예제 #1
0
int main( int argc, const char* argv[] )
{
    // print resource list
    BeagleResourceList* rList;
    rList = beagleGetResourceList();
    fprintf(stdout, "Available resources:\n");
    for (int i = 0; i < rList->length; i++) {
        fprintf(stdout, "\tResource %i:\n\t\tName : %s\n", i, rList->list[i].name);
        fprintf(stdout, "\t\tDesc : %s\n", rList->list[i].description);
        fprintf(stdout, "\t\tFlags:");
        printFlags(rList->list[i].supportFlags);
        fprintf(stdout, "\n");
    }    
    fprintf(stdout, "\n");    
    
    bool manualScaling = false;
    bool autoScaling = false;
	bool gRates = false; // generalized rate categories, separate root buffers
    
    // is nucleotides...
    int stateCount = 4;
	
    // get the number of site patterns
	int nPatterns = strlen(human);
    
    int rateCategoryCount = 4;
	
	int nRateCats = (gRates ? 1 : rateCategoryCount);
	int nRootCount = (!gRates ? 1 : rateCategoryCount);
	int nPartBuffs = 4 + nRootCount;
    int scaleCount = (manualScaling ? 2 + nRootCount : 0);
    
    // initialize the instance
    BeagleInstanceDetails instDetails;
    
    // create an instance of the BEAGLE library
	int instance = beagleCreateInstance(
                                  3,				/**< Number of tip data elements (input) */
                                  nPartBuffs,       /**< Number of partials buffers to create (input) */
                                  0,		        /**< Number of compact state representation buffers to create (input) */
                                  stateCount,		/**< Number of states in the continuous-time Markov chain (input) */
                                  nPatterns,		/**< Number of site patterns to be handled by the instance (input) */
                                  1,		        /**< Number of rate matrix eigen-decomposition buffers to allocate (input) */
                                  4,		        /**< Number of rate matrix buffers (input) */
								  nRateCats,		/**< Number of rate categories (input) */
                                  scaleCount,       /**< Number of scaling buffers */
                                  NULL,			    /**< List of potential resource on which this instance is allowed (input, NULL implies no restriction */
                                  0,			    /**< Length of resourceList list (input) */
                                  BEAGLE_FLAG_PRECISION_DOUBLE | BEAGLE_FLAG_PROCESSOR_GPU | (autoScaling ? BEAGLE_FLAG_SCALING_AUTO : 0),	/**< Bit-flags indicating preferred implementation charactertistics, see BeagleFlags (input) */
                                  0,                /**< Bit-flags indicating required implementation characteristics, see BeagleFlags (input) */
                                  &instDetails);
    if (instance < 0) {
	    fprintf(stderr, "Failed to obtain BEAGLE instance\n\n");
	    exit(1);
    }
        
    int rNumber = instDetails.resourceNumber;
    fprintf(stdout, "Using resource %i:\n", rNumber);
    fprintf(stdout, "\tRsrc Name : %s\n",instDetails.resourceName);
    fprintf(stdout, "\tImpl Name : %s\n", instDetails.implName);
    fprintf(stdout, "\tImpl Desc : %s\n", instDetails.implDescription);
    fprintf(stdout, "\tFlags:");
    printFlags(instDetails.flags);
    fprintf(stdout, "\n\n");
    
    if (!(instDetails.flags & BEAGLE_FLAG_SCALING_AUTO))
        autoScaling = false;
    
//    beagleSetTipStates(instance, 0, getStates(human));
//    beagleSetTipStates(instance, 1, getStates(chimp));
//    beagleSetTipStates(instance, 2, getStates(gorilla));
    
    // set the sequences for each tip using partial likelihood arrays
    double *humanPartials   = getPartials(human);
    double *chimpPartials   = getPartials(chimp);
    double *gorillaPartials = getPartials(gorilla);
    
	beagleSetTipPartials(instance, 0, humanPartials);
	beagleSetTipPartials(instance, 1, chimpPartials);
	beagleSetTipPartials(instance, 2, gorillaPartials);
    
//#ifdef _WIN32
//	std::vector<double> rates(rateCategoryCount);
//#else
//	double rates[rateCategoryCount];
//#endif
//    for (int i = 0; i < rateCategoryCount; i++) {
//        rates[i] = 1.0;
//    }
	double rates[4] = { 0.03338775, 0.25191592, 0.82026848, 2.89442785 };
    
	
    // create base frequency array
	double freqs[16] = { 0.25, 0.25, 0.25, 0.25,
						 0.25, 0.25, 0.25, 0.25,
						 0.25, 0.25, 0.25, 0.25,
		                 0.25, 0.25, 0.25, 0.25 };
    
    // create an array containing site category weights

	double* weights = (double*) malloc(sizeof(double) * rateCategoryCount);

    for (int i = 0; i < rateCategoryCount; i++) {
        weights[i] = 1.0/rateCategoryCount;
    }    

	double* patternWeights = (double*) malloc(sizeof(double) * nPatterns);
    
    for (int i = 0; i < nPatterns; i++) {
        patternWeights[i] = 1.0;
    }    
    
    
	// an eigen decomposition for the JC69 model
	double evec[4 * 4] = {
        1.0,  2.0,  0.0,  0.5,
        1.0,  -2.0,  0.5,  0.0,
        1.0,  2.0, 0.0,  -0.5,
        1.0,  -2.0,  -0.5,  0.0
	};
    
	double ivec[4 * 4] = {
        0.25,  0.25,  0.25,  0.25,
        0.125,  -0.125,  0.125,  -0.125,
        0.0,  1.0,  0.0,  -1.0,
        1.0,  0.0,  -1.0,  0.0
	};
    
	double eval[4] = { 0.0, -1.3333333333333333, -1.3333333333333333, -1.3333333333333333 };
    
    // set the Eigen decomposition
	beagleSetEigenDecomposition(instance, 0, evec, ivec, eval);
    
    beagleSetStateFrequencies(instance, 0, freqs);
    
    beagleSetCategoryWeights(instance, 0, weights);
    
    beagleSetPatternWeights(instance, patternWeights);
    
    // a list of indices and edge lengths
	int nodeIndices[4] = { 0, 1, 2, 3 };
	double edgeLengths[4] = { 0.1, 0.1, 0.2, 0.1 };
	
	int* rootIndices = (int*) malloc(sizeof(int) * nRootCount);
    int* categoryWeightsIndices = (int*) malloc(sizeof(int) * nRootCount);
    int* stateFrequencyIndices = (int*) malloc(sizeof(int) * nRootCount);
	int* cumulativeScalingIndices = (int*) malloc(sizeof(int) * nRootCount);
	
	for (int i = 0; i < nRootCount; i++) {
		
		rootIndices[i] = 4 + i;
        categoryWeightsIndices[i] = 0;
        stateFrequencyIndices[i] = 0;
		cumulativeScalingIndices[i] = (manualScaling ? 2 + i : BEAGLE_OP_NONE);
		
		beagleSetCategoryRates(instance, &rates[i]);
		
