void libblis_test_syr2k_experiment( test_params_t* params, test_op_t* op, iface_t iface, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m, k; uplo_t uploc; trans_t transa, transb; obj_t kappa; obj_t alpha, a, b, beta, c; obj_t c_save; // Map the dimension specifier to actual dimensions. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); k = libblis_test_get_dim_from_prob_size( op->dim_spec[1], p_cur ); // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_uplo( pc_str[0], &uploc ); bli_param_map_char_to_blis_trans( pc_str[1], &transa ); bli_param_map_char_to_blis_trans( pc_str[2], &transb ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &kappa ); bli_obj_scalar_init_detached( datatype, &alpha ); bli_obj_scalar_init_detached( datatype, &beta ); // Create test operands (vectors and/or matrices). libblis_test_mobj_create( params, datatype, transa, sc_str[0], m, k, &a ); libblis_test_mobj_create( params, datatype, transb, sc_str[1], m, k, &b ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[2], m, m, &c ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[2], m, m, &c_save ); // Set alpha and beta. if ( bli_obj_is_real( c ) ) { bli_setsc( 0.8, 0.0, &alpha ); bli_setsc( -1.0, 0.0, &beta ); } else { // For syr2k, both alpha and beta may be complex since, unlike her2k, // C is symmetric in both the real and complex cases. bli_setsc( 0.8, 0.5, &alpha ); bli_setsc( -1.0, 0.5, &beta ); } // Randomize A and B. bli_randm( &a ); bli_randm( &b ); // Set the structure and uplo properties of C. bli_obj_set_struc( BLIS_SYMMETRIC, c ); bli_obj_set_uplo( uploc, c ); // Randomize A, make it densely symmetric, and zero the unstored triangle // to ensure the implementation is reads only from the stored region. bli_randm( &c ); bli_mksymm( &c ); bli_mktrim( &c ); // Save C and set its structure and uplo properties. bli_obj_set_struc( BLIS_SYMMETRIC, c_save ); bli_obj_set_uplo( uploc, c_save ); bli_copym( &c, &c_save ); // Normalize by k. bli_setsc( 1.0/( double )k, 0.0, &kappa ); bli_scalm( &kappa, &a ); bli_scalm( &kappa, &b ); // Apply the remaining parameters. bli_obj_set_conjtrans( transa, a ); bli_obj_set_conjtrans( transb, b ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copym( &c_save, &c ); time = bli_clock(); libblis_test_syr2k_impl( iface, &alpha, &a, &b, &beta, &c ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 2.0 * m * m * k ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( c ) ) *perf *= 4.0; // Perform checks. libblis_test_syr2k_check( &alpha, &a, &b, &beta, &c, &c_save, resid ); // Zero out performance and residual if output matrix is empty. libblis_test_check_empty_problem( &c, perf, resid ); // Free the test objects. bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t c_save; obj_t alpha, beta; dim_t m, n; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input; num_t dt; int r, n_repeats; side_t side; uplo_t uploa; f77_char f77_side; f77_char f77_uploa; double dtime; double dtime_save; double gflops; bli_init(); //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); n_repeats = 3; #ifndef PRINT p_begin = 200; p_end = 2000; p_inc = 200; m_input = -1; n_input = -1; #else p_begin = 16; p_end = 16; p_inc = 1; m_input = 4; n_input = 4; #endif #if 1 //dt = BLIS_FLOAT; dt = BLIS_DOUBLE; #else //dt = BLIS_SCOMPLEX; dt = BLIS_DCOMPLEX; #endif side = BLIS_LEFT; //side = BLIS_RIGHT; uploa = BLIS_LOWER; //uploa = BLIS_UPPER; bli_param_map_blis_to_netlib_side( side, &f77_side ); bli_param_map_blis_to_netlib_uplo( uploa, &f77_uploa ); for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p * ( dim_t )abs(n_input); else n = ( dim_t ) n_input; bli_obj_create( dt, 1, 1, 0, 0, &alpha ); bli_obj_create( dt, 1, 1, 0, 0, &beta ); if ( bli_is_left( side ) ) bli_obj_create( dt, m, m, 0, 0, &a ); else bli_obj_create( dt, n, n, 0, 0, &a ); bli_obj_create( dt, m, n, 0, 0, &b ); bli_obj_create( dt, m, n, 0, 0, &c ); bli_obj_create( dt, m, n, 0, 0, &c_save ); bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); bli_obj_set_struc( BLIS_HERMITIAN, a ); bli_obj_set_uplo( uploa, a ); // Randomize A, make it densely Hermitian, and zero the unstored // triangle to ensure the implementation reads only from the stored // region. bli_randm( &a ); bli_mkherm( &a ); bli_mktrim( &a ); /* bli_obj_toggle_uplo( a ); bli_obj_inc_diag_off( 1, a ); bli_setm( &BLIS_ZERO, &a ); bli_obj_inc_diag_off( -1, a ); bli_obj_toggle_uplo( a ); bli_obj_set_diag( BLIS_NONUNIT_DIAG, a ); bli_scalm( &BLIS_TWO, &a ); bli_scalm( &BLIS_TWO, &a ); */ bli_setsc( (2.0/1.0), 1.0, &alpha ); bli_setsc( -(1.0/1.0), 0.0, &beta ); bli_copym( &c, &c_save ); dtime_save = 1.0e9; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "b", &b, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS bli_hemm( side, &alpha, &a, &b, &beta, &c ); #else if ( bli_is_float( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); float* alphap = bli_obj_buffer( alpha ); float* ap = bli_obj_buffer( a ); float* bp = bli_obj_buffer( b ); float* betap = bli_obj_buffer( beta ); float* cp = bli_obj_buffer( c ); ssymm_( &f77_side, &f77_uploa, &mm, &nn, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_double( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dsymm_( &f77_side, &f77_uploa, &mm, &nn, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_scomplex( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); scomplex* alphap = bli_obj_buffer( alpha ); scomplex* ap = bli_obj_buffer( a ); scomplex* bp = bli_obj_buffer( b ); scomplex* betap = bli_obj_buffer( beta ); scomplex* cp = bli_obj_buffer( c ); chemm_( &f77_side, &f77_uploa, &mm, &nn, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_dcomplex( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* bp = bli_obj_buffer( b ); dcomplex* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zhemm_( &f77_side, &f77_uploa, &mm, &nn, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #ifdef PRINT bli_printm( "c after", &c, "%9.5f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } if ( bli_is_left( side ) ) gflops = ( 2.0 * m * m * n ) / ( dtime_save * 1.0e9 ); else gflops = ( 2.0 * m * n * n ) / ( dtime_save * 1.0e9 ); if ( bli_is_complex( dt ) ) gflops *= 4.0; #ifdef BLIS printf( "data_hemm_blis" ); #else printf( "data_hemm_%s", BLAS ); #endif printf( "( %2lu, 1:4 ) = [ %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )n, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, x; obj_t a_save; obj_t alpha; dim_t m; dim_t p; dim_t p_begin, p_end, p_inc; int m_input; num_t dt_a, dt_x; num_t dt_alpha; int r, n_repeats; uplo_t uplo; double dtime; double dtime_save; double gflops; //bli_init(); n_repeats = 3; #ifndef PRINT p_begin = 40; p_end = 2000; p_inc = 40; m_input = -1; #else p_begin = 16; p_end = 16; p_inc = 1; m_input = 6; #endif #if 1 dt_alpha = dt_x = dt_a = BLIS_DOUBLE; #else dt_alpha = dt_x = dt_a = BLIS_DCOMPLEX; #endif uplo = BLIS_LOWER; // Begin with initializing the last entry to zero so that // matlab allocates space for the entire array once up-front. for ( p = p_begin; p + p_inc <= p_end; p += p_inc ) ; #ifdef BLIS printf( "data_her_blis" ); #else printf( "data_her_%s", BLAS ); #endif printf( "( %2lu, 1:2 ) = [ %4lu %7.2f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )0, 0.0 ); for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_x, m, 1, 0, 0, &x ); bli_obj_create( dt_a, m, m, 0, 0, &a ); bli_obj_create( dt_a, m, m, 0, 0, &a_save ); bli_randm( &x ); bli_randm( &a ); bli_obj_set_struc( BLIS_HERMITIAN, &a ); //bli_obj_set_struc( BLIS_SYMMETRIC, &a ); bli_obj_set_uplo( uplo, &a ); bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_copym( &a, &a_save ); dtime_save = DBL_MAX; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &a_save, &a ); dtime = bli_clock(); #ifdef PRINT bli_printm( "x", &x, "%4.1f", "" ); bli_printm( "a", &a, "%4.1f", "" ); #endif #ifdef BLIS //bli_obj_toggle_conj( &x ); //bli_syr( &alpha, bli_her( &alpha, &x, &a ); #else f77_char uplo = 'L'; f77_int mm = bli_obj_length( &a ); f77_int incx = bli_obj_vector_inc( &x ); f77_int lda = bli_obj_col_stride( &a ); double* alphap = bli_obj_buffer( &alpha ); double* xp = bli_obj_buffer( &x ); double* ap = bli_obj_buffer( &a ); /* dcomplex* xp = bli_obj_buffer( x ); dcomplex* ap = bli_obj_buffer( &a ); */ dsyr_( &uplo, //zher_( &uplo, &mm, alphap, xp, &incx, ap, &lda ); #endif #ifdef PRINT bli_printm( "a after", &a, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } gflops = ( 1.0 * m * m ) / ( dtime_save * 1.0e9 ); #ifdef BLIS printf( "data_her_blis" ); #else printf( "data_her_%s", BLAS ); #endif printf( "( %2lu, 1:2 ) = [ %4lu %7.2f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, gflops ); bli_obj_free( &alpha ); bli_obj_free( &x ); bli_obj_free( &a ); bli_obj_free( &a_save ); } //bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t c_save; obj_t alpha, beta; dim_t m, n; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input; num_t dt_a, dt_b, dt_c; num_t dt_alpha, dt_beta; int r, n_repeats; side_t side; uplo_t uplo; double dtime; double dtime_save; double gflops; bli_init(); n_repeats = 3; if( argc < 7 ) { printf("Usage:\n"); printf("test_foo.x m n p_begin p_inc p_end:\n"); exit; } int world_size, world_rank, provided; MPI_Init_thread( NULL, NULL, MPI_THREAD_FUNNELED, &provided ); MPI_Comm_size( MPI_COMM_WORLD, &world_size ); MPI_Comm_rank( MPI_COMM_WORLD, &world_rank ); m_input = strtol( argv[1], NULL, 10 ); n_input = strtol( argv[2], NULL, 10 ); p_begin = strtol( argv[4], NULL, 10 ); p_inc = strtol( argv[5], NULL, 10 ); p_end = strtol( argv[6], NULL, 10 ); #if 1 dt_a = BLIS_DOUBLE; dt_b = BLIS_DOUBLE; dt_c = BLIS_DOUBLE; dt_alpha = BLIS_DOUBLE; dt_beta = BLIS_DOUBLE; #else dt_a = dt_b = dt_c = dt_alpha = dt_beta = BLIS_DCOMPLEX; #endif side = BLIS_LEFT; //side = BLIS_RIGHT; uplo = BLIS_LOWER; //uplo = BLIS_UPPER; for ( p = p_begin + world_rank * p_inc; p <= p_end; p += p_inc * world_size ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p * ( dim_t )abs(n_input); else n = ( dim_t ) n_input; bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_beta, 1, 1, 0, 0, &beta ); if ( bli_is_left( side ) ) bli_obj_create( dt_a, m, m, 0, 0, &a ); else bli_obj_create( dt_a, n, n, 0, 0, &a ); bli_obj_create( dt_b, m, n, 0, 0, &b ); bli_obj_create( dt_c, m, n, 0, 0, &c ); bli_obj_create( dt_c, m, n, 0, 0, &c_save ); bli_obj_set_struc( BLIS_TRIANGULAR, a ); bli_obj_set_uplo( uplo, a ); bli_randm( &a ); bli_randm( &c ); bli_randm( &b ); /* bli_obj_toggle_uplo( a ); bli_obj_inc_diag_off( -1, a ); bli_setm( &BLIS_ZERO, &a ); bli_obj_inc_diag_off( 1, a ); bli_obj_toggle_uplo( a ); bli_obj_set_diag( BLIS_NONUNIT_DIAG, a ); bli_scalm( &BLIS_TWO, &a ); //bli_scalm( &BLIS_TWO, &a ); */ bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_setsc( (1.0/1.0), 0.0, &beta ); bli_copym( &c, &c_save ); dtime_save = 1.0e9; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT /* obj_t ar, ai; bli_obj_alias_to( a, ar ); bli_obj_alias_to( a, ai ); bli_obj_set_datatype( BLIS_DOUBLE, ar ); ar.rs *= 2; ar.cs *= 2; bli_obj_set_datatype( BLIS_DOUBLE, ai ); ai.rs *= 2; ai.cs *= 2; ai.buffer = ( double* )ai.buffer + 1; bli_printm( "ar", &ar, "%4.1f", "" ); bli_printm( "ai", &ai, "%4.1f", "" ); */ bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); bli_trmm( side, //bli_trmm4m( side, &alpha, &a, &c ); #else f77_char side = 'L'; f77_char uplo = 'L'; f77_char transa = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* cp = bli_obj_buffer( c ); dtrmm_( &side, &uplo, &transa, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } if ( bli_is_left( side ) ) gflops = ( 1.0 * m * m * n ) / ( dtime_save * 1.0e9 ); else gflops = ( 1.0 * m * n * n ) / ( dtime_save * 1.0e9 ); if ( bli_is_complex( dt_a ) ) gflops *= 4.0; #ifdef BLIS printf( "data_trmm_blis" ); #else printf( "data_trmm_%s", BLAS ); #endif printf( "( %2lu, 1:4 ) = [ %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )n, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t c_save; obj_t alpha, beta; dim_t m, n, k; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input, k_input; num_t dt, dt_real; char dt_ch; int r, n_repeats; trans_t transa; trans_t transb; f77_char f77_transa; f77_char f77_transb; double dtime; double dtime_save; double gflops; extern blksz_t* gemm_kc; bli_init(); //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); n_repeats = 3; dt = DT; dt_real = bli_datatype_proj_to_real( DT ); p_begin = P_BEGIN; p_end = P_END; p_inc = P_INC; m_input = -1; n_input = -1; k_input = -1; // Extract the kc blocksize for the requested datatype and its // real analogue. dim_t kc = bli_blksz_get_def( dt, gemm_kc ); dim_t kc_real = bli_blksz_get_def( dt_real, gemm_kc ); // Assign the k dimension depending on which implementation is // being tested. Note that the BLIS_NAT case handles the real // domain cases as well as native complex. if ( IND == BLIS_NAT ) k_input = kc; else if ( IND == BLIS_3M1 ) k_input = kc_real / 3; else if ( IND == BLIS_4M1A ) k_input = kc_real / 2; else k_input = kc_real; // Adjust the relative dimensions, if requested. #if (defined ADJ_MK) m_input = -2; k_input = -2; n_input = -1; #elif (defined ADJ_KN) k_input = -2; n_input = -2; m_input = -1; #elif (defined ADJ_MN) m_input = -2; n_input = -2; k_input = -1; #endif // Choose the char corresponding to the requested datatype. if ( bli_is_float( dt ) ) dt_ch = 's'; else if ( bli_is_double( dt ) ) dt_ch = 'd'; else if ( bli_is_scomplex( dt ) ) dt_ch = 'c'; else dt_ch = 'z'; transa = BLIS_NO_TRANSPOSE; transb = BLIS_NO_TRANSPOSE; bli_param_map_blis_to_netlib_trans( transa, &f77_transa ); bli_param_map_blis_to_netlib_trans( transb, &f77_transb ); // Begin with initializing the last entry to zero so that // matlab allocates space for the entire array once up-front. for ( p = p_begin; p + p_inc <= p_end; p += p_inc ) ; #ifdef BLIS printf( "data_%s_%cgemm_%s_blis", THR_STR, dt_ch, STR ); #else printf( "data_%s_%cgemm_%s", THR_STR, dt_ch, STR ); #endif printf( "( %2lu, 1:5 ) = [ %4lu %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )0, ( unsigned long )0, ( unsigned long )0, 0.0, 0.0 ); for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p / ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p / ( dim_t )abs(n_input); else n = ( dim_t ) n_input; if ( k_input < 0 ) k = p / ( dim_t )abs(k_input); else k = ( dim_t ) k_input; bli_obj_create( dt, 1, 1, 0, 0, &alpha ); bli_obj_create( dt, 1, 1, 0, 0, &beta ); bli_obj_create( dt, m, k, 0, 0, &a ); bli_obj_create( dt, k, n, 0, 0, &b ); bli_obj_create( dt, m, n, 0, 0, &c ); //bli_obj_create( dt, m, k, 2, 2*m, &a ); //bli_obj_create( dt, k, n, 2, 2*k, &b ); //bli_obj_create( dt, m, n, 2, 2*m, &c ); bli_obj_create( dt, m, n, 0, 0, &c_save ); bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); bli_obj_set_conjtrans( transa, a ); bli_obj_set_conjtrans( transb, b ); bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_setsc( -(1.0/1.0), 0.0, &beta ); bli_copym( &c, &c_save ); #ifdef BLIS bli_ind_disable_all_dt( dt ); bli_ind_enable_dt( IND, dt ); #endif dtime_save = 1.0e9; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "b", &b, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS bli_gemm( &alpha, &a, &b, &beta, &c ); #else if ( bli_is_float( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); float* alphap = bli_obj_buffer( alpha ); float* ap = bli_obj_buffer( a ); float* bp = bli_obj_buffer( b ); float* betap = bli_obj_buffer( beta ); float* cp = bli_obj_buffer( c ); sgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_double( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_scomplex( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); scomplex* alphap = bli_obj_buffer( alpha ); scomplex* ap = bli_obj_buffer( a ); scomplex* bp = bli_obj_buffer( b ); scomplex* betap = bli_obj_buffer( beta ); scomplex* cp = bli_obj_buffer( c ); cgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_dcomplex( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* bp = bli_obj_buffer( b ); dcomplex* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zgemm_( &f77_transa, //zgemm3m_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } gflops = ( 2.0 * m * k * n ) / ( dtime_save * 1.0e9 ); if ( bli_is_complex( dt ) ) gflops *= 4.0; #ifdef BLIS printf( "data_%s_%cgemm_%s_blis", THR_STR, dt_ch, STR ); #else printf( "data_%s_%cgemm_%s", THR_STR, dt_ch, STR ); #endif printf( "( %2lu, 1:5 ) = [ %4lu %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )k, ( unsigned long )n, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
