page lock)
 * @mapping: the page->mapping which will be assigned to the new migrated page.
 * @newpage: page that will replace the isolated page after migration finishes.
 * @page   : the isolated (old) page that is about to be migrated to newpage.
 * @mode   : compaction mode -- not used for balloon page migration.
 *
 * After a ballooned page gets isolated by compaction procedures, this is the
 * function that performs the page migration on behalf of a compaction thread
 * The page migration for virtio balloon is done in a simple swap fashion which
 * follows these two macro steps:
 *  1) insert newpage into vb->pages list and update the host about it;
 *  2) update the host about the old page removed from vb->pages list;
 *
 * This function preforms the balloon page migration task.
 * Called through balloon_mapping->a_ops->migratepage
 */
static int virtballoon_migratepage(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	struct balloon_dev_info *vb_dev_info = balloon_page_device(page);
	struct virtio_balloon *vb;
	unsigned long flags;

	BUG_ON(!vb_dev_info);

	vb = vb_dev_info->balloon_device;

	/*
	 * In order to avoid lock contention while migrating pages concurrently
	 * to leak_balloon() or fill_balloon() we just give up the balloon_lock
	 * this turn, as it is easier to retry the page migration later.
	 * This also prevents fill_balloon() getting stuck into a mutex
	 * recursion in the case it ends up triggering memory compaction
	 * while it is attempting to inflate the ballon.
	 */
	if (!mutex_trylock(&vb->balloon_lock))
		return -EAGAIN;

	/* balloon's page migration 1st step  -- inflate "newpage" */
	spin_lock_irqsave(&vb_dev_info->pages_lock, flags);
	balloon_page_insert(newpage, mapping, &vb_dev_info->pages);
	vb_dev_info->isolated_pages--;
	spin_unlock_irqrestore(&vb_dev_info->pages_lock, flags);
	vb->num_pfns = VIRTIO_BALLOON_PAGES_PER_PAGE;
	set_page_pfns(vb->pfns, newpage);
	tell_host(vb, vb->inflate_vq);

	/*
	 * balloon's page migration 2nd step -- deflate "page"
	 *
	 * It's safe to delete page->lru here because this page is at
	 * an isolated migration list, and this step is expected to happen here
	 */
	balloon_page_delete(page);
	vb->num_pfns = VIRTIO_BALLOON_PAGES_PER_PAGE;
	set_page_pfns(vb->pfns, page);
	tell_host(vb, vb->deflate_vq);

	mutex_unlock(&vb->balloon_lock);

	return MIGRATEPAGE_BALLOON_SUCCESS;
}
예제 #2
0
/*
 * virtballoon_migratepage - perform the balloon page migration on behalf of
 *			     a compation thread.     (called under page lock)
 * @vb_dev_info: the balloon device
 * @newpage: page that will replace the isolated page after migration finishes.
 * @page   : the isolated (old) page that is about to be migrated to newpage.
 * @mode   : compaction mode -- not used for balloon page migration.
 *
 * After a ballooned page gets isolated by compaction procedures, this is the
 * function that performs the page migration on behalf of a compaction thread
 * The page migration for virtio balloon is done in a simple swap fashion which
 * follows these two macro steps:
 *  1) insert newpage into vb->pages list and update the host about it;
 *  2) update the host about the old page removed from vb->pages list;
 *
 * This function preforms the balloon page migration task.
 * Called through balloon_mapping->a_ops->migratepage
 */
static int virtballoon_migratepage(struct balloon_dev_info *vb_dev_info,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	struct virtio_balloon *vb = container_of(vb_dev_info,
			struct virtio_balloon, vb_dev_info);
	unsigned long flags;

	/*
	 * In order to avoid lock contention while migrating pages concurrently
	 * to leak_balloon() or fill_balloon() we just give up the balloon_lock
	 * this turn, as it is easier to retry the page migration later.
	 * This also prevents fill_balloon() getting stuck into a mutex
	 * recursion in the case it ends up triggering memory compaction
	 * while it is attempting to inflate the ballon.
	 */
	if (!mutex_trylock(&vb->balloon_lock))
		return -EAGAIN;

	get_page(newpage); /* balloon reference */

	/* balloon's page migration 1st step  -- inflate "newpage" */
	spin_lock_irqsave(&vb_dev_info->pages_lock, flags);
	balloon_page_insert(vb_dev_info, newpage);
	vb_dev_info->isolated_pages--;
	__count_vm_event(BALLOON_MIGRATE);
	spin_unlock_irqrestore(&vb_dev_info->pages_lock, flags);
	vb->num_pfns = VIRTIO_BALLOON_PAGES_PER_PAGE;
	set_page_pfns(vb, vb->pfns, newpage);
	tell_host(vb, vb->inflate_vq);

	/* balloon's page migration 2nd step -- deflate "page" */
	spin_lock_irqsave(&vb_dev_info->pages_lock, flags);
	balloon_page_delete(page);
	spin_unlock_irqrestore(&vb_dev_info->pages_lock, flags);
	vb->num_pfns = VIRTIO_BALLOON_PAGES_PER_PAGE;
	set_page_pfns(vb, vb->pfns, page);
	tell_host(vb, vb->deflate_vq);

	mutex_unlock(&vb->balloon_lock);

	put_page(page); /* balloon reference */

	return MIGRATEPAGE_SUCCESS;
}