		// tell BEAGLE to populate the transition matrices for the above edge lengths
		beagleUpdateTransitionMatrices(instance,     // instance
								 0,             // eigenIndex
								 nodeIndices,   // probabilityIndices
								 NULL,          // firstDerivativeIndices
								 NULL,          // secondDerivativeIndices
								 edgeLengths,   // edgeLengths
								 4);            // count
		
		// create a list of partial likelihood update operations
		// the order is [dest, destScaling, source1, matrix1, source2, matrix2]
		BeagleOperation operations[2] = {
			3, (manualScaling ? 0 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 0, 0, 1, 1,
			rootIndices[i], (manualScaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 2, 2, 3, 3
		};
		
		if (manualScaling)
			beagleResetScaleFactors(instance, cumulativeScalingIndices[i]);
		
		// update the partials
		beagleUpdatePartials(instance,      // instance
					   operations,     // eigenIndex
					   2,              // operationCount
					   cumulativeScalingIndices[i]);// cumulative scaling index
	}
		 
    if (autoScaling) {
        int scaleIndices[2] = {3, 4};
        beagleAccumulateScaleFactors(instance, scaleIndices, 2, BEAGLE_OP_NONE);
    }
    
	double *patternLogLik = (double*)malloc(sizeof(double) * nPatterns);
	double logL = 0.0;    
    int returnCode = 0;
    
    // calculate the site likelihoods at the root node
	returnCode = beagleCalculateRootLogLikelihoods(instance,               // instance
	                            (const int *)rootIndices,// bufferIndices
	                            (const int *)categoryWeightsIndices,                // weights
	                            (const int *)stateFrequencyIndices,                  // stateFrequencies
								cumulativeScalingIndices,// cumulative scaling index
	                            nRootCount,                      // count
	                            &logL);         // outLogLikelihoods
    
    if (returnCode < 0) {
	    fprintf(stderr, "Failed to calculate root likelihood\n\n");
    } else {

        beagleGetSiteLogLikelihoods(instance, patternLogLik);
        double sumLogL = 0.0;
        for (int i = 0; i < nPatterns; i++) {
            sumLogL += patternLogLik[i] * patternWeights[i];
//            std::cerr << "site lnL[" << i << "] = " << patternLogLik[i] << '\n';
        }
      
        fprintf(stdout, "logL = %.5f (PAUP logL = -1498.89812)\n", logL);
        fprintf(stdout, "sumLogL = %.5f\n", sumLogL);  
    }
    
// no rate heterogeneity:	
//	fprintf(stdout, "logL = %.5f (PAUP logL = -1574.63623)\n\n", logL);
	
    free(weights);
    free(patternWeights);    
    free(rootIndices);
    free(categoryWeightsIndices);
    free(stateFrequencyIndices);
    free(cumulativeScalingIndices);    
    
	free(patternLogLik);
	free(humanPartials);
	free(chimpPartials);
	free(gorillaPartials);
    
    beagleFinalizeInstance(instance);

#ifdef _WIN32
    std::cout << "\nPress ENTER to exit...\n";
    fflush( stdout);
    fflush( stderr);
    getchar();
#endif
    
}
예제 #2
0
int main( int argc, const char* argv[] )
{
    
    bool scaling = true;
    
    // is nucleotides...
    int stateCount = 4;
	
    // get the number of site patterns
	int nPatterns = strlen(human);
    
    int rateCategoryCount = 4;
    
    int scaleCount = (scaling ? 3 : 0);
    
    BeagleInstanceDetails instDetails;
    
    // create an instance of the BEAGLE library
	int instance = beagleCreateInstance(
                                  3,				/**< Number of tip data elements (input) */
                                  5,	            /**< Number of partials buffers to create (input) */
                                  0,		        /**< Number of compact state representation buffers to create (input) */
                                  stateCount,		/**< Number of states in the continuous-time Markov chain (input) */
                                  nPatterns,		/**< Number of site patterns to be handled by the instance (input) */
                                  1,		        /**< Number of rate matrix eigen-decomposition buffers to allocate (input) */
                                  4,		        /**< Number of rate matrix buffers (input) */
                                  rateCategoryCount,/**< Number of rate categories (input) */
                                  scaleCount,       /**< Number of scaling buffers */
                                  NULL,			    /**< List of potential resource on which this instance is allowed (input, NULL implies no restriction */
                                  0,			    /**< Length of resourceList list (input) */
                                  BEAGLE_FLAG_PROCESSOR_GPU,             	/**< Bit-flags indicating preferred implementation charactertistics, see BeagleFlags (input) */
                                  0
#ifndef JC
                                  | BEAGLE_FLAG_EIGEN_COMPLEX
#endif
                                  ,           /**< Bit-flags indicating required implementation characteristics, see BeagleFlags (input) */
                                  &instDetails);
    if (instance < 0) {
	    fprintf(stderr, "Failed to obtain BEAGLE instance\n\n");
	    exit(1);
    }
        
    int rNumber = instDetails.resourceNumber;
    fprintf(stdout, "Using resource %i:\n", rNumber);
    fprintf(stdout, "\tRsrc Name : %s\n",instDetails.resourceName);
    fprintf(stdout, "\tImpl : %s\n", instDetails.implName);
    fprintf(stdout, "\tImpl Desc : %s\n", instDetails.implDescription);
    fprintf(stdout, "\n");
    
    
    // set the sequences for each tip using partial likelihood arrays
    double *humanPartials   = getPartials(human);
    double *chimpPartials   = getPartials(chimp);
    double *gorillaPartials = getPartials(gorilla);
    
	beagleSetTipPartials(instance, 0, humanPartials);
	beagleSetTipPartials(instance, 1, chimpPartials);
	beagleSetTipPartials(instance, 2, gorillaPartials);
    
#ifdef _WIN32
	std::vector<double> rates(rateCategoryCount);
#else
	double rates[rateCategoryCount];
#endif
    for (int i = 0; i < rateCategoryCount; i++) {
        rates[i] = 1.0;
    }
    
	beagleSetCategoryRates(instance, &rates[0]);
	
	double* patternWeights = (double*) malloc(sizeof(double) * nPatterns);
    
    for (int i = 0; i < nPatterns; i++) {
        patternWeights[i] = 1.0;
    }    
    
    beagleSetPatternWeights(instance, patternWeights);
	
