예제 #1
0
bool
brw_wm_do_compile(struct brw_context *brw,
                  struct brw_wm_compile *c)
{
   struct gl_context *ctx = &brw->ctx;
   struct gl_shader *fs = NULL;

   if (c->shader_prog)
      fs = c->shader_prog->_LinkedShaders[MESA_SHADER_FRAGMENT];

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    */
   int param_count;
   if (fs) {
      param_count = fs->num_uniform_components;
   } else {
      param_count = c->fp->program.Base.Parameters->NumParameters * 4;
   }
   /* The backend also sometimes adds params for texture size. */
   param_count += 2 * ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits;
   c->prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
   c->prog_data.base.pull_param =
      rzalloc_array(NULL, const float *, param_count);
   c->prog_data.base.nr_params = param_count;

   c->prog_data.barycentric_interp_modes =
      brw_compute_barycentric_interp_modes(brw, c->key.flat_shade,
                                           c->key.persample_shading,
                                           &c->fp->program);

   c->program = brw_wm_fs_emit(brw, c,
         &c->fp->program, c->shader_prog, &c->program_size);
   if (c->program == NULL)
      return false;

   /* Scratch space is used for register spilling */
   if (c->last_scratch) {
      perf_debug("Fragment shader triggered register spilling.  "
                 "Try reducing the number of live scalar values to "
                 "improve performance.\n");

      c->prog_data.total_scratch = brw_get_scratch_size(c->last_scratch);
   }

   if (unlikely(INTEL_DEBUG & DEBUG_WM))
      fprintf(stderr, "\n");

   return true;
}
예제 #2
0
bool
brw_codegen_gs_prog(struct brw_context *brw,
                    struct gl_shader_program *prog,
                    struct brw_geometry_program *gp,
                    struct brw_gs_prog_key *key)
{
   struct brw_stage_state *stage_state = &brw->gs.base;
   struct brw_gs_compile c;
   memset(&c, 0, sizeof(c));
   c.key = *key;
   c.gp = gp;

   c.prog_data.include_primitive_id =
      (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;

   c.prog_data.invocations = gp->program.Invocations;

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    *
    * Note: param_count needs to be num_uniform_components * 4, since we add
    * padding around uniform values below vec4 size, so the worst case is that
    * every uniform is a float which gets padded to the size of a vec4.
    */
   struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
   int param_count = gs->num_uniform_components * 4;

   /* We also upload clip plane data as uniforms */
   param_count += MAX_CLIP_PLANES * 4;

   c.prog_data.base.base.param =
      rzalloc_array(NULL, const gl_constant_value *, param_count);
   c.prog_data.base.base.pull_param =
      rzalloc_array(NULL, const gl_constant_value *, param_count);
   c.prog_data.base.base.nr_params = param_count;

   if (brw->gen >= 7) {
      if (gp->program.OutputType == GL_POINTS) {
         /* When the output type is points, the geometry shader may output data
          * to multiple streams, and EndPrimitive() has no effect.  So we
          * configure the hardware to interpret the control data as stream ID.
          */
         c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;

         /* We only have to emit control bits if we are using streams */
         if (prog->Geom.UsesStreams)
            c.control_data_bits_per_vertex = 2;
         else
            c.control_data_bits_per_vertex = 0;
      } else {
         /* When the output type is triangle_strip or line_strip, EndPrimitive()
          * may be used to terminate the current strip and start a new one
          * (similar to primitive restart), and outputting data to multiple
          * streams is not supported.  So we configure the hardware to interpret
          * the control data as EndPrimitive information (a.k.a. "cut bits").
          */
         c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;

         /* We only need to output control data if the shader actually calls
          * EndPrimitive().
          */
         c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
      }
   } else {
      /* There are no control data bits in gen6. */
      c.control_data_bits_per_vertex = 0;

      /* If it is using transform feedback, enable it */
      if (prog->TransformFeedback.NumVarying)
         c.prog_data.gen6_xfb_enabled = true;
      else
         c.prog_data.gen6_xfb_enabled = false;
   }
   c.control_data_header_size_bits =
      gp->program.VerticesOut * c.control_data_bits_per_vertex;

   /* 1 HWORD = 32 bytes = 256 bits */
   c.prog_data.control_data_header_size_hwords =
      ALIGN(c.control_data_header_size_bits, 256) / 256;

   GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;

   /* In order for legacy clipping to work, we need to populate the clip
    * distance varying slots whenever clipping is enabled, even if the vertex
    * shader doesn't write to gl_ClipDistance.
    */
   if (c.key.base.userclip_active) {
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
   }

   brw_compute_vue_map(brw->intelScreen->devinfo,
                       &c.prog_data.base.vue_map, outputs_written);

   /* Compute the output vertex size.
    *
    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
    * Size (p168):
    *
    *     [0,62] indicating [1,63] 16B units
    *
    *     Specifies the size of each vertex stored in the GS output entry
    *     (following any Control Header data) as a number of 128-bit units
    *     (minus one).
    *
    *     Programming Restrictions: The vertex size must be programmed as a
    *     multiple of 32B units with the following exception: Rendering is
    *     disabled (as per SOL stage state) and the vertex size output by the
    *     GS thread is 16B.
    *
    *     If rendering is enabled (as per SOL state) the vertex size must be
    *     programmed as a multiple of 32B units. In other words, the only time
    *     software can program a vertex size with an odd number of 16B units
    *     is when rendering is disabled.
    *
    * Note: B=bytes in the above text.
    *
    * It doesn't seem worth the extra trouble to optimize the case where the
    * vertex size is 16B (especially since this would require special-casing
    * the GEN assembly that writes to the URB).  So we just set the vertex
    * size to a multiple of 32B (2 vec4's) in all cases.
    *
    * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
    * budget that as follows:
    *
    *   512 bytes for varyings (a varying component is 4 bytes and
    *             gl_MaxGeometryOutputComponents = 128)
    *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
    *             bytes)
    *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
    *             even if it's not used)
    *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
    *             whenever clip planes are enabled, even if the shader doesn't
    *             write to gl_ClipDistance)
    *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
    *             (see below)--this causes up to 1 VUE slot to be wasted
    *   400 bytes available for varying packing overhead
    *
    * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
    * per interpolation type, so this is plenty.
    *
    */
   unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
   assert(brw->gen == 6 ||
          output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
   c.prog_data.output_vertex_size_hwords =
      ALIGN(output_vertex_size_bytes, 32) / 32;

   /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
    * That divides up as follows:
    *
    *     64 bytes for the control data header (cut indices or StreamID bits)
    *   4096 bytes for varyings (a varying component is 4 bytes and
    *              gl_MaxGeometryTotalOutputComponents = 1024)
    *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
    *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
    *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
    *              even if it's not used)
    *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
    *              whenever clip planes are enabled, even if the shader doesn't
    *              write to gl_ClipDistance)
    *   4096 bytes overhead since the VUE size must be a multiple of 32
    *              bytes (see above)--this causes up to 1 VUE slot to be wasted
    *   8128 bytes available for varying packing overhead
    *
    * Worst-case varying packing overhead is 3/4 of a varying slot per
    * interpolation type, which works out to 3072 bytes, so this would allow
    * us to accommodate 2 interpolation types without any danger of running
    * out of URB space.
    *
    * In practice, the risk of running out of URB space is very small, since
    * the above figures are all worst-case, and most of them scale with the
    * number of output vertices.  So we'll just calculate the amount of space
    * we need, and if it's too large, fail to compile.
    *
    * The above is for gen7+ where we have a single URB entry that will hold
    * all the output. In gen6, we will have to allocate URB entries for every
    * vertex we emit, so our URB entries only need to be large enough to hold
    * a single vertex. Also, gen6 does not have a control data header.
    */
   unsigned output_size_bytes;
   if (brw->gen >= 7) {
      output_size_bytes =
         c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
      output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
   } else {
      output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
   }

   /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
    * which comes before the control header.
    */
   if (brw->gen >= 8)
      output_size_bytes += 32;

   assert(output_size_bytes >= 1);
   int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
   if (brw->gen == 6)
      max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
   if (output_size_bytes > max_output_size_bytes)
      return false;


   /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
    * a multiple of 128 bytes in gen6.
    */
   if (brw->gen >= 7)
      c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
   else
      c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;

   c.prog_data.output_topology =
      get_hw_prim_for_gl_prim(gp->program.OutputType);

   brw_compute_vue_map(brw->intelScreen->devinfo,
                       &c.input_vue_map, c.key.input_varyings);