void libblis_test_scalm_experiment( test_params_t* params, test_op_t* op, iface_t iface, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m, n; conj_t conjbeta; obj_t beta, y; obj_t y_save; // Map the dimension specifier to actual dimensions. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); n = libblis_test_get_dim_from_prob_size( op->dim_spec[1], p_cur ); // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_conj( pc_str[0], &conjbeta ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &beta ); // Create test operands (vectors and/or matrices). libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[0], m, n, &y ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[0], m, n, &y_save ); // Set beta to 0 + i. //bli_setsc( 0.0, 1.0, &beta ); if ( bli_obj_is_real( y ) ) bli_setsc( -2.0, 0.0, &beta ); else bli_setsc( 0.0, -2.0, &beta ); // Randomize and save y. bli_randm( &y ); bli_copym( &y, &y_save ); // Apply the parameters. bli_obj_set_conj( conjbeta, beta ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copym( &y_save, &y ); time = bli_clock(); libblis_test_scalm_impl( iface, &beta, &y ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 1.0 * m * n ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( y ) ) *perf *= 6.0; // Perform checks. libblis_test_scalm_check( &beta, &y, &y_save, resid ); // Zero out performance and residual if output matrix is empty. libblis_test_check_empty_problem( &y, perf, resid ); // Free the test objects. bli_obj_free( &y ); bli_obj_free( &y_save ); }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t c_save; obj_t alpha, beta; dim_t m, n, k; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input, k_input; num_t dt; int r, n_repeats; trans_t transa; trans_t transb; f77_char f77_transa; f77_char f77_transb; double dtime; double dtime_save; double gflops; bli_init(); //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); n_repeats = 3; #ifndef PRINT p_begin = 200; p_end = 2000; p_inc = 200; m_input = -1; n_input = -1; k_input = -1; #else p_begin = 16; p_end = 16; p_inc = 1; m_input = 5; k_input = 6; n_input = 4; #endif #if 1 //dt = BLIS_FLOAT; dt = BLIS_DOUBLE; #else //dt = BLIS_SCOMPLEX; dt = BLIS_DCOMPLEX; #endif transa = BLIS_NO_TRANSPOSE; transb = BLIS_NO_TRANSPOSE; bli_param_map_blis_to_netlib_trans( transa, &f77_transa ); bli_param_map_blis_to_netlib_trans( transb, &f77_transb ); for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p * ( dim_t )abs(n_input); else n = ( dim_t ) n_input; if ( k_input < 0 ) k = p * ( dim_t )abs(k_input); else k = ( dim_t ) k_input; bli_obj_create( dt, 1, 1, 0, 0, &alpha ); bli_obj_create( dt, 1, 1, 0, 0, &beta ); bli_obj_create( dt, m, k, 0, 0, &a ); bli_obj_create( dt, k, n, 0, 0, &b ); bli_obj_create( dt, m, n, 0, 0, &c ); bli_obj_create( dt, m, n, 0, 0, &c_save ); bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); bli_obj_set_conjtrans( transa, a ); bli_obj_set_conjtrans( transb, b ); bli_setsc( (0.9/1.0), 0.2, &alpha ); bli_setsc( -(1.1/1.0), 0.3, &beta ); bli_copym( &c, &c_save ); dtime_save = DBL_MAX; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "b", &b, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS bli_gemm( &alpha, &a, &b, &beta, &c ); #else if ( bli_is_float( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); float* alphap = bli_obj_buffer( alpha ); float* ap = bli_obj_buffer( a ); float* bp = bli_obj_buffer( b ); float* betap = bli_obj_buffer( beta ); float* cp = bli_obj_buffer( c ); sgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_double( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_scomplex( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); scomplex* alphap = bli_obj_buffer( alpha ); scomplex* ap = bli_obj_buffer( a ); scomplex* bp = bli_obj_buffer( b ); scomplex* betap = bli_obj_buffer( beta ); scomplex* cp = bli_obj_buffer( c ); cgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } else if ( bli_is_dcomplex( dt ) ) { f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* bp = bli_obj_buffer( b ); dcomplex* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zgemm_( &f77_transa, &f77_transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } gflops = ( 2.0 * m * k * n ) / ( dtime_save * 1.0e9 ); if ( bli_is_complex( dt ) ) gflops *= 4.0; #ifdef BLIS printf( "data_gemm_blis" ); #else printf( "data_gemm_%s", BLAS ); #endif printf( "( %2lu, 1:5 ) = [ %4lu %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )k, ( unsigned long )n, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, c; obj_t c_save; obj_t alpha; dim_t m, n; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input; ind_t ind; num_t dt; char dt_ch; int r, n_repeats; side_t side; uplo_t uploa; trans_t transa; diag_t diaga; f77_char f77_side; f77_char f77_uploa; f77_char f77_transa; f77_char f77_diaga; double dtime; double dtime_save; double gflops; //bli_init(); //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); n_repeats = 3; dt = DT; ind = IND; p_begin = P_BEGIN; p_end = P_END; p_inc = P_INC; m_input = -1; n_input = -1; // Supress compiler warnings about unused variable 'ind'. ( void )ind; #if 0 cntx_t* cntx; ind_t ind_mod = ind; // A hack to use 3m1 as 1mpb (with 1m as 1mbp). if ( ind == BLIS_3M1 ) ind_mod = BLIS_1M; // Initialize a context for the current induced method and datatype. cntx = bli_gks_query_ind_cntx( ind_mod, dt ); // Set k to the kc blocksize for the current datatype. k_input = bli_cntx_get_blksz_def_dt( dt, BLIS_KC, cntx ); #elif 1 //k_input = 256; #endif // Choose the char corresponding to the requested datatype. if ( bli_is_float( dt ) ) dt_ch = 's'; else if ( bli_is_double( dt ) ) dt_ch = 'd'; else if ( bli_is_scomplex( dt ) ) dt_ch = 'c'; else dt_ch = 'z'; #if 0 side = BLIS_LEFT; #else side = BLIS_RIGHT; #endif #if 0 uploa = BLIS_LOWER; #else uploa = BLIS_UPPER; #endif transa = BLIS_NO_TRANSPOSE; diaga = BLIS_NONUNIT_DIAG; bli_param_map_blis_to_netlib_side( side, &f77_side ); bli_param_map_blis_to_netlib_uplo( uploa, &f77_uploa ); bli_param_map_blis_to_netlib_trans( transa, &f77_transa ); bli_param_map_blis_to_netlib_diag( diaga, &f77_diaga ); // Begin with initializing the last entry to zero so that // matlab allocates space for the entire array once up-front. for ( p = p_begin; p + p_inc <= p_end; p += p_inc ) ; #ifdef BLIS printf( "data_%s_%ctrmm_%s_blis", THR_STR, dt_ch, STR ); #else printf( "data_%s_%ctrmm_%s", THR_STR, dt_ch, STR ); #endif printf( "( %2lu, 1:3 ) = [ %4lu %4lu %7.2f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )0, ( unsigned long )0, 0.0 ); for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p / ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p / ( dim_t )abs(n_input); else n = ( dim_t ) n_input; bli_obj_create( dt, 1, 1, 0, 0, &alpha ); if ( bli_does_trans( side ) ) bli_obj_create( dt, m, m, 0, 0, &a ); else bli_obj_create( dt, n, n, 0, 0, &a ); bli_obj_create( dt, m, n, 0, 0, &c ); bli_obj_create( dt, m, n, 0, 0, &c_save ); bli_randm( &a ); bli_randm( &c ); bli_obj_set_struc( BLIS_TRIANGULAR, &a ); bli_obj_set_uplo( uploa, &a ); bli_obj_set_conjtrans( transa, &a ); bli_obj_set_diag( diaga, &a ); bli_randm( &a ); bli_mktrim( &a ); bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_copym( &c, &c_save ); #if 0 //def BLIS bli_ind_disable_all_dt( dt ); bli_ind_enable_dt( ind, dt ); #endif dtime_save = DBL_MAX; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS bli_trmm( side, &alpha, &a, &c ); #else if ( bli_is_float( dt ) ) { f77_int mm = bli_obj_length( &c ); f77_int kk = bli_obj_width( &c ); f77_int lda = bli_obj_col_stride( &a ); f77_int ldc = bli_obj_col_stride( &c ); float* alphap = bli_obj_buffer( &alpha ); float* ap = bli_obj_buffer( &a ); float* cp = bli_obj_buffer( &c ); strmm_( &f77_side, &f77_uploa, &f77_transa, &f77_diaga, &mm, &kk, alphap, ap, &lda, cp, &ldc ); } else if ( bli_is_double( dt ) ) { f77_int mm = bli_obj_length( &c ); f77_int kk = bli_obj_width( &c ); f77_int lda = bli_obj_col_stride( &a ); f77_int ldc = bli_obj_col_stride( &c ); double* alphap = bli_obj_buffer( &alpha ); double* ap = bli_obj_buffer( &a ); double* cp = bli_obj_buffer( &c ); dtrmm_( &f77_side, &f77_uploa, &f77_transa, &f77_diaga, &mm, &kk, alphap, ap, &lda, cp, &ldc ); } else if ( bli_is_scomplex( dt ) ) { f77_int mm = bli_obj_length( &c ); f77_int kk = bli_obj_width( &c ); f77_int lda = bli_obj_col_stride( &a ); f77_int ldc = bli_obj_col_stride( &c ); scomplex* alphap = bli_obj_buffer( &alpha ); scomplex* ap = bli_obj_buffer( &a ); scomplex* cp = bli_obj_buffer( &c ); ctrmm_( &f77_side, &f77_uploa, &f77_transa, &f77_diaga, &mm, &kk, alphap, ap, &lda, cp, &ldc ); } else if ( bli_is_dcomplex( dt ) ) { f77_int mm = bli_obj_length( &c ); f77_int kk = bli_obj_width( &c ); f77_int lda = bli_obj_col_stride( &a ); f77_int ldc = bli_obj_col_stride( &c ); dcomplex* alphap = bli_obj_buffer( &alpha ); dcomplex* ap = bli_obj_buffer( &a ); dcomplex* cp = bli_obj_buffer( &c ); ztrmm_( &f77_side, &f77_uploa, &f77_transa, &f77_diaga, &mm, &kk, alphap, ap, &lda, cp, &ldc ); } #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } if ( bli_is_left( side ) ) gflops = ( 1.0 * m * m * n ) / ( dtime_save * 1.0e9 ); else gflops = ( 1.0 * m * n * n ) / ( dtime_save * 1.0e9 ); if ( bli_is_complex( dt ) ) gflops *= 4.0; #ifdef BLIS printf( "data_%s_%ctrmm_%s_blis", THR_STR, dt_ch, STR ); #else printf( "data_%s_%ctrmm_%s", THR_STR, dt_ch, STR ); #endif printf( "( %2lu, 1:3 ) = [ %4lu %4lu %7.2f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )n, gflops ); bli_obj_free( &alpha ); bli_obj_free( &a ); bli_obj_free( &c ); bli_obj_free( &c_save ); } //bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t c_save; obj_t alpha, beta; dim_t m, n; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input; num_t dt_a, dt_b, dt_c; num_t dt_alpha, dt_beta; int r, n_repeats; side_t side; uplo_t uplo; double dtime; double dtime_save; double gflops; bli_init(); n_repeats = 3; #ifndef PRINT p_begin = 1000; p_end = 1000; p_inc = 40; m_input = -1; n_input = -1; #else p_begin = 16; p_end = 16; p_inc = 1; m_input = 8 ; n_input = 4 ; #endif #if 0 dt_a = BLIS_DOUBLE; dt_b = BLIS_DOUBLE; dt_c = BLIS_DOUBLE; dt_alpha = BLIS_DOUBLE; dt_beta = BLIS_DOUBLE; #else dt_a = dt_b = dt_c = dt_alpha = dt_beta = BLIS_FLOAT; //dt_a = dt_b = dt_c = dt_alpha = dt_beta = BLIS_SCOMPLEX; #endif side = BLIS_LEFT; //side = BLIS_RIGHT; uplo = BLIS_LOWER; //uplo = BLIS_UPPER; for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p * ( dim_t )abs(n_input); else n = ( dim_t ) n_input; bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_beta, 1, 1, 0, 0, &beta ); if ( bli_is_left( side ) ) bli_obj_create( dt_a, m, m, 0, 0, &a ); else bli_obj_create( dt_a, n, n, 0, 0, &a ); bli_obj_create( dt_b, m, n, 0, 0, &b ); bli_obj_create( dt_c, m, n, 0, 0, &c ); bli_obj_create( dt_c, m, n, 0, 0, &c_save ); bli_obj_set_struc( BLIS_TRIANGULAR, a ); bli_obj_set_uplo( uplo, a ); //bli_obj_set_diag( BLIS_UNIT_DIAG, a ); bli_randm( &a ); bli_randm( &c ); bli_randm( &b ); /* { obj_t a2; bli_obj_alias_to( a, a2 ); bli_obj_toggle_uplo( a2 ); bli_obj_inc_diag_off( 1, a2 ); bli_setm( &BLIS_ZERO, &a2 ); bli_obj_inc_diag_off( -2, a2 ); bli_obj_toggle_uplo( a2 ); bli_obj_set_diag( BLIS_NONUNIT_DIAG, a2 ); bli_scalm( &BLIS_TWO, &a2 ); //bli_scalm( &BLIS_TWO, &a ); } */ bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_setsc( -(1.0/1.0), 0.0, &beta ); bli_copym( &c, &c_save ); dtime_save = 1.0e9; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT /* obj_t ar, ai; bli_obj_alias_to( a, ar ); bli_obj_alias_to( a, ai ); bli_obj_set_datatype( BLIS_DOUBLE, ar ); ar.rs *= 2; ar.cs *= 2; bli_obj_set_datatype( BLIS_DOUBLE, ai ); ai.rs *= 2; ai.cs *= 2; ai.buffer = ( double* )ai.buffer + 1; bli_printm( "ar", &ar, "%4.1f", "" ); bli_printm( "ai", &ai, "%4.1f", "" ); */ bli_invertd( &a ); bli_printm( "a", &a, "%4.1f", "" ); bli_invertd( &a ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); bli_trsm( side, //bli_trsm4m( side, //bli_trsm3m( side, &alpha, &a, &c ); #else if ( bli_is_real( dt_a ) ) { f77_char side = 'L'; f77_char uplo = 'L'; f77_char transa = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); float * alphap = bli_obj_buffer( alpha ); float * ap = bli_obj_buffer( a ); float * cp = bli_obj_buffer( c ); strsm_( &side, &uplo, &transa, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); } else // if ( bli_is_complex( dt_a ) ) { f77_char side = 'L'; f77_char uplo = 'L'; f77_char transa = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); scomplex* alphap = bli_obj_buffer( alpha ); scomplex* ap = bli_obj_buffer( a ); scomplex* cp = bli_obj_buffer( c ); ctrsm_( &side, //ztrsm_( &side, &uplo, &transa, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); } #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } if ( bli_is_left( side ) ) gflops = ( 1.0 * m * m * n ) / ( dtime_save * 1.0e9 ); else gflops = ( 1.0 * m * n * n ) / ( dtime_save * 1.0e9 ); if ( bli_is_complex( dt_a ) ) gflops *= 4.0; #ifdef BLIS printf( "data_trsm_blis" ); #else printf( "data_trsm_%s", BLAS ); #endif printf( "( %2lu, 1:4 ) = [ %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )n, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
int main( int argc, char** argv ) { //bli_init(); #if 0 obj_t a, b, c; obj_t aa, bb, cc; dim_t m, n, k; num_t dt; uplo_t uploa, uplob, uploc; { dt = BLIS_DOUBLE; m = 6; k = 6; n = 6; bli_obj_create( dt, m, k, 0, 0, &a ); bli_obj_create( dt, k, n, 0, 0, &b ); bli_obj_create( dt, m, n, 0, 0, &c ); uploa = BLIS_UPPER; uploa = BLIS_LOWER; bli_obj_set_struc( BLIS_TRIANGULAR, &a ); bli_obj_set_uplo( uploa, &a ); bli_obj_set_diag_offset( -2, &a ); uplob = BLIS_UPPER; uplob = BLIS_LOWER; bli_obj_set_struc( BLIS_TRIANGULAR, &b ); bli_obj_set_uplo( uplob, &b ); bli_obj_set_diag_offset( -2, &b ); uploc = BLIS_UPPER; //uploc = BLIS_LOWER; //uploc = BLIS_ZEROS; //uploc = BLIS_DENSE; bli_obj_set_struc( BLIS_HERMITIAN, &c ); //bli_obj_set_struc( BLIS_TRIANGULAR, &c ); bli_obj_set_uplo( uploc, &c ); bli_obj_set_diag_offset( 1, &c ); bli_obj_alias_to( &a, &aa ); (void)aa; bli_obj_alias_to( &b, &bb ); (void)bb; bli_obj_alias_to( &c, &cc ); (void)cc; bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); //bli_mkherm( &a ); //bli_mktrim( &a ); bli_prune_unref_mparts( &cc, BLIS_M, &aa, BLIS_N ); bli_printm( "c orig", &c, "%4.1f", "" ); bli_printm( "c alias", &cc, "%4.1f", "" ); bli_printm( "a orig", &a, "%4.1f", "" ); bli_printm( "a alias", &aa, "%4.1f", "" ); //bli_obj_print( "a struct", &a ); } #endif dim_t p_begin, p_max, p_inc; gint_t m_input, n_input; char uploa_ch; doff_t diagoffa; dim_t bf; dim_t n_way; char part_dim_ch; bool_t go_fwd; char out_ch; obj_t a; blksz_t bfs; thrinfo_t thrinfo; dim_t m, n; uplo_t uploa; bool_t part_m_dim, part_n_dim; bool_t go_bwd; dim_t p; num_t dt; dim_t start, end; dim_t width; siz_t area; gint_t t_begin, t_stop, t_inc; dim_t t; if ( argc == 13 ) { sscanf( argv[1], "%u", &p_begin ); sscanf( argv[2], "%u", &p_max ); sscanf( argv[3], "%u", &p_inc ); sscanf( argv[4], "%d", &m_input ); sscanf( argv[5], "%d", &n_input ); sscanf( argv[6], "%c", &uploa_ch ); sscanf( argv[7], "%d", &diagoffa ); sscanf( argv[8], "%u", &bf ); sscanf( argv[9], "%u", &n_way ); sscanf( argv[10], "%c", &part_dim_ch ); sscanf( argv[11], "%u", &go_fwd ); sscanf( argv[12], "%c", &out_ch ); } else { printf( "\n" ); printf( " %s\n", argv[0] ); printf( "\n" ); printf( " Simulate the dimension ranges assigned to threads when\n" ); printf( " partitioning a matrix for parallelism in BLIS.\n" ); printf( "\n" ); printf( " Usage:\n" ); printf( "\n" ); printf( " %s p_beg p_max p_inc m n uplo doff bf n_way part_dim go_fwd out\n", argv[0] ); printf( "\n" ); printf( " p_beg: the first problem size p to test.\n" ); printf( " p_max: the maximum problem size p to test.