    // create base frequency array
	double freqs[4] = { 0.25, 0.25, 0.25, 0.25 };
    
    beagleSetStateFrequencies(instance, 0, freqs);
    
    // create an array containing site category weights
#ifdef _WIN32
	std::vector<double> weights(rateCategoryCount);
#else
	double weights[rateCategoryCount];
#endif
    for (int i = 0; i < rateCategoryCount; i++) {
        weights[i] = 1.0/rateCategoryCount;
    }    
    
    beagleSetCategoryWeights(instance, 0, &weights[0]);
    
#ifndef JC
	// an eigen decomposition for the 4-state 1-step circulant infinitesimal generator
	double evec[4 * 4] = {
			 -0.5,  0.6906786606674509,   0.15153543380548623, 0.5,
			  0.5, -0.15153543380548576,  0.6906786606674498,  0.5,
			 -0.5, -0.6906786606674498,  -0.15153543380548617, 0.5,
			  0.5,  0.15153543380548554, -0.6906786606674503,  0.5
	};

	double ivec[4 * 4] = {
			 -0.5,  0.5, -0.5,  0.5,
			  0.6906786606674505, -0.15153543380548617, -0.6906786606674507,   0.15153543380548645,
			  0.15153543380548568, 0.6906786606674509,  -0.15153543380548584, -0.6906786606674509,
			  0.5,  0.5,  0.5,  0.5
	};

	double eval[8] = { -2.0, -1.0, -1.0, 0, 0, 1, -1, 0 };
#else
	// an eigen decomposition for the JC69 model
	double evec[4 * 4] = {
        1.0,  2.0,  0.0,  0.5,
        1.0,  -2.0,  0.5,  0.0,
        1.0,  2.0, 0.0,  -0.5,
        1.0,  -2.0,  -0.5,  0.0
	};
    
	double ivec[4 * 4] = {
        0.25,  0.25,  0.25,  0.25,
        0.125,  -0.125,  0.125,  -0.125,
        0.0,  1.0,  0.0,  -1.0,
        1.0,  0.0,  -1.0,  0.0
	};
    
	double eval[8] = { 0.0, -1.3333333333333333, -1.3333333333333333, -1.3333333333333333, 0.0, 0.0, 0.0, 0.0 };
#endif

    // a list of indices and edge lengths
	int nodeIndices[4] = { 0, 1, 2, 3 };
	double edgeLengths[4] = { 0.1, 0.1, 0.2, 0.1 };

//	// set the Eigen decomposition
//	beagleSetEigenDecomposition(instance, 0, evec, ivec, eval);
//
//    // tell BEAGLE to populate the transition matrices for the above edge lengths
//	beagleUpdateTransitionMatrices(instance,     // instance
//	                         0,             // eigenIndex
//	                         nodeIndices,   // probabilityIndices
//	                         NULL,          // firstDerivativeIndices
//	                         NULL,          // secondDervativeIndices
//	                         edgeLengths,   // edgeLengths
//	                         4);            // count

	// set transitionMatrices
    
    double* transitionMatrix = (double*) malloc(4 * 4 * 4 * rateCategoryCount * sizeof(double));
    
    double* paddedValues = (double*) malloc(4*sizeof(double));
	
    for(int b=0; b<4; b++) {
        getTransitionMatrix(eval,
                           evec,
                           ivec,
                           4,
                           rateCategoryCount,
                           &rates[0],
                           edgeLengths[b],
                           transitionMatrix + b*4*4*rateCategoryCount);
        
        paddedValues[b] = 1.0;
	}

    beagleSetTransitionMatrices(instance,
                                nodeIndices,
                                transitionMatrix,
                                paddedValues,
                                4);
    free(transitionMatrix);
    
    
    // create a list of partial likelihood update operations
    // the order is [dest, destScaling, source1, matrix1, source2, matrix2]
	BeagleOperation operations[2] = {
		3, (scaling ? 0 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 0, 0, 1, 1,
		4, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 2, 2, 3, 3
	};
	int rootIndex = 4;
    
    // update the partials
	beagleUpdatePartials(instance,      // instance
                   operations,     // eigenIndex
                   2,              // operationCount
                   BEAGLE_OP_NONE);          // cumulative scaling index
    
	double *patternLogLik = (double*)malloc(sizeof(double) * nPatterns);

    int cumulativeScalingIndex = (scaling ? 2 : BEAGLE_OP_NONE);
    
    if (scaling) {
        int scalingFactorsCount = 2;
        int scalingFactorsIndices[2] = {0, 1};
        
        beagleResetScaleFactors(instance,
                                cumulativeScalingIndex);
        
        beagleAccumulateScaleFactors(instance,
                                     scalingFactorsIndices,
                                     scalingFactorsCount,
                                     cumulativeScalingIndex);
    }
    
	int categoryWeightsIndex = 0;
    int stateFrequencyIndex = 0;
    
	double logL = 0.0;    
    
    // calculate the site likelihoods at the root node
	beagleCalculateRootLogLikelihoods(instance,               // instance
	                            (const int *)&rootIndex,// bufferIndices
                                  &categoryWeightsIndex,                // weights
                                  &stateFrequencyIndex,                  // stateFrequencies
                                &cumulativeScalingIndex,// cumulative scaling index
	                            1,                      // count
	                            &logL);         // outLogLikelihoods
        
#ifndef JC
	fprintf(stdout, "logL = %.5f (BEAST = -1665.38544)\n\n", logL);
#else
	fprintf(stdout, "logL = %.5f (PAUP = -1574.63623)\n\n", logL);
#endif
    
    free(patternWeights);
	
	free(patternLogLik);
	free(humanPartials);
	free(chimpPartials);
	free(gorillaPartials);
    
    beagleFinalizeInstance(instance);

#ifdef _WIN32
    std::cout << "\nPress ENTER to exit...\n";
    fflush( stdout);
    fflush( stderr);
    getchar();
#endif
    