   /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
    * need to program a URB read length of ceiling(num_slots / 2).
    */
   c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;

   void *mem_ctx = ralloc_context(NULL);
   unsigned program_size;
   const unsigned *program =
      brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   /* Scratch space is used for register spilling */
   if (c.base.last_scratch) {
      perf_debug("Geometry shader triggered register spilling.  "
                 "Try reducing the number of live vec4 values to "
                 "improve performance.\n");

      c.prog_data.base.base.total_scratch
         = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);

      brw_get_scratch_bo(brw, &stage_state->scratch_bo,
			 c.prog_data.base.base.total_scratch *
                         brw->max_gs_threads);
   }

   brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
                    &c.key, sizeof(c.key),
                    program, program_size,
                    &c.prog_data, sizeof(c.prog_data),
                    &stage_state->prog_offset, &brw->gs.prog_data);
   ralloc_free(mem_ctx);

   return true;
}
예제 #3
0
static bool
do_vs_prog(struct brw_context *brw,
	   struct gl_shader_program *prog,
	   struct brw_vertex_program *vp,
	   struct brw_vs_prog_key *key)
{
   GLuint program_size;
   const GLuint *program;
   struct brw_vs_compile c;
   struct brw_vs_prog_data prog_data;
   void *mem_ctx;
   int i;
   struct gl_shader *vs = NULL;

   if (prog)
      vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];

   memset(&c, 0, sizeof(c));
   memcpy(&c.key, key, sizeof(*key));
   memset(&prog_data, 0, sizeof(prog_data));

   mem_ctx = ralloc_context(NULL);

   c.vp = vp;

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    */
   int param_count;
   if (vs) {
      /* We add padding around uniform values below vec4 size, with the worst
       * case being a float value that gets blown up to a vec4, so be
       * conservative here.
       */
      param_count = vs->num_uniform_components * 4;

   } else {
      param_count = vp->program.Base.Parameters->NumParameters * 4;
   }
   /* We also upload clip plane data as uniforms */
   param_count += MAX_CLIP_PLANES * 4;

   prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
   prog_data.base.pull_param = rzalloc_array(NULL, const float *, param_count);

   GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
   prog_data.inputs_read = vp->program.Base.InputsRead;

   if (c.key.copy_edgeflag) {
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
      prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
   }

   if (brw->gen < 6) {
      /* Put dummy slots into the VUE for the SF to put the replaced
       * point sprite coords in.  We shouldn't need these dummy slots,
       * which take up precious URB space, but it would mean that the SF
       * doesn't get nice aligned pairs of input coords into output
       * coords, which would be a pain to handle.
       */
      for (i = 0; i < 8; i++) {
         if (c.key.point_coord_replace & (1 << i))
            outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
      }

      /* if back colors are written, allocate slots for front colors too */
      if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
         outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
      if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
         outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
   }

   brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written,
                       c.key.base.userclip_active);

   if (0) {
      _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
			       true);
   }

   /* Emit GEN4 code.
    */
   program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   if (prog_data.base.nr_pull_params)
      prog_data.base.num_surfaces = 1;
   if (c.vp->program.Base.SamplersUsed)
      prog_data.base.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
   if (prog &&
       prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
      prog_data.base.num_surfaces =
	 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
   }

   /* Scratch space is used for register spilling */
   if (c.base.last_scratch) {
      perf_debug("Vertex shader triggered register spilling.  "
                 "Try reducing the number of live vec4 values to "
                 "improve performance.\n");

      prog_data.base.total_scratch
         = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);

      brw_get_scratch_bo(brw, &brw->vs.scratch_bo,
			 prog_data.base.total_scratch * brw->max_vs_threads);
   }

   brw_upload_cache(&brw->cache, BRW_VS_PROG,
		    &c.key, sizeof(c.key),
		    program, program_size,
		    &prog_data, sizeof(prog_data),
		    &brw->vs.prog_offset, &brw->vs.prog_data);
   ralloc_free(mem_ctx);

   return true;
}
예제 #4
0
static bool
brw_vs_do_compile(struct brw_context *brw,
	          struct brw_vs_compile *c)
{
   struct brw_stage_prog_data *stage_prog_data = &c->prog_data.base.base;
   struct gl_shader *vs = NULL;
   int i;

   if (c->base.shader_prog)
      vs = c->base.shader_prog->_LinkedShaders[MESA_SHADER_VERTEX];