\n" ); printf( " p_inc: the increase in problem size p between tests.\n" ); printf( " m: the m dimension:\n" ); printf( " n: the n dimension:\n" ); printf( " if m,n = -1: bind m,n to problem size p.\n" ); printf( " if m,n = 0: bind m,n to p_max.\n" ); printf( " if m,n > 0: hold m,n = c constant for all p.\n" ); printf( " uplo: the uplo field of the matrix being partitioned:\n" ); printf( " 'l': lower-stored (BLIS_LOWER)\n" ); printf( " 'u': upper-stored (BLIS_UPPER)\n" ); printf( " 'd': densely-stored (BLIS_DENSE)\n" ); printf( " doff: the diagonal offset of the matrix being partitioned.\n" ); printf( " bf: the simulated blocking factor. all thread ranges must\n" ); printf( " be a multiple of bf, except for the range that contains\n" ); printf( " the edge case (if one exists). the blocking factor\n" ); printf( " would typically correspond to a register blocksize.\n" ); printf( " n_way: the number of ways of parallelism for which we are\n" ); printf( " partitioning (i.e.: the number of threads, or thread\n" ); printf( " groups).\n" ); printf( " part_dim: the dimension to partition:\n" ); printf( " 'm': partition the m dimension.\n" ); printf( " 'n': partition the n dimension.\n" ); printf( " go_fwd: the direction to partition:\n" ); printf( " '1': forward, e.g. left-to-right (part_dim = 'm') or\n" ); printf( " top-to-bottom (part_dim = 'n')\n" ); printf( " '0': backward, e.g. right-to-left (part_dim = 'm') or\n" ); printf( " bottom-to-top (part_dim = 'n')\n" ); printf( " NOTE: reversing the direction does not change the\n" ); printf( " subpartitions' widths, but it does change which end of\n" ); printf( " the index range receives the edge case, if it exists.\n" ); printf( " out: the type of output per thread-column:\n" ); printf( " 'w': the width (and area) of the thread's subpartition\n" ); printf( " 'r': the actual ranges of the thread's subpartition\n" ); printf( " where the start and end points of each range are\n" ); printf( " inclusive and exclusive, respectively.\n" ); printf( "\n" ); exit(1); } if ( m_input == 0 ) m_input = p_max; if ( n_input == 0 ) n_input = p_max; if ( part_dim_ch == 'm' ) { part_m_dim = TRUE; part_n_dim = FALSE; } else { part_m_dim = FALSE; part_n_dim = TRUE; } go_bwd = !go_fwd; if ( uploa_ch == 'l' ) uploa = BLIS_LOWER; else if ( uploa_ch == 'u' ) uploa = BLIS_UPPER; else uploa = BLIS_DENSE; if ( part_n_dim ) { if ( bli_is_upper( uploa ) ) { t_begin = n_way-1; t_stop = -1; t_inc = -1; } else /* if lower or dense */ { t_begin = 0; t_stop = n_way; t_inc = 1; } } else // if ( part_m_dim ) { if ( bli_is_lower( uploa ) ) { t_begin = n_way-1; t_stop = -1; t_inc = -1; } else /* if upper or dense */ { t_begin = 0; t_stop = n_way; t_inc = 1; } } printf( "\n" ); printf( " part: %3s doff: %3d bf: %3d output: %s\n", ( part_n_dim ? ( go_fwd ? "l2r" : "r2l" ) : ( go_fwd ? "t2b" : "b2t" ) ), ( int )diagoffa, ( int )bf, ( out_ch == 'w' ? "width(area)" : "ranges" ) ); printf( " uplo: %3c nt: %3u\n", uploa_ch, ( unsigned )n_way ); printf( "\n" ); printf( " " ); for ( t = t_begin; t != t_stop; t += t_inc ) { if ( part_n_dim ) { if ( t == t_begin ) printf( "left... " ); else if ( t == t_stop-t_inc ) printf( " ...right" ); else printf( " " ); } else // if ( part_m_dim ) { if ( t == t_begin ) printf( "top... " ); else if ( t == t_stop-t_inc ) printf( " ...bottom" ); else printf( " " ); } } printf( "\n" ); printf( "%4c x %4c ", 'm', 'n' ); for ( t = t_begin; t != t_stop; t += t_inc ) { printf( "%9s %u ", "thread", ( unsigned )t ); } printf( "\n" ); printf( "-------------" ); for ( t = t_begin; t != t_stop; t += t_inc ) { printf( "-------------" ); } printf( "\n" ); for ( p = p_begin; p <= p_max; p += p_inc ) { if ( m_input < 0 ) m = ( dim_t )p; else m = ( dim_t )m_input; if ( n_input < 0 ) n = ( dim_t )p; else n = ( dim_t )n_input; dt = BLIS_DOUBLE; bli_obj_create( dt, m, n, 0, 0, &a ); bli_obj_set_struc( BLIS_TRIANGULAR, &a ); bli_obj_set_uplo( uploa, &a ); bli_obj_set_diag_offset( diagoffa, &a ); bli_randm( &a ); bli_blksz_init_easy( &bfs, bf, bf, bf, bf ); printf( "%4u x %4u ", ( unsigned )m, ( unsigned )n ); for ( t = t_begin; t != t_stop; t += t_inc ) { thrinfo.n_way = n_way; thrinfo.work_id = t; if ( part_n_dim && go_fwd ) area = bli_thread_get_range_weighted_l2r( &thrinfo, &a, &bfs, &start, &end ); else if ( part_n_dim && go_bwd ) area = bli_thread_get_range_weighted_r2l( &thrinfo, &a, &bfs, &start, &end ); else if ( part_m_dim && go_fwd ) area = bli_thread_get_range_weighted_t2b( &thrinfo, &a, &bfs, &start, &end ); else // ( part_m_dim && go_bwd ) area = bli_thread_get_range_weighted_b2t( &thrinfo, &a, &bfs, &start, &end ); width = end - start; if ( out_ch == 'w' ) printf( "%4u(%6u) ", ( unsigned )width, ( unsigned )area ); else printf( "[%4u,%4u) ", ( unsigned )start, ( unsigned )end ); } printf( "\n" ); bli_obj_free( &a ); } //bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t x, y; obj_t alpha, beta; dim_t m; num_t dt_a, dt_b, dt_c; num_t dt_alpha, dt_beta; int ii; #ifdef NBLIS bli_init(); #endif m = 4000; dt_a = BLIS_DOUBLE; dt_b = BLIS_DOUBLE; dt_c = BLIS_DOUBLE; dt_alpha = BLIS_DOUBLE; dt_beta = BLIS_DOUBLE; { #ifdef NBLIS bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_beta, 1, 1, 0, 0, &beta ); bli_obj_create( dt_a, m, 1, 0, 0, &x ); bli_obj_create( dt_a, m, 1, 0, 0, &y ); bli_obj_create( dt_a, m, m, 0, 0, &a ); bli_obj_create( dt_b, m, m, 0, 0, &b ); bli_obj_create( dt_c, m, m, 0, 0, &c ); bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_setsc( -(1.0/1.0), 0.0, &beta ); #endif #ifdef NBLAS x.buffer = malloc( m * 1 * sizeof( double ) ); y.buffer = malloc( m * 1 * sizeof( double ) ); alpha.buffer = malloc( 1 * sizeof( double ) ); beta.buffer = malloc( 1 * sizeof( double ) ); a.buffer = malloc( m * m * sizeof( double ) ); a.m = m; a.n = m; a.cs = m; b.buffer = malloc( m * m * sizeof( double ) ); b.m = m; b.n = m; b.cs = m; c.buffer = malloc( m * m * sizeof( double ) ); c.m = m; c.n = m; c.cs = m; *((double*)alpha.buffer) = 2.0; *((double*)beta.buffer) = -1.0; #endif #ifdef NBLIS #if NBLIS >= 1 for ( ii = 0; ii < 2000000000; ++ii ) { bli_gemm( &BLIS_ONE, &a, &b, &BLIS_ONE, &c ); } #endif #if NBLIS >= 2 { bli_hemm( BLIS_LEFT, &BLIS_ONE, &a, &b, &BLIS_ONE, &c ); } #endif #if NBLIS >= 3 { bli_herk( &BLIS_ONE, &a, &BLIS_ONE, &c ); } #endif #if NBLIS >= 4 { bli_her2k( &BLIS_ONE, &a, &b, &BLIS_ONE, &c ); } #endif #if NBLIS >= 5 { bli_trmm( BLIS_LEFT, &BLIS_ONE, &a, &c ); } #endif #if NBLIS >= 6 { bli_trsm( BLIS_LEFT, &BLIS_ONE, &a, &c ); } #endif #endif #ifdef NBLAS #if NBLAS >= 1 for ( ii = 0; ii < 2000000000; ++ii ) { f77_char transa = 'N'; f77_char transb = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dgemm_( &transa, &transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #if NBLAS >= 2 { f77_char side = 'L'; f77_char uplo = 'L'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dsymm_( &side, &uplo, &mm, &nn, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #if NBLAS >= 3 { f77_char uplo = 'L'; f77_char trans = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width( a ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dsyrk_( &uplo, &trans, &mm, &kk, alphap, ap, &lda, betap, cp, &ldc ); } #endif #if NBLAS >= 4 { f77_char uplo = 'L'; f77_char trans = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width( a ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dsyr2k_( &uplo, &trans, &mm, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #if NBLAS >= 5 { f77_char side = 'L'; f77_char uplo = 'L'; f77_char trans = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* cp = bli_obj_buffer( c ); dtrmm_( &side, &uplo, &trans, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); } #endif #if NBLAS >= 6 { f77_char side = 'L'; f77_char uplo = 'L'; f77_char trans = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* cp = bli_obj_buffer( c ); dtrsm_( &side, &uplo, &trans, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); } #endif #if NBLAS >= 7 { f77_char transa = 'N'; f77_char transb = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* bp = bli_obj_buffer( b ); dcomplex* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zgemm_( &transa, &transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #if NBLAS >= 8 { f77_char side = 'L'; f77_char uplo = 'L'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* bp = bli_obj_buffer( b ); dcomplex* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zhemm_( &side, &uplo, &mm, &nn, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #if NBLAS >= 9 { f77_char uplo = 'L'; f77_char trans = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width( a ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); double* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zherk_( &uplo, &trans, &mm, &kk, alphap, ap, &lda, betap, cp, &ldc ); } #endif #if NBLAS >= 10 { f77_char uplo = 'L'; f77_char trans = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width( a ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); dcomplex* cp = bli_obj_buffer( c ); zher2k_( &uplo, &trans, &mm, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); } #endif #if NBLAS >= 11 { f77_char side = 'L'; f77_char uplo = 'L'; f77_char trans = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* cp = bli_obj_buffer( c ); ztrmm_( &side, &uplo, &trans, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); } #endif #if NBLAS >= 12 { f77_char side = 'L'; f77_char uplo = 'L'; f77_char trans = 'N'; f77_char diag = 'N'; f77_int mm = bli_obj_length( c ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldc = bli_obj_col_stride( c ); dcomplex* alphap = bli_obj_buffer( alpha ); dcomplex* ap = bli_obj_buffer( a ); dcomplex* cp = bli_obj_buffer( c ); ztrsm_( &side, &uplo, &trans, &diag, &mm, &nn, alphap, ap, &lda, cp, &ldc ); } #endif #endif #ifdef NBLIS bli_obj_free( &x ); bli_obj_free( &y ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); #endif #ifdef NBLAS free( x.buffer ); free( y.buffer ); free( alpha.buffer ); free( beta.buffer ); free( a.buffer ); free( b.buffer ); free( c.buffer ); #endif } #ifdef NBLIS bli_finalize(); #endif return 0; }
int main( int argc, char** argv ) { obj_t a, c; obj_t c_save; obj_t alpha, beta; dim_t m, k; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, k_input; num_t dt_a, dt_c; num_t dt_alpha, dt_beta; int r, n_repeats; uplo_t uplo; double dtime; double dtime_save; double gflops; bli_init(); n_repeats = 3; if( argc < 7 ) { printf("Usage:\n"); printf("test_foo.x m n k p_begin p_inc p_end:\n"); exit; } int world_size, world_rank, provided; MPI_Init_thread( NULL, NULL, MPI_THREAD_FUNNELED, &provided ); MPI_Comm_size( MPI_COMM_WORLD, &world_size ); MPI_Comm_rank( MPI_COMM_WORLD, &world_rank ); m_input = strtol( argv[1], NULL, 10 ); k_input = strtol( argv[3], NULL, 10 ); p_begin = strtol( argv[4], NULL, 10 ); p_inc = strtol( argv[5], NULL, 10 ); p_end = strtol( argv[6], NULL, 10 ); dt_a = BLIS_DOUBLE; dt_c = BLIS_DOUBLE; dt_alpha = BLIS_DOUBLE; dt_beta = BLIS_DOUBLE; uplo = BLIS_LOWER; for ( p = p_begin + world_rank * p_inc; p <= p_end; p += p_inc * world_size ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( k_input < 0 ) k = p * ( dim_t )abs(k_input); else k = ( dim_t ) k_input; bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_beta, 1, 1, 0, 0, &beta ); bli_obj_create( dt_a, m, k, 0, 0, &a ); bli_obj_create( dt_c, m, m, 0, 0, &c ); bli_obj_create( dt_c, m, m, 0, 0, &c_save ); bli_randm( &a ); bli_randm( &c ); bli_obj_set_struc( BLIS_HERMITIAN, &c ); bli_obj_set_uplo( uplo, &c ); bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_setsc( (1.0/1.0), 0.0, &beta ); bli_copym( &c, &c_save ); dtime_save = 1.0e9; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); bli_herk( &alpha, &a, &beta, &c ); #else f77_char uploa = 'L'; f77_char transa = 'N'; f77_int mm = bli_obj_length( &c ); f77_int kk = bli_obj_width_after_trans( &a ); f77_int lda = bli_obj_col_stride( &a ); f77_int ldc = bli_obj_col_stride( &c ); double* alphap = bli_obj_buffer( &alpha ); double* ap = bli_obj_buffer( &a ); double* betap = bli_obj_buffer( &beta ); double* cp = bli_obj_buffer( &c ); dsyrk_( &uploa, &transa, &mm, &kk, alphap, ap, &lda, betap, cp, &ldc ); #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } gflops = ( 1.0 * m * k * m ) / ( dtime_save * 1.0e9 ); #ifdef BLIS printf( "data_herk_blis" ); #else printf( "data_herk_%s", BLAS ); #endif printf( "( %2lu, 1:4 ) = [ %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )k, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
int main( int argc, char** argv ) { obj_t a, b, c; obj_t c_save; obj_t alpha, beta; dim_t m, n, k; dim_t p; dim_t p_begin, p_end, p_inc; int m_input, n_input, k_input; num_t dt_a, dt_b, dt_c; num_t dt_alpha, dt_beta; int r, n_repeats; double dtime; double dtime_save; double gflops; bli_init(); n_repeats = 3; #ifndef PRINT p_begin = 40; p_end = 2000; p_inc = 40; m_input = -1; n_input = -1; k_input = -1; #else p_begin = 16; p_end = 16; p_inc = 1; m_input = 8; k_input = 16; n_input = 16; #endif dt_a = BLIS_DOUBLE; dt_b = BLIS_DOUBLE; dt_c = BLIS_DOUBLE; dt_alpha = BLIS_DOUBLE; dt_beta = BLIS_DOUBLE; for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; if ( n_input < 0 ) n = p * ( dim_t )abs(n_input); else n = ( dim_t ) n_input; if ( k_input < 0 ) k = p * ( dim_t )abs(k_input); else k = ( dim_t ) k_input; bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_beta, 1, 1, 0, 0, &beta ); bli_obj_create( dt_a, m, k, 0, 0, &a ); bli_obj_create( dt_b, k, n, 0, 0, &b ); bli_obj_create( dt_c, m, n, 0, 0, &c ); bli_obj_create( dt_c, m, n, 0, 0, &c_save ); bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); bli_setsc( (2.0/1.0), 0.0, &alpha ); bli_setsc( -(1.0/1.0), 0.0, &beta ); bli_copym( &c, &c_save ); dtime_save = 1.0e9; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &c_save, &c ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "b", &b, "%4.1f", "" ); bli_printm( "c", &c, "%4.1f", "" ); #endif #ifdef BLIS //bli_error_checking_level_set( BLIS_NO_ERROR_CHECKING ); bli_gemm( &alpha, &a, &b, &beta, &c ); #else f77_char transa = 'N'; f77_char transb = 'N'; f77_int mm = bli_obj_length( c ); f77_int kk = bli_obj_width_after_trans( a ); f77_int nn = bli_obj_width( c ); f77_int lda = bli_obj_col_stride( a ); f77_int ldb = bli_obj_col_stride( b ); f77_int ldc = bli_obj_col_stride( c ); double* alphap = bli_obj_buffer( alpha ); double* ap = bli_obj_buffer( a ); double* bp = bli_obj_buffer( b ); double* betap = bli_obj_buffer( beta ); double* cp = bli_obj_buffer( c ); dgemm_( &transa, &transb, &mm, &nn, &kk, alphap, ap, &lda, bp, &ldb, betap, cp, &ldc ); #endif #ifdef PRINT bli_printm( "c after", &c, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } gflops = ( 2.0 * m * k * n ) / ( dtime_save * 1.0e9 ); #ifdef BLIS printf( "data_gemm_blis" ); #else printf( "data_gemm_%s", BLAS ); #endif printf( "( %2lu, 1:5 ) = [ %4lu %4lu %4lu %10.3e %6.3f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, ( unsigned long )k, ( unsigned long )n, dtime_save, gflops ); bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); } bli_finalize(); return 0; }