}
예제 #3
0
/*-----------------------------------------------------------------------------
|	Calculates the log likelihood by calling the beagle functions
|	updateTransitionMatrices, updatePartials and calculateEdgeLogLikelihoods.
*/
double calcLnL(world_fmt *world, boolean instance)
{
  beagle_fmt *beagle = world->beagle;
  double logL = 0.0;
  unsigned long i;
  unsigned long j;
  //unsigned long z;
  long locus = world->locus;
  long ii;
  double *patternloglike = (double *) calloc(world->maxnumpattern[locus],sizeof(double));
   double *outlike = (double *) calloc(10*world->maxnumpattern[locus],sizeof(double));
  int rootIndex = beagle->operations[BEAGLE_PARTIALS * (beagle->numoperations-1)];//world->root->next->back->id;
  for(i=0; i<world->nummutationmodels[locus]; i++)
    {
      ii = world->sublocistarts[locus] + i;
      int code = beagleUpdateTransitionMatrices(beagle->instance_handle[i],		// instance,
					  0,					// eigenIndex,
					  (const int *) beagle->branch_indices,	// indicators transitionrates for each branch,
					  NULL, 			        // firstDerivativeIndices,
					  NULL,					// secondDervativeIndices,
					  beagle->branch_lengths,		// edgeLengths,
					  beagle->numbranches);			// number branches to update, count

	if (code != 0)
		usererror("updateTransitionMatrices encountered a problem");

	int cumulativeScalingFactorIndex = 0; //BEAGLE_OP_NONE; //this would be the index of the root scaling location 
	
	beagleResetScaleFactors(beagle->instance_handle[i],
			  cumulativeScalingFactorIndex);

	beagleAccumulateScaleFactors(beagle->instance_handle[i],
			       beagle->scalingfactorsindices,
			       beagle->scalingfactorscount,
			       cumulativeScalingFactorIndex);
	

	code = beagleUpdatePartials((const int *) &beagle->instance_handle[i],	// instance
			      1,					        // instanceCount
			      beagle->operations,		                // operations
			      beagle->numoperations,				// operationCount
				    cumulativeScalingFactorIndex);//BEAGLE_OP_NONE);					        // connected to accumulate....
#ifdef BEAGLEDEBUG
	for(j=0;j<2*(world->sumtips * 2 - 1); j++)
	  {
	    beagleGetPartials(beagle->instance_handle[i],j,BEAGLE_OP_NONE, outlike);
	    if(j==world->sumtips * 2 - 1)
	      printf("-----------------------\n");
	    printf("%li: {%f, %f, %f, %f}\n",j, outlike[0],outlike[1],outlike[2],outlike[3]);
	  }
#endif
	if (code != 0)
	  usererror("updatePartials encountered a problem");



	if(beagle->weights==NULL)
	  beagle->weights = (double *) mycalloc(1,sizeof(double));
	//	else
	//  beagle->weights = (double *) myrealloc(beagle->weights,beagle->numoperations * sizeof(double));

	beagle->weights[0]= 1.0;

	// calculate the site likelihoods at the root node
	code = beagleCalculateRootLogLikelihoods(beagle->instance_handle[i],         // instance
					   (const int *) &rootIndex, // bufferIndices
					   (const double *) world->mutationmodels[ii].siteprobs,   // weights
					   (const double *) world->mutationmodels[ii].basefreqs,// stateFrequencies
					   &cumulativeScalingFactorIndex, //scalingfactors index,
					   1,              // count is this correct
	                            patternloglike);         // outLogLikelihoods
	//trash from function above					   &beagle->scalingfactorscount,//size of the scaling factor index
	if (code != 0)
		usererror("calculateRootLogLikelihoods encountered a problem");

	for (j = 0; j < world->mutationmodels[ii].numsites; j++) 
	  {
		logL += beagle->allyweights[j] * patternloglike[j];
		//		printf("%.1f ",patternloglike[j]);
	}
    }
  printf("Log LnL=%f (instance=%li)\n",logL,(long) instance);
#ifdef BEAGLEDEBUG
  debug_beagle(beagle);
#endif
  myfree(patternloglike);
  myfree(outlike);
  return logL; 
}
/*
 * Class:     beagle_BeagleJNIWrapper
 * Method:    resetScaleFactors
 * Signature: (II)I
 */
JNIEXPORT jint JNICALL Java_beagle_BeagleJNIWrapper_resetScaleFactors
(JNIEnv *env, jobject obj, jint instance, jint cumulativeScalingIndex) {
	
	jint errCode = (jint)beagleResetScaleFactors(instance, cumulativeScalingIndex);
	return errCode;
}
예제 #5
0
/*-----------------------------------------------------------------
|
|	LaunchBEAGLELogLikeForDivision: calculate the log likelihood  
|		of the new state of the chain for a single division
|
-----------------------------------------------------------------*/
void LaunchBEAGLELogLikeForDivision(int chain, int d, ModelInfo* m, Tree* tree, MrBFlt* lnL)  {

	int i, rescaleFreqNew;
	int *isScalerNode;
	TreeNode *p;
    
    if (beagleScalingScheme == MB_BEAGLE_SCALE_ALWAYS) 
        {
	
#if defined (DEBUG_MB_BEAGLE_FLOW)
		printf("ALWAYS RESCALING\n");
#endif
        /* Flip and copy or reset site scalers */
        FlipSiteScalerSpace(m, chain);
        if (m->upDateAll == YES) {
			for (i=0; i<m->nCijkParts; i++) {			
				beagleResetScaleFactors(m->beagleInstance, m->siteScalerIndex[chain] + i);
			}
		}
        else
            CopySiteScalers(m, chain);

        TreeTiProbs_Beagle(tree, d, chain);
        TreeCondLikes_Beagle(tree, d, chain);
        TreeLikelihood_Beagle(tree, d, chain, lnL, (chainId[chain] % chainParams.numChains));
        } 
    else 
        { /* MB_BEAGLE_SCALE_DYNAMIC */
	
		/* This flag is only valid within this block */
        m->rescaleBeagleAll = NO;        
        TreeTiProbs_Beagle(tree, d, chain);
		if( m->succesCount[chain] > 1000 )
			{
			m->succesCount[chain] = 10;
			m->rescaleFreq[chain]++; /* increase rescaleFreq independent of whether we accept or reject new state*/
			m->rescaleFreqOld = rescaleFreqNew = m->rescaleFreq[chain];
			for (i=0; i<tree->nIntNodes; i++)
			    {
                p = tree->intDownPass[i];
                if ( p->upDateCl == YES ) {
                     /* flip to the new workspace since TreeCondLikes_Beagle_Rescale_All() does not do it for
					    (p->upDateCl == YES) since it assumes that TreeCondLikes_Beagle_No_Rescale() did it */
                    FlipCondLikeSpace (m, chain, p->index);
                   }
			    }
			goto rescale_all;
			}

		if(	beagleScalingFrequency != 0 && 
			m->beagleComputeCount[chain] % (beagleScalingFrequency) == 0 )
			{
			m->rescaleFreqOld = rescaleFreqNew = m->rescaleFreq[chain];
			for (i=0; i<tree->nIntNodes; i++)
				{
                p = tree->intDownPass[i];
                if ( p->upDateCl == YES ) {
                     /* flip to the new workspace since TreeCondLikes_Beagle_Rescale_All() does not do it for (p->upDateCl == YES) since it assumes that TreeCondLikes_Beagle_No_Rescale() did it*/
                    FlipCondLikeSpace (m, chain, p->index);
                   }
				}
			goto rescale_all;
			}