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    */
   int param_count;
   if (vs) {
      /* We add padding around uniform values below vec4 size, with the worst
       * case being a float value that gets blown up to a vec4, so be
       * conservative here.
       */
      param_count = vs->num_uniform_components * 4;

   } else {
      param_count = c->vp->program.Base.Parameters->NumParameters * 4;
   }
   /* vec4_visitor::setup_uniform_clipplane_values() also uploads user clip
    * planes as uniforms.
    */
   param_count += c->key.base.nr_userclip_plane_consts * 4;

   stage_prog_data->param = rzalloc_array(NULL, const float *, param_count);
   stage_prog_data->pull_param = rzalloc_array(NULL, const float *, param_count);

   /* Setting nr_params here NOT to the size of the param and pull_param
    * arrays, but to the number of uniform components vec4_visitor
    * needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
    */
   stage_prog_data->nr_params = ALIGN(param_count, 4) / 4;
   if (vs) {
      stage_prog_data->nr_params += vs->num_samplers;
   }

   GLbitfield64 outputs_written = c->vp->program.Base.OutputsWritten;
   c->prog_data.inputs_read = c->vp->program.Base.InputsRead;

   if (c->key.copy_edgeflag) {
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
      c->prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
   }

   if (brw->gen < 6) {
      /* Put dummy slots into the VUE for the SF to put the replaced
       * point sprite coords in.  We shouldn't need these dummy slots,
       * which take up precious URB space, but it would mean that the SF
       * doesn't get nice aligned pairs of input coords into output
       * coords, which would be a pain to handle.
       */
      for (i = 0; i < 8; i++) {
         if (c->key.point_coord_replace & (1 << i))
            outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
      }

      /* if back colors are written, allocate slots for front colors too */
      if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
         outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
      if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
         outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
   }

   /* In order for legacy clipping to work, we need to populate the clip
    * distance varying slots whenever clipping is enabled, even if the vertex
    * shader doesn't write to gl_ClipDistance.
    */
   if (c->key.base.userclip_active) {
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
   }

   brw_compute_vue_map(brw, &c->prog_data.base.vue_map, outputs_written);

   if (0) {
      _mesa_fprint_program_opt(stderr, &c->vp->program.Base, PROG_PRINT_DEBUG,
			       true);
   }

   /* Emit GEN4 code.
    */
   c->base.program = brw_vs_emit(brw, c->base.shader_prog, c,
         &c->prog_data, c->base.mem_ctx, &c->base.program_size);
   if (c->base.program == NULL)
      return false;

   if (c->base.last_scratch) {
      c->prog_data.base.total_scratch
         = brw_get_scratch_size(c->base.last_scratch*REG_SIZE);
   }

   return true;
}
예제 #5
0
파일: brw_wm.c 프로젝트: kaltsi/mesa
/**
 * All Mesa program -> GPU code generation goes through this function.
 * Depending on the instructions used (i.e. flow control instructions)
 * we'll use one of two code generators.
 */
bool do_wm_prog(struct brw_context *brw,
		struct gl_shader_program *prog,
		struct brw_fragment_program *fp,
		struct brw_wm_prog_key *key)
{
   struct brw_wm_compile *c;
   const GLuint *program;
   struct gl_shader *fs = NULL;
   GLuint program_size;

   if (prog)
      fs = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];

   c = rzalloc(NULL, struct brw_wm_compile);

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    */
   int param_count;
   if (fs) {
      param_count = fs->num_uniform_components;
   } else {
      param_count = fp->program.Base.Parameters->NumParameters * 4;
   }
   /* The backend also sometimes adds params for texture size. */
   param_count += 2 * BRW_MAX_TEX_UNIT;
   c->prog_data.param = rzalloc_array(NULL, const float *, param_count);
   c->prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);

   memcpy(&c->key, key, sizeof(*key));

   c->prog_data.barycentric_interp_modes =
      brw_compute_barycentric_interp_modes(brw, c->key.flat_shade,
                                           &fp->program);

   program = brw_wm_fs_emit(brw, c, &fp->program, prog, &program_size);
   if (program == NULL)
      return false;