void runBenchmark(enum BenchmarkType benchmarkType, int32_t size, struct BenchmarkResult* out) { const int32_t experiments = 10; struct BenchmarkResult result = { .time = __builtin_nan(""), .flops = __builtin_nan(""), .throughput = __builtin_nan("") }; switch (benchmarkType) { case BenchmarkTypeNaiveDGEMM: { double* a = malloc(size * size * sizeof(double)); double* b = malloc(size * size * sizeof(double)); double* c = malloc(size * size * sizeof(double)); for (int32_t i = 0; i < size * size; i++) { a[i] = ((double) rand()) / ((double) RAND_MAX); b[i] = ((double) rand()) / ((double) RAND_MAX); } memset(c, 0, size * size * sizeof(double)); for (int32_t experiment = 0; experiment < experiments; ++experiment) { const double timeStart = time_sec(); dgemm_naive(size, a, b, c); result.time = fmin(result.time, time_sec() - timeStart); } result.flops = 2.0 * size * size * size / result.time; free(a); free(b); free(c); break; } case BenchmarkTypeBlockedDGEMM: { double* a = malloc(size * size * sizeof(double)); double* b = malloc(size * size * sizeof(double)); double* c = malloc(size * size * sizeof(double)); for (int32_t i = 0; i < size * size; i++) { a[i] = ((double) rand()) / ((double) RAND_MAX); b[i] = ((double) rand()) / ((double) RAND_MAX); } memset(c, 0, size * size * sizeof(double)); for (int32_t experiment = 0; experiment < experiments; ++experiment) { const double timeStart = time_sec(); dgemm_blocked(size, a, b, c); result.time = fmin(result.time, time_sec() - timeStart); } result.flops = 2.0 * size * size * size / result.time; free(a); free(b); free(c); break; } case BenchmarkTypeBlisDGEMM: { obj_t alpha, beta; bli_obj_scalar_init_detached(BLIS_DOUBLE, &alpha); bli_obj_scalar_init_detached(BLIS_DOUBLE, &beta); bli_setsc( 1.0, 0.0, &alpha); bli_setsc( 0.0, 0.0, &beta); obj_t a, b, c; bli_obj_create(BLIS_DOUBLE, size, size, 0, 0, &a); bli_obj_create(BLIS_DOUBLE, size, size, 0, 0, &b); bli_obj_create(BLIS_DOUBLE, size, size, 0, 0, &c); bli_randm(&a); bli_randm(&b); bli_randm(&c); for (int32_t i = 0; i < experiments; ++i) { const double timeStart = time_sec(); bli_gemm(&alpha, &a, &b, &beta, &c); result.time = fmin(result.time, time_sec() - timeStart); } result.flops = 2.0 * size * size * size / result.time; bli_obj_free(&a); bli_obj_free(&b); bli_obj_free(&c); break; } case BenchmarkTypePointerChasing: { struct xor_shift xor_shift = xor_shift_init(UINT32_C(1), __builtin_ctz(size)); uint32_t last_index = 1; void** data = (void**) malloc(size * sizeof(void*)); data[0] = &data[1]; for (size_t i = 0; i < size; i++) { const uint32_t index = xor_shift_next(&xor_shift); data[last_index] = &data[index]; last_index = index; } const int32_t iterations = 16777216 / size; for (int32_t experiment = 0; experiment < experiments; ++experiment) { const double timeStart = time_sec(); for (int32_t iteration = 0; iteration < iterations; iteration++) { chase_pointers(data); } result.time = fmin(result.time, (time_sec() - timeStart) / ((double) iterations) / ((double) size)); } free((void*) data); break; } default: __builtin_unreachable(); } *out = result; }
void libblis_test_gemm_experiment( test_params_t* params, test_op_t* op, iface_t iface, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m, n, k; trans_t transa; trans_t transb; obj_t kappa; obj_t alpha, a, b, beta, c; obj_t c_save; // Map the dimension specifier to actual dimensions. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); n = libblis_test_get_dim_from_prob_size( op->dim_spec[1], p_cur ); k = libblis_test_get_dim_from_prob_size( op->dim_spec[2], p_cur ); // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_trans( pc_str[0], &transa ); bli_param_map_char_to_blis_trans( pc_str[1], &transb ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &kappa ); bli_obj_scalar_init_detached( datatype, &alpha ); bli_obj_scalar_init_detached( datatype, &beta ); // Create test operands (vectors and/or matrices). libblis_test_mobj_create( params, datatype, transa, sc_str[0], m, k, &a ); libblis_test_mobj_create( params, datatype, transb, sc_str[1], k, n, &b ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[2], m, n, &c ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[2], m, n, &c_save ); // Set alpha and beta. if ( bli_obj_is_real( c ) ) { bli_setsc( 1.2, 0.0, &alpha ); bli_setsc( -1.0, 0.0, &beta ); } else { bli_setsc( 1.2, 0.8, &alpha ); bli_setsc( -1.0, 1.0, &beta ); } // Randomize A, B, and C, and save C. bli_randm( &a ); bli_randm( &b ); bli_randm( &c ); bli_copym( &c, &c_save ); // Normalize by k. bli_setsc( 1.0/( double )k, 0.0, &kappa ); bli_scalm( &kappa, &a ); bli_scalm( &kappa, &b ); // Apply the parameters. bli_obj_set_conjtrans( transa, a ); bli_obj_set_conjtrans( transb, b ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copym( &c_save, &c ); time = bli_clock(); libblis_test_gemm_impl( iface, &alpha, &a, &b, &beta, &c ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 2.0 * m * n * k ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( c ) ) *perf *= 4.0; // Perform checks. libblis_test_gemm_check( &alpha, &a, &b, &beta, &c, &c_save, resid ); // Zero out performance and residual if output matrix is empty. libblis_test_check_empty_problem( &c, perf, resid ); // Free the test objects. bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); }
void libblis_test_dotxf_experiment( test_params_t* params, test_op_t* op, iface_t iface, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m, b_n; conj_t conjat, conjx; obj_t alpha, a, x, beta, y; obj_t y_save; // Map the dimension specifier to an actual dimension. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); // Query the operation's fusing factor for the current datatype. b_n = bli_dotxf_fusefac( datatype ); // Store the fusing factor so that the driver can retrieve the value // later when printing results. op->dim_aux[0] = b_n; // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_conj( pc_str[0], &conjat ); bli_param_map_char_to_blis_conj( pc_str[1], &conjx ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &alpha ); bli_obj_scalar_init_detached( datatype, &beta ); // Create test operands (vectors and/or matrices). libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[0], m, b_n, &a ); libblis_test_vobj_create( params, datatype, sc_str[1], m, &x ); libblis_test_vobj_create( params, datatype, sc_str[2], b_n, &y ); libblis_test_vobj_create( params, datatype, sc_str[2], b_n, &y_save ); // Set alpha. if ( bli_obj_is_real( y ) ) { bli_setsc( 1.2, 0.0, &alpha ); bli_setsc( -1.0, 0.0, &beta ); } else { bli_setsc( 1.2, 0.1, &alpha ); bli_setsc( -1.0, -0.1, &beta ); } // Randomize A, x, and y, and save y. bli_randm( &a ); bli_randv( &x ); bli_randv( &y ); bli_copyv( &y, &y_save ); // Apply the parameters. bli_obj_set_conj( conjat, a ); bli_obj_set_conj( conjx, x ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copyv( &y_save, &y ); time = bli_clock(); libblis_test_dotxf_impl( iface, &alpha, &a, &x, &beta, &y ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 2.0 * m * b_n ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( y ) ) *perf *= 4.0; // Perform checks. libblis_test_dotxf_check( &alpha, &a, &x, &beta, &y, &y_save, resid ); // Zero out performance and residual if output vector is empty. libblis_test_check_empty_problem( &y, perf, resid ); // Free the test objects. bli_obj_free( &a ); bli_obj_free( &x ); bli_obj_free( &y ); bli_obj_free( &y_save ); }
void libblis_test_trmm3_experiment( test_params_t* params, test_op_t* op, mt_impl_t impl, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m, n; dim_t mn_side; side_t side; uplo_t uploa; trans_t transa; diag_t diaga; trans_t transb; obj_t kappa; obj_t alpha, a, b, beta, c; obj_t c_save; // Map the dimension specifier to actual dimensions. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); n = libblis_test_get_dim_from_prob_size( op->dim_spec[1], p_cur ); // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_side( pc_str[0], &side ); bli_param_map_char_to_blis_uplo( pc_str[1], &uploa ); bli_param_map_char_to_blis_trans( pc_str[2], &transa ); bli_param_map_char_to_blis_diag( pc_str[3], &diaga ); bli_param_map_char_to_blis_trans( pc_str[4], &transb ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &kappa ); bli_obj_scalar_init_detached( datatype, &alpha ); bli_obj_scalar_init_detached( datatype, &beta ); // Create test operands (vectors and/or matrices). bli_set_dim_with_side( side, m, n, mn_side ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[0], mn_side, mn_side, &a ); libblis_test_mobj_create( params, datatype, transb, sc_str[1], m, n, &b ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[2], m, n, &c ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[2], m, n, &c_save ); // Set alpha and beta. if ( bli_obj_is_real( c ) ) { bli_setsc( 0.8, 0.0, &alpha ); bli_setsc( -1.0, 0.0, &beta ); } else { bli_setsc( 0.8, 0.6, &alpha ); bli_setsc( -1.0, 0.5, &beta ); } // Set the structure and uplo properties of A. bli_obj_set_struc( BLIS_TRIANGULAR, a ); bli_obj_set_uplo( uploa, a ); // Randomize A, make it densely triangular. bli_randm( &a ); bli_mktrim( &a ); // Randomize B and C, and save C. bli_randm( &b ); bli_randm( &c ); bli_copym( &c, &c_save ); // Normalize by m. bli_setsc( 1.0/( double )m, 0.0, &kappa ); bli_scalm( &kappa, &b ); // Apply the remaining parameters. bli_obj_set_conjtrans( transa, a ); bli_obj_set_diag( diaga, a ); bli_obj_set_conjtrans( transb, b ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copym( &c_save, &c ); time = bli_clock(); libblis_test_trmm3_impl( impl, side, &alpha, &a, &b, &beta, &c ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 1.0 * mn_side * m * n ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( c ) ) *perf *= 4.0; // Perform checks. libblis_test_trmm3_check( side, &alpha, &a, &b, &beta, &c, &c_save, resid ); // Zero out performance and residual if output matrix is empty. libblis_test_check_empty_problem( &c, perf, resid ); // Free the test objects. bli_obj_free( &a ); bli_obj_free( &b ); bli_obj_free( &c ); bli_obj_free( &c_save ); }