		TreeCondLikes_Beagle_No_Rescale(tree, d, chain);

		/* Check if likelihood is valid */		
        if( TreeLikelihood_Beagle(tree, d, chain, lnL, (chainId[chain] % chainParams.numChains)) == BEAGLE_ERROR_FLOATING_POINT ) 
			{
			m->rescaleFreqOld = rescaleFreqNew = m->rescaleFreq[chain];
			if(rescaleFreqNew > 1 && m->succesCount[chain] < 40)
				{
				if( m->succesCount[chain] < 10 )
					{
					if( m->succesCount[chain] < 4 )
						{
						rescaleFreqNew-= rescaleFreqNew >> 3; /* <== we cut up to 12,5% of rescaleFreq */
						if( m->succesCount[chain] < 2 )
							{
							rescaleFreqNew-= rescaleFreqNew >> 3;
							/* to avoid situation when we may stack at high rescaleFreq when new states do not get accepted because of low liklihood but there proposed frequency is high we reduce rescaleFreq even if we reject the last move*/
							/* basically the higher probability of proposing of low liklihood state which needs smaller rescaleFreq would lead to higher probability of hitting this code which should reduce rescaleFreqOld thus reduce further probability of hitting this code */
							/* at some point this negative feedback mechanism should get in balance with the mechanism of periodically increasing rescaleFreq when long sequence of successes is achieved*/
							m->rescaleFreqOld-= m->rescaleFreqOld >> 3;
							}
						m->rescaleFreqOld-= m->rescaleFreqOld >> 3;
						m->rescaleFreqOld--;
						m->rescaleFreqOld = ( m->rescaleFreqOld ? m->rescaleFreqOld:1);
						m->recalculateScalers = YES; 
						recalcScalers = YES;
						}
					}
				rescaleFreqNew--;
				rescaleFreqNew = ( rescaleFreqNew ? rescaleFreqNew:1);
				}
예제 #6
0
void runBeagle(int resource, 
               int stateCount, 
               int ntaxa, 
               int nsites, 
               bool manualScaling, 
               bool autoScaling,
               bool dynamicScaling,
               int rateCategoryCount,
               int nreps,
               bool fullTiming,
               bool requireDoublePrecision,
               bool requireSSE,
               int compactTipCount,
               int randomSeed,
               int rescaleFrequency,
               bool unrooted,
               bool calcderivs,
               bool logscalers,
               int eigenCount,
               bool eigencomplex,
               bool ievectrans,
               bool setmatrix)
{
    
    int edgeCount = ntaxa*2-2;
    int internalCount = ntaxa-1;
    int partialCount = ((ntaxa+internalCount)-compactTipCount)*eigenCount;
    int scaleCount = ((manualScaling || dynamicScaling) ? ntaxa : 0);
    
    BeagleInstanceDetails instDetails;
    
    // create an instance of the BEAGLE library
	int instance = beagleCreateInstance(
			    ntaxa,			  /**< Number of tip data elements (input) */
				partialCount, /**< Number of partials buffers to create (input) */
                compactTipCount,	/**< Number of compact state representation buffers to create (input) */
				stateCount,		  /**< Number of states in the continuous-time Markov chain (input) */
				nsites,			  /**< Number of site patterns to be handled by the instance (input) */
				eigenCount,		          /**< Number of rate matrix eigen-decomposition buffers to allocate (input) */
                (calcderivs ? (3*edgeCount*eigenCount) : edgeCount*eigenCount),/**< Number of rate matrix buffers (input) */
                rateCategoryCount,/**< Number of rate categories */
                scaleCount*eigenCount,          /**< scaling buffers */
				&resource,		  /**< List of potential resource on which this instance is allowed (input, NULL implies no restriction */
				1,			      /**< Length of resourceList list (input) */
                0,         /**< Bit-flags indicating preferred implementation charactertistics, see BeagleFlags (input) */
                (ievectrans ? BEAGLE_FLAG_INVEVEC_TRANSPOSED : BEAGLE_FLAG_INVEVEC_STANDARD) |
                (logscalers ? BEAGLE_FLAG_SCALERS_LOG : BEAGLE_FLAG_SCALERS_RAW) |
                (eigencomplex ? BEAGLE_FLAG_EIGEN_COMPLEX : BEAGLE_FLAG_EIGEN_REAL) |
                (dynamicScaling ? BEAGLE_FLAG_SCALING_DYNAMIC : 0) | 
                (autoScaling ? BEAGLE_FLAG_SCALING_AUTO : 0) |
                (requireDoublePrecision ? BEAGLE_FLAG_PRECISION_DOUBLE : BEAGLE_FLAG_PRECISION_SINGLE) |
                (requireSSE ? BEAGLE_FLAG_VECTOR_SSE : BEAGLE_FLAG_VECTOR_NONE),	  /**< Bit-flags indicating required implementation characteristics, see BeagleFlags (input) */
				&instDetails);
    if (instance < 0) {
	    fprintf(stderr, "Failed to obtain BEAGLE instance\n\n");
	    return;
    }
        
    int rNumber = instDetails.resourceNumber;
    fprintf(stdout, "Using resource %i:\n", rNumber);
    fprintf(stdout, "\tRsrc Name : %s\n",instDetails.resourceName);
    fprintf(stdout, "\tImpl Name : %s\n", instDetails.implName);    
    
    if (!(instDetails.flags & BEAGLE_FLAG_SCALING_AUTO))
        autoScaling = false;
    
    // set the sequences for each tip using partial likelihood arrays
	gt_srand(randomSeed);	// fix the random seed...
    for(int i=0; i<ntaxa; i++)
    {
        if (i >= compactTipCount) {
            double* tmpPartials = getRandomTipPartials(nsites, stateCount);
            beagleSetTipPartials(instance, i, tmpPartials);
            free(tmpPartials);
        } else {
            int* tmpStates = getRandomTipStates(nsites, stateCount);
            beagleSetTipStates(instance, i, tmpStates);
            free(tmpStates);                
        }
    }
    
#ifdef _WIN32
	std::vector<double> rates(rateCategoryCount);
#else
    double rates[rateCategoryCount];
#endif
	
    for (int i = 0; i < rateCategoryCount; i++) {
        rates[i] = gt_rand() / (double) GT_RAND_MAX;
    }
    
	beagleSetCategoryRates(instance, &rates[0]);
    
	double* patternWeights = (double*) malloc(sizeof(double) * nsites);
    
    for (int i = 0; i < nsites; i++) {
        patternWeights[i] = gt_rand() / (double) GT_RAND_MAX;
    }    

    beagleSetPatternWeights(instance, patternWeights);
    
    free(patternWeights);
	