   /* Scratch space is used for register spilling */
   if (c->last_scratch) {
      perf_debug("Fragment shader triggered register spilling.  "
                 "Try reducing the number of live scalar values to "
                 "improve performance.\n");

      c->prog_data.total_scratch = brw_get_scratch_size(c->last_scratch);

      brw_get_scratch_bo(brw, &brw->wm.scratch_bo,
			 c->prog_data.total_scratch * brw->max_wm_threads);
   }

   if (unlikely(INTEL_DEBUG & DEBUG_WM))
      fprintf(stderr, "\n");

   brw_upload_cache(&brw->cache, BRW_WM_PROG,
		    &c->key, sizeof(c->key),
		    program, program_size,
		    &c->prog_data, sizeof(c->prog_data),
		    &brw->wm.prog_offset, &brw->wm.prog_data);

   ralloc_free(c);

   return true;
}
예제 #6
0
static bool
do_vs_prog(struct brw_context *brw,
	   struct gl_shader_program *prog,
	   struct brw_vertex_program *vp,
	   struct brw_vs_prog_key *key)
{
   struct gl_context *ctx = &brw->intel.ctx;
   struct intel_context *intel = &brw->intel;
   GLuint program_size;
   const GLuint *program;
   struct brw_vs_compile c;
   void *mem_ctx;
   int aux_size;
   int i;
   struct gl_shader *vs = NULL;

   if (prog)
      vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];

   memset(&c, 0, sizeof(c));
   memcpy(&c.key, key, sizeof(*key));

   mem_ctx = ralloc_context(NULL);

   brw_init_compile(brw, &c.func, mem_ctx);
   c.vp = vp;

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    */
   int param_count;
   if (vs) {
      /* We add padding around uniform values below vec4 size, with the worst
       * case being a float value that gets blown up to a vec4, so be
       * conservative here.
       */
      param_count = vs->num_uniform_components * 4;

      /* We also upload clip plane data as uniforms */
      param_count += MAX_CLIP_PLANES * 4;
   } else {
      param_count = vp->program.Base.Parameters->NumParameters * 4;
   }
   c.prog_data.param = rzalloc_array(NULL, const float *, param_count);
   c.prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);

   c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
   c.prog_data.inputs_read = vp->program.Base.InputsRead;

   if (c.key.copy_edgeflag) {
      c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
      c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
   }

   /* Put dummy slots into the VUE for the SF to put the replaced
    * point sprite coords in.  We shouldn't need these dummy slots,
    * which take up precious URB space, but it would mean that the SF
    * doesn't get nice aligned pairs of input coords into output
    * coords, which would be a pain to handle.
    */
   for (i = 0; i < 8; i++) {
      if (c.key.point_coord_replace & (1 << i))
	 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
   }

   brw_compute_vue_map(&c);

   if (0) {
      _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
			       true);
   }

   /* Emit GEN4 code.
    */
   if (prog) {
      if (!brw_vs_emit(prog, &c)) {
	 ralloc_free(mem_ctx);
	 return false;
      }
   } else {
      brw_old_vs_emit(&c);
   }

   if (c.prog_data.nr_pull_params)
      c.prog_data.num_surfaces = 1;
   if (c.vp->program.Base.SamplersUsed)
      c.prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
   if (prog &&
       prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
      c.prog_data.num_surfaces =
	 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
   }

   /* Scratch space is used for register spilling */
   if (c.last_scratch) {
      perf_debug("Vertex shader triggered register spilling.  "
                 "Try reducing the number of live vec4 values to "
                 "improve performance.\n");

      c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);

      brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
			 c.prog_data.total_scratch * brw->max_vs_threads);
   }

   /* get the program
    */
   program = brw_get_program(&c.func, &program_size);