void libblis_test_trsv_experiment( test_params_t* params, test_op_t* op, mt_impl_t impl, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m; uplo_t uploa; trans_t transa; diag_t diaga; obj_t kappa; obj_t alpha, a, x; obj_t x_save; // Map the dimension specifier to an actual dimension. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_uplo( pc_str[0], &uploa ); bli_param_map_char_to_blis_trans( pc_str[1], &transa ); bli_param_map_char_to_blis_diag( pc_str[2], &diaga ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &alpha ); bli_obj_scalar_init_detached( datatype, &kappa ); // Create test operands (vectors and/or matrices). libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[0], m, m, &a ); libblis_test_vobj_create( params, datatype, sc_str[1], m, &x ); libblis_test_vobj_create( params, datatype, sc_str[1], m, &x_save ); // Set alpha. if ( bli_obj_is_real( x ) ) bli_setsc( 2.0, 0.0, &alpha ); else bli_setsc( 2.0, -1.0, &alpha ); // Set the structure and uplo properties of A. bli_obj_set_struc( BLIS_TRIANGULAR, a ); bli_obj_set_uplo( uploa, a ); // Randomize A, make it densely triangular. bli_randm( &a ); bli_mktrim( &a ); // Randomize x and save. bli_randv( &x ); bli_copyv( &x, &x_save ); // Normalize vectors by m. bli_setsc( 1.0/( double )m, 0.0, &kappa ); bli_scalv( &kappa, &x ); bli_scalv( &kappa, &x_save ); // Apply the remaining parameters. bli_obj_set_conjtrans( transa, a ); bli_obj_set_diag( diaga, a ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copym( &x_save, &x ); time = bli_clock(); libblis_test_trsv_impl( impl, &alpha, &a, &x ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 1.0 * m * m ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( x ) ) *perf *= 4.0; // Perform checks. libblis_test_trsv_check( &alpha, &a, &x, &x_save, resid ); // Zero out performance and residual if output vector is empty. libblis_test_check_empty_problem( &x, perf, resid ); // Free the test objects. bli_obj_free( &a ); bli_obj_free( &x ); bli_obj_free( &x_save ); }
void libblis_test_her_experiment( test_params_t* params, test_op_t* op, iface_t iface, num_t datatype, char* pc_str, char* sc_str, unsigned int p_cur, double* perf, double* resid ) { unsigned int n_repeats = params->n_repeats; unsigned int i; double time_min = 1e9; double time; dim_t m; uplo_t uploa; conj_t conjx; obj_t alpha, x, a; obj_t a_save; // Map the dimension specifier to an actual dimension. m = libblis_test_get_dim_from_prob_size( op->dim_spec[0], p_cur ); // Map parameter characters to BLIS constants. bli_param_map_char_to_blis_uplo( pc_str[0], &uploa ); bli_param_map_char_to_blis_conj( pc_str[1], &conjx ); // Create test scalars. bli_obj_scalar_init_detached( datatype, &alpha ); // Create test operands (vectors and/or matrices). libblis_test_vobj_create( params, datatype, sc_str[0], m, &x ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[1], m, m, &a ); libblis_test_mobj_create( params, datatype, BLIS_NO_TRANSPOSE, sc_str[1], m, m, &a_save ); // Set alpha. //bli_copysc( &BLIS_MINUS_ONE, &alpha ); bli_setsc( -1.0, 0.0, &alpha ); // Randomize x. bli_randv( &x ); // Set the structure and uplo properties of A. bli_obj_set_struc( BLIS_HERMITIAN, a ); bli_obj_set_uplo( uploa, a ); // Randomize A, make it densely Hermitian, and zero the unstored triangle // to ensure the implementation is reads only from the stored region. bli_randm( &a ); bli_mkherm( &a ); bli_mktrim( &a ); // Save A and set its structure and uplo properties. bli_obj_set_struc( BLIS_HERMITIAN, a_save ); bli_obj_set_uplo( uploa, a_save ); bli_copym( &a, &a_save ); // Apply the remaining parameters. bli_obj_set_conj( conjx, x ); // Repeat the experiment n_repeats times and record results. for ( i = 0; i < n_repeats; ++i ) { bli_copym( &a_save, &a ); time = bli_clock(); libblis_test_her_impl( iface, &alpha, &x, &a ); time_min = bli_clock_min_diff( time_min, time ); } // Estimate the performance of the best experiment repeat. *perf = ( 1.0 * m * m ) / time_min / FLOPS_PER_UNIT_PERF; if ( bli_obj_is_complex( a ) ) *perf *= 4.0; // Perform checks. libblis_test_her_check( &alpha, &x, &a, &a_save, resid ); // Zero out performance and residual if output matrix is empty. libblis_test_check_empty_problem( &a, perf, resid ); // Free the test objects. bli_obj_free( &x ); bli_obj_free( &a ); bli_obj_free( &a_save ); }
int main( int argc, char** argv ) { obj_t a, x; obj_t x_save; obj_t alpha; dim_t m; dim_t p; dim_t p_begin, p_end, p_inc; int m_input; num_t dt_a, dt_x; num_t dt_alpha; int r, n_repeats; uplo_t uplo; double dtime; double dtime_save; double gflops; //bli_init(); n_repeats = 3; #ifndef PRINT p_begin = 40; p_end = 2000; p_inc = 40; m_input = -1; #else p_begin = 16; p_end = 16; p_inc = 1; m_input = 15; n_input = 15; #endif dt_alpha = dt_a = dt_x = BLIS_DOUBLE; uplo = BLIS_LOWER; // Begin with initializing the last entry to zero so that // matlab allocates space for the entire array once up-front. for ( p = p_begin; p + p_inc <= p_end; p += p_inc ) ; #ifdef BLIS printf( "data_trsv_blis" ); #else printf( "data_trv_%s", BLAS ); #endif printf( "( %2lu, 1:2 ) = [ %4lu %7.2f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )0, 0.0 ); for ( p = p_begin; p <= p_end; p += p_inc ) { if ( m_input < 0 ) m = p * ( dim_t )abs(m_input); else m = ( dim_t ) m_input; bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha ); bli_obj_create( dt_a, m, m, 0, 0, &a ); bli_obj_create( dt_x, m, 1, 0, 0, &x ); bli_obj_create( dt_x, m, 1, 0, 0, &x_save ); bli_randm( &a ); bli_randm( &x ); bli_obj_set_struc( BLIS_TRIANGULAR, &a ); bli_obj_set_uplo( uplo, &a ); bli_obj_set_onlytrans( BLIS_NO_TRANSPOSE, &a ); bli_obj_set_diag( BLIS_NONUNIT_DIAG, &a ); // Randomize A and zero the unstored triangle to ensure the // implementation reads only from the stored region. bli_randm( &a ); bli_mktrim( &a ); // Load the diagonal of A to make it more likely to be invertible. bli_shiftd( &BLIS_TWO, &a ); bli_setsc( (1.0/1.0), 0.0, &alpha ); bli_copym( &x, &x_save ); dtime_save = DBL_MAX; for ( r = 0; r < n_repeats; ++r ) { bli_copym( &x_save, &x ); dtime = bli_clock(); #ifdef PRINT bli_printm( "a", &a, "%4.1f", "" ); bli_printm( "x", &x, "%4.1f", "" ); #endif #ifdef BLIS bli_trsv( &BLIS_ONE, &a, &x ); #else f77_char uploa = 'L'; f77_char transa = 'N'; f77_char diaga = 'N'; f77_int mm = bli_obj_length( &a ); f77_int lda = bli_obj_col_stride( &a ); f77_int incx = bli_obj_vector_inc( &x ); double* ap = bli_obj_buffer( &a ); double* xp = bli_obj_buffer( &x ); dtrsv_( &uploa, &transa, &diaga, &mm, ap, &lda, xp, &incx ); #endif #ifdef PRINT bli_printm( "x after", &x, "%4.1f", "" ); exit(1); #endif dtime_save = bli_clock_min_diff( dtime_save, dtime ); } gflops = ( 1.0 * m * m ) / ( dtime_save * 1.0e9 ); #ifdef BLIS printf( "data_trsv_blis" ); #else printf( "data_trsv_%s", BLAS ); #endif printf( "( %2lu, 1:2 ) = [ %4lu %7.2f ];\n", ( unsigned long )(p - p_begin + 1)/p_inc + 1, ( unsigned long )m, gflops ); bli_obj_free( &alpha ); bli_obj_free( &a ); bli_obj_free( &x ); bli_obj_free( &x_save ); } //bli_finalize(); return 0; }