    // create base frequency array

#ifdef _WIN32
	std::vector<double> freqs(stateCount);
#else
    double freqs[stateCount];
#endif
    
    // create an array containing site category weights
#ifdef _WIN32
	std::vector<double> weights(rateCategoryCount);
#else
    double weights[rateCategoryCount];
#endif

    for (int eigenIndex=0; eigenIndex < eigenCount; eigenIndex++) {
        for (int i = 0; i < rateCategoryCount; i++) {
            weights[i] = gt_rand() / (double) GT_RAND_MAX;
        } 
    
        beagleSetCategoryWeights(instance, eigenIndex, &weights[0]);
    }
    
    double* eval;
    if (!eigencomplex)
        eval = (double*)malloc(sizeof(double)*stateCount);
    else
        eval = (double*)malloc(sizeof(double)*stateCount*2);
    double* evec = (double*)malloc(sizeof(double)*stateCount*stateCount);
    double* ivec = (double*)malloc(sizeof(double)*stateCount*stateCount);
    
    for (int eigenIndex=0; eigenIndex < eigenCount; eigenIndex++) {
        if (!eigencomplex && ((stateCount & (stateCount-1)) == 0)) {
            
            for (int i=0; i<stateCount; i++) {
                freqs[i] = 1.0 / stateCount;
            }

            // an eigen decomposition for the general state-space JC69 model
            // If stateCount = 2^n is a power-of-two, then Sylvester matrix H_n describes
            // the eigendecomposition of the infinitesimal rate matrix
             
            double* Hn = evec;
            Hn[0*stateCount+0] = 1.0; Hn[0*stateCount+1] =  1.0; 
            Hn[1*stateCount+0] = 1.0; Hn[1*stateCount+1] = -1.0; // H_1
         
            for (int k=2; k < stateCount; k <<= 1) {
                // H_n = H_1 (Kronecker product) H_{n-1}
                for (int i=0; i<k; i++) {
                    for (int j=i; j<k; j++) {
                        double Hijold = Hn[i*stateCount + j];
                        Hn[i    *stateCount + j + k] =  Hijold;
                        Hn[(i+k)*stateCount + j    ] =  Hijold;
                        Hn[(i+k)*stateCount + j + k] = -Hijold;
                        
                        Hn[j    *stateCount + i + k] = Hn[i    *stateCount + j + k];
                        Hn[(j+k)*stateCount + i    ] = Hn[(i+k)*stateCount + j    ];
                        Hn[(j+k)*stateCount + i + k] = Hn[(i+k)*stateCount + j + k];                                
                    }
                }        
            }
            
            // Since evec is Hadamard, ivec = (evec)^t / stateCount;    
            for (int i=0; i<stateCount; i++) {
                for (int j=i; j<stateCount; j++) {
                    ivec[i*stateCount+j] = evec[j*stateCount+i] / stateCount;
                    ivec[j*stateCount+i] = ivec[i*stateCount+j]; // Symmetric
                }
            }
           
            eval[0] = 0.0;
            for (int i=1; i<stateCount; i++) {
                eval[i] = -stateCount / (stateCount - 1.0);
            }
       
        } else if (!eigencomplex) {
            for (int i=0; i<stateCount; i++) {
                freqs[i] = gt_rand() / (double) GT_RAND_MAX;
            }
        
            double** qmat=New2DArray<double>(stateCount, stateCount);    
            double* relNucRates = new double[(stateCount * stateCount - stateCount) / 2];
            
            int rnum=0;
            for(int i=0;i<stateCount;i++){
                for(int j=i+1;j<stateCount;j++){
                    relNucRates[rnum] = gt_rand() / (double) GT_RAND_MAX;
                    qmat[i][j]=relNucRates[rnum] * freqs[j];
                    qmat[j][i]=relNucRates[rnum] * freqs[i];
                    rnum++;
                }
            }

            //set diags to sum rows to 0
            double sum;
            for(int x=0;x<stateCount;x++){
                sum=0.0;
                for(int y=0;y<stateCount;y++){
                    if(x!=y) sum+=qmat[x][y];
                        }
                qmat[x][x]=-sum;
            } 
            
            double* eigvalsimag=new double[stateCount];
            double** eigvecs=New2DArray<double>(stateCount, stateCount);//eigenvecs
            double** teigvecs=New2DArray<double>(stateCount, stateCount);//temp eigenvecs
            double** inveigvecs=New2DArray<double>(stateCount, stateCount);//inv eigenvecs    
            int* iwork=new int[stateCount];
            double* work=new double[stateCount];
            
            EigenRealGeneral(stateCount, qmat, eval, eigvalsimag, eigvecs, iwork, work);
            memcpy(*teigvecs, *eigvecs, stateCount*stateCount*sizeof(double));
            InvertMatrix(teigvecs, stateCount, work, iwork, inveigvecs);
            
            for(int x=0;x<stateCount;x++){
                for(int y=0;y<stateCount;y++){
                    evec[x * stateCount + y] = eigvecs[x][y];
                    if (ievectrans)
                        ivec[x * stateCount + y] = inveigvecs[y][x];
                    else
                        ivec[x * stateCount + y] = inveigvecs[x][y];
                }
            } 
            
            Delete2DArray(qmat);
            delete relNucRates;
            
            delete eigvalsimag;
            Delete2DArray(eigvecs);
            Delete2DArray(teigvecs);
            Delete2DArray(inveigvecs);
            delete iwork;
            delete work;
        } else if (eigencomplex && stateCount==4 && eigenCount==1) {
            // create base frequency array
            double temp_freqs[4] = { 0.25, 0.25, 0.25, 0.25 };
            
            // an eigen decomposition for the 4-state 1-step circulant infinitesimal generator
            double temp_evec[4 * 4] = {
                -0.5,  0.6906786606674509,   0.15153543380548623, 0.5,
                0.5, -0.15153543380548576,  0.6906786606674498,  0.5,
                -0.5, -0.6906786606674498,  -0.15153543380548617, 0.5,
                0.5,  0.15153543380548554, -0.6906786606674503,  0.5
            };
            
            double temp_ivec[4 * 4] = {
                -0.5,  0.5, -0.5,  0.5,
                0.6906786606674505, -0.15153543380548617, -0.6906786606674507,   0.15153543380548645,
                0.15153543380548568, 0.6906786606674509,  -0.15153543380548584, -0.6906786606674509,
                0.5,  0.5,  0.5,  0.5
            };
            
            double temp_eval[8] = { -2.0, -1.0, -1.0, 0, 0, 1, -1, 0 };
            
            for(int x=0;x<stateCount;x++){
                freqs[x] = temp_freqs[x];
                eval[x] = temp_eval[x];
                eval[x+stateCount] = temp_eval[x+stateCount];
                for(int y=0;y<stateCount;y++){
                    evec[x * stateCount + y] = temp_evec[x * stateCount + y];
                    if (ievectrans)
                        ivec[x * stateCount + y] = temp_ivec[x + y * stateCount];
                    else
                        ivec[x * stateCount + y] = temp_ivec[x * stateCount + y];
                }
            } 
        } else {
            abort("should not be here");
        }
            
        beagleSetStateFrequencies(instance, eigenIndex, &freqs[0]);
        
        if (!setmatrix) {
            // set the Eigen decomposition
            beagleSetEigenDecomposition(instance, eigenIndex, &evec[0], &ivec[0], &eval[0]);
        }
    }
    
    free(eval);
    free(evec);
    free(ivec);