   /* We upload from &c.prog_data including the constant_map assuming
    * they're packed together.  It would be nice to have a
    * compile-time assert macro here.
    */
   assert(c.constant_map == (int8_t *)&c.prog_data +
	  sizeof(c.prog_data));
   assert(ctx->Const.VertexProgram.MaxNativeParameters ==
	  ARRAY_SIZE(c.constant_map));
   (void) ctx;

   aux_size = sizeof(c.prog_data);
   /* constant_map */
   aux_size += c.vp->program.Base.Parameters->NumParameters;

   brw_upload_cache(&brw->cache, BRW_VS_PROG,
		    &c.key, sizeof(c.key),
		    program, program_size,
		    &c.prog_data, aux_size,
		    &brw->vs.prog_offset, &brw->vs.prog_data);
   ralloc_free(mem_ctx);

   return true;
}
예제 #7
0
파일: brw_vs.c 프로젝트: Sheph/mesa
static bool
do_vs_prog(struct brw_context *brw,
	   struct gl_shader_program *prog,
	   struct brw_vertex_program *vp,
	   struct brw_vs_prog_key *key)
{
   GLuint program_size;
   const GLuint *program;
   struct brw_vs_compile c;
   struct brw_vs_prog_data prog_data;
   struct brw_stage_prog_data *stage_prog_data = &prog_data.base.base;
   void *mem_ctx;
   int i;
   struct gl_shader *vs = NULL;

   if (prog)
      vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];

   memset(&c, 0, sizeof(c));
   memcpy(&c.key, key, sizeof(*key));
   memset(&prog_data, 0, sizeof(prog_data));

   mem_ctx = ralloc_context(NULL);

   c.vp = vp;

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    */
   int param_count;
   if (vs) {
      /* We add padding around uniform values below vec4 size, with the worst
       * case being a float value that gets blown up to a vec4, so be
       * conservative here.
       */
      param_count = vs->num_uniform_components * 4;

   } else {
      param_count = vp->program.Base.Parameters->NumParameters * 4;
   }
   /* vec4_visitor::setup_uniform_clipplane_values() also uploads user clip
    * planes as uniforms.
    */
   param_count += c.key.base.nr_userclip_plane_consts * 4;

   stage_prog_data->param = rzalloc_array(NULL, const float *, param_count);
   stage_prog_data->pull_param = rzalloc_array(NULL, const float *, param_count);

   /* Setting nr_params here NOT to the size of the param and pull_param
    * arrays, but to the number of uniform components vec4_visitor
    * needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
    */
   stage_prog_data->nr_params = ALIGN(param_count, 4) / 4;
   if (vs) {
      stage_prog_data->nr_params += vs->num_samplers;
   }

   GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
   prog_data.inputs_read = vp->program.Base.InputsRead;

   if (c.key.copy_edgeflag) {
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
      prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
   }

   if (brw->gen < 6) {
      /* Put dummy slots into the VUE for the SF to put the replaced
       * point sprite coords in.  We shouldn't need these dummy slots,
       * which take up precious URB space, but it would mean that the SF
       * doesn't get nice aligned pairs of input coords into output
       * coords, which would be a pain to handle.
       */
      for (i = 0; i < 8; i++) {
         if (c.key.point_coord_replace & (1 << i))
            outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
      }

      /* if back colors are written, allocate slots for front colors too */
      if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
         outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
      if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
         outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
   }

   /* In order for legacy clipping to work, we need to populate the clip
    * distance varying slots whenever clipping is enabled, even if the vertex
    * shader doesn't write to gl_ClipDistance.
    */
   if (c.key.base.userclip_active) {
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
      outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
   }

   brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written);

   if (0) {
      _mesa_fprint_program_opt(stderr, &c.vp->program.Base, PROG_PRINT_DEBUG,
			       true);
   }

   /* Emit GEN4 code.
    */
   program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   /* Scratch space is used for register spilling */
   if (c.base.last_scratch) {
      perf_debug("Vertex shader triggered register spilling.  "
                 "Try reducing the number of live vec4 values to "
                 "improve performance.\n");

      prog_data.base.total_scratch
         = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);

      brw_get_scratch_bo(brw, &brw->vs.base.scratch_bo,
			 prog_data.base.total_scratch * brw->max_vs_threads);
   }

   brw_upload_cache(&brw->cache, BRW_VS_PROG,
		    &c.key, sizeof(c.key),
		    program, program_size,
		    &prog_data, sizeof(prog_data),
		    &brw->vs.base.prog_offset, &brw->vs.prog_data);
   ralloc_free(mem_ctx);

   return true;
}