    
    // a list of indices and edge lengths
	int* edgeIndices = new int[edgeCount*eigenCount];
	int* edgeIndicesD1 = new int[edgeCount*eigenCount];
	int* edgeIndicesD2 = new int[edgeCount*eigenCount];
	for(int i=0; i<edgeCount*eigenCount; i++) {
        edgeIndices[i]=i;
        edgeIndicesD1[i]=(edgeCount*eigenCount)+i;
        edgeIndicesD2[i]=2*(edgeCount*eigenCount)+i;
    }
	double* edgeLengths = new double[edgeCount];
	for(int i=0; i<edgeCount; i++) {
        edgeLengths[i]=gt_rand() / (double) GT_RAND_MAX;
    }
    
    // create a list of partial likelihood update operations
    // the order is [dest, destScaling, source1, matrix1, source2, matrix2]
	int* operations = new int[(internalCount)*BEAGLE_OP_COUNT*eigenCount];
    int* scalingFactorsIndices = new int[(internalCount)*eigenCount]; // internal nodes
	for(int i=0; i<internalCount*eigenCount; i++){
		operations[BEAGLE_OP_COUNT*i+0] = ntaxa+i;
        operations[BEAGLE_OP_COUNT*i+1] = (dynamicScaling ? i : BEAGLE_OP_NONE);
        operations[BEAGLE_OP_COUNT*i+2] = (dynamicScaling ? i : BEAGLE_OP_NONE);
        
        int child1Index;
        if (((i % internalCount)*2) < ntaxa)
            child1Index = (i % internalCount)*2;
        else
            child1Index = i*2 - internalCount * (int)(i / internalCount);
        operations[BEAGLE_OP_COUNT*i+3] = child1Index;
        operations[BEAGLE_OP_COUNT*i+4] = child1Index;

        int child2Index;
        if (((i % internalCount)*2+1) < ntaxa)
            child2Index = (i % internalCount)*2+1;
        else
            child2Index = i*2+1 - internalCount * (int)(i / internalCount);
		operations[BEAGLE_OP_COUNT*i+5] = child2Index;
		operations[BEAGLE_OP_COUNT*i+6] = child2Index;

        scalingFactorsIndices[i] = i;
        
//        printf("i %d dest %d c1 %d c2 %d\n", i, ntaxa+i, child1Index, child2Index);
        
        if (autoScaling)
            scalingFactorsIndices[i] += ntaxa;
	}	

    int* rootIndices = new int[eigenCount];
	int* lastTipIndices = new int[eigenCount];
    int* categoryWeightsIndices = new int[eigenCount];
    int* stateFrequencyIndices = new int[eigenCount];
    int* cumulativeScalingFactorIndices = new int[eigenCount];
    
    for (int eigenIndex=0; eigenIndex < eigenCount; eigenIndex++) {
        rootIndices[eigenIndex] = ntaxa+(internalCount*(eigenIndex+1))-1;//ntaxa*2-2;
        lastTipIndices[eigenIndex] = ntaxa-1;
        categoryWeightsIndices[eigenIndex] = eigenIndex;
        stateFrequencyIndices[eigenIndex] = 0;
        cumulativeScalingFactorIndices[eigenIndex] = ((manualScaling || dynamicScaling) ? (scaleCount*eigenCount-1)-eigenCount+eigenIndex+1 : BEAGLE_OP_NONE);
        
        if (dynamicScaling)
            beagleResetScaleFactors(instance, cumulativeScalingFactorIndices[eigenIndex]);
    }

    // start timing!
	struct timeval time1, time2, time3, time4, time5;
    double bestTimeUpdateTransitionMatrices, bestTimeUpdatePartials, bestTimeAccumulateScaleFactors, bestTimeCalculateRootLogLikelihoods, bestTimeTotal;
    
    double logL = 0.0;
    double deriv1 = 0.0;
    double deriv2 = 0.0;
    
    double previousLogL = 0.0;
    double previousDeriv1 = 0.0;
    double previousDeriv2 = 0.0;

    for (int i=0; i<nreps; i++){
        if (manualScaling && (!(i % rescaleFrequency) || !((i-1) % rescaleFrequency))) {
            for(int j=0; j<internalCount*eigenCount; j++){
                operations[BEAGLE_OP_COUNT*j+1] = (((manualScaling && !(i % rescaleFrequency))) ? j : BEAGLE_OP_NONE);
                operations[BEAGLE_OP_COUNT*j+2] = (((manualScaling && (i % rescaleFrequency))) ? j : BEAGLE_OP_NONE);
            }
        }
        
        gettimeofday(&time1,NULL);

        for (int eigenIndex=0; eigenIndex < eigenCount; eigenIndex++) {
            if (!setmatrix) {
                // tell BEAGLE to populate the transition matrices for the above edge lengths
                beagleUpdateTransitionMatrices(instance,     // instance
                                               eigenIndex,             // eigenIndex
                                               &edgeIndices[eigenIndex*edgeCount],   // probabilityIndices
                                               (calcderivs ? &edgeIndicesD1[eigenIndex*edgeCount] : NULL), // firstDerivativeIndices
                                               (calcderivs ? &edgeIndicesD2[eigenIndex*edgeCount] : NULL), // secondDerivativeIndices
                                               edgeLengths,   // edgeLengths
                                               edgeCount);            // count
            } else {
                double* inMatrix = new double[stateCount*stateCount*rateCategoryCount];
                for (int matrixIndex=0; matrixIndex < edgeCount; matrixIndex++) {
                    for(int z=0;z<rateCategoryCount;z++){
                        for(int x=0;x<stateCount;x++){
                            for(int y=0;y<stateCount;y++){
                                inMatrix[z*stateCount*stateCount + x*stateCount + y] = gt_rand() / (double) GT_RAND_MAX;
                            }
                        } 
                    }
                    beagleSetTransitionMatrix(instance, edgeIndices[eigenIndex*edgeCount + matrixIndex], inMatrix, 1);
                    if (calcderivs) {
                        beagleSetTransitionMatrix(instance, edgeIndicesD1[eigenIndex*edgeCount + matrixIndex], inMatrix, 0);
                        beagleSetTransitionMatrix(instance, edgeIndicesD2[eigenIndex*edgeCount + matrixIndex], inMatrix, 0);
                    }
                }
            }
        }

        gettimeofday(&time2, NULL);
        
        // update the partials
        beagleUpdatePartials( instance,      // instance
                        (BeagleOperation*)operations,     // eigenIndex
                        internalCount*eigenCount,              // operationCount
                        (dynamicScaling ? internalCount : BEAGLE_OP_NONE));             // cumulative scaling index

        gettimeofday(&time3, NULL);

        int scalingFactorsCount = internalCount;
                
        for (int eigenIndex=0; eigenIndex < eigenCount; eigenIndex++) {
            if (manualScaling && !(i % rescaleFrequency)) {
                beagleResetScaleFactors(instance,
                                        cumulativeScalingFactorIndices[eigenIndex]);
                
                beagleAccumulateScaleFactors(instance,
                                       &scalingFactorsIndices[eigenIndex*internalCount],
                                       scalingFactorsCount,
                                       cumulativeScalingFactorIndices[eigenIndex]);
            } else if (autoScaling) {
                beagleAccumulateScaleFactors(instance, &scalingFactorsIndices[eigenIndex*internalCount], scalingFactorsCount, BEAGLE_OP_NONE);
            }
        }
        
        gettimeofday(&time4, NULL);
                
        // calculate the site likelihoods at the root node
        if (!unrooted) {
            beagleCalculateRootLogLikelihoods(instance,               // instance
                                        rootIndices,// bufferIndices
                                        categoryWeightsIndices,                // weights
                                        stateFrequencyIndices,                 // stateFrequencies
                                        cumulativeScalingFactorIndices,
                                        eigenCount,                      // count
                                        &logL);         // outLogLikelihoods
        } else {
            // calculate the site likelihoods at the root node
            beagleCalculateEdgeLogLikelihoods(instance,               // instance
                                              rootIndices,// bufferIndices
                                              lastTipIndices,
                                              lastTipIndices,
                                              (calcderivs ? edgeIndicesD1 : NULL),
                                              (calcderivs ? edgeIndicesD2 : NULL),
                                              categoryWeightsIndices,                // weights
                                              stateFrequencyIndices,                 // stateFrequencies
                                              cumulativeScalingFactorIndices,
                                              eigenCount,                      // count
                                              &logL,    // outLogLikelihood
                                              (calcderivs ? &deriv1 : NULL),
                                              (calcderivs ? &deriv2 : NULL));
        }
        // end timing!
        gettimeofday(&time5,NULL);
        
        if (i == 0 || getTimeDiff(time1, time2) < bestTimeUpdateTransitionMatrices)
            bestTimeUpdateTransitionMatrices = getTimeDiff(time1, time2);
        if (i == 0 || getTimeDiff(time2, time3) < bestTimeUpdatePartials)
            bestTimeUpdatePartials = getTimeDiff(time2, time3);
        if (i == 0 || getTimeDiff(time3, time4) < bestTimeAccumulateScaleFactors)
            bestTimeAccumulateScaleFactors = getTimeDiff(time3, time4);
        if (i == 0 || getTimeDiff(time4, time5) < bestTimeUpdateTransitionMatrices)
            bestTimeCalculateRootLogLikelihoods = getTimeDiff(time4, time5);
        if (i == 0 || getTimeDiff(time1, time5) < bestTimeTotal)
            bestTimeTotal = getTimeDiff(time1, time5);
        
        if (!(logL - logL == 0.0))
            abort("error: invalid lnL");
        
        if (i > 0 && abs(logL - previousLogL) > MAX_DIFF)
            abort("error: large lnL difference between reps");
        
        if (calcderivs) {
            if (!(deriv1 - deriv1 == 0.0) || !(deriv2 - deriv2 == 0.0))
                abort("error: invalid deriv");
            
            if (i > 0 && ((abs(deriv1 - previousDeriv1) > MAX_DIFF) || (abs(deriv2 - previousDeriv2) > MAX_DIFF)) )
                abort("error: large deriv difference between reps");
        }

        previousLogL = logL;
        previousDeriv1 = deriv1;
        previousDeriv2 = deriv2;        
    }

    if (resource == 0) {
        cpuTimeUpdateTransitionMatrices = bestTimeUpdateTransitionMatrices;
        cpuTimeUpdatePartials = bestTimeUpdatePartials;
        cpuTimeAccumulateScaleFactors = bestTimeAccumulateScaleFactors;
        cpuTimeCalculateRootLogLikelihoods = bestTimeCalculateRootLogLikelihoods;
        cpuTimeTotal = bestTimeTotal;
    }
    
    if (!calcderivs)
        fprintf(stdout, "logL = %.5f \n", logL);
    else
        fprintf(stdout, "logL = %.5f d1 = %.5f d2 = %.5f\n", logL, deriv1, deriv2);
    
    std::cout.setf(std::ios::showpoint);
    std::cout.setf(std::ios::floatfield, std::ios::fixed);
    int timePrecision = 6;
    int speedupPrecision = 2;
    int percentPrecision = 2;
	std::cout << "best run: ";
    printTiming(bestTimeTotal, timePrecision, resource, cpuTimeTotal, speedupPrecision, 0, 0, 0);
    if (fullTiming) {
        std::cout << " transMats:  ";
        printTiming(bestTimeUpdateTransitionMatrices, timePrecision, resource, cpuTimeUpdateTransitionMatrices, speedupPrecision, 1, bestTimeTotal, percentPrecision);
        std::cout << " partials:   ";
        printTiming(bestTimeUpdatePartials, timePrecision, resource, cpuTimeUpdatePartials, speedupPrecision, 1, bestTimeTotal, percentPrecision);
        if (manualScaling || autoScaling) {
            std::cout << " accScalers: ";
            printTiming(bestTimeAccumulateScaleFactors, timePrecision, resource, cpuTimeAccumulateScaleFactors, speedupPrecision, 1, bestTimeTotal, percentPrecision);
        }
        std::cout << " rootLnL:    ";
        printTiming(bestTimeCalculateRootLogLikelihoods, timePrecision, resource, cpuTimeCalculateRootLogLikelihoods, speedupPrecision, 1, bestTimeTotal, percentPrecision);
    }
    std::cout << "\n";
    
	beagleFinalizeInstance(instance);
}