/* * BT_BROOT -- Fix up the btree root page after it has been split. * * Parameters: * t: tree * h: root page * l: left page * r: right page * * Returns: * RET_ERROR, RET_SUCCESS */ static int bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r) { BINTERNAL *bi; BLEAF *bl; u_int32_t nbytes; char *dest; /* * If the root page was a leaf page, change it into an internal page. * We copy the key we split on (but not the key's data, in the case of * a leaf page) to the new root page. * * The btree comparison code guarantees that the left-most key on any * level of the tree is never used, so it doesn't need to be filled in. */ nbytes = NBINTERNAL(0); h->linp[0] = h->upper = t->bt_psize - nbytes; dest = (char *)h + h->upper; WR_BINTERNAL(dest, 0, l->pgno, 0); switch (h->flags & P_TYPE) { case P_BLEAF: bl = GETBLEAF(r, 0); nbytes = NBINTERNAL(bl->ksize); __PAST_END(h->linp, 1) = h->upper -= nbytes; dest = (char *)h + h->upper; WR_BINTERNAL(dest, bl->ksize, r->pgno, 0); memmove(dest, bl->bytes, bl->ksize); /* * If the key is on an overflow page, mark the overflow chain * so it isn't deleted when the leaf copy of the key is deleted. */ if (bl->flags & P_BIGKEY && bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR) return (RET_ERROR); break; case P_BINTERNAL: bi = GETBINTERNAL(r, 0); nbytes = NBINTERNAL(bi->ksize); __PAST_END(h->linp, 1) = h->upper -= nbytes; dest = (char *)h + h->upper; memmove(dest, bi, nbytes); ((BINTERNAL *)dest)->pgno = r->pgno; break; default: abort(); } /* There are two keys on the page. */ h->lower = BTDATAOFF + 2 * sizeof(indx_t); /* Unpin the root page, set to btree internal page. */ h->flags &= ~P_TYPE; h->flags |= P_BINTERNAL; mpool_put(t->bt_mp, h, MPOOL_DIRTY); return (RET_SUCCESS); }
/* * __BT_SPLIT -- Split the tree. * * Parameters: * t: tree * sp: page to split * key: key to insert * data: data to insert * flags: BIGKEY/BIGDATA flags * ilen: insert length * skip: index to leave open * * Returns: * RET_ERROR, RET_SUCCESS */ int __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags, size_t ilen, u_int32_t argskip) { BINTERNAL *bi; BLEAF *bl, *tbl; DBT a, b; EPGNO *parent; PAGE *h, *l, *r, *lchild, *rchild; indx_t nxtindex; u_int16_t skip; u_int32_t n, nbytes, nksize; int parentsplit; char *dest; /* * Split the page into two pages, l and r. The split routines return * a pointer to the page into which the key should be inserted and with * skip set to the offset which should be used. Additionally, l and r * are pinned. */ skip = argskip; h = sp->pgno == P_ROOT ? bt_root(t, sp, &l, &r, &skip, ilen) : bt_page(t, sp, &l, &r, &skip, ilen); if (h == NULL) return (RET_ERROR); /* * Insert the new key/data pair into the leaf page. (Key inserts * always cause a leaf page to split first.) */ h->linp[skip] = h->upper -= ilen; dest = (char *)h + h->upper; if (F_ISSET(t, R_RECNO)) WR_RLEAF(dest, data, flags) else WR_BLEAF(dest, key, data, flags) /* If the root page was split, make it look right. */ if (sp->pgno == P_ROOT && (F_ISSET(t, R_RECNO) ? bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) goto err2; /* * Now we walk the parent page stack -- a LIFO stack of the pages that * were traversed when we searched for the page that split. Each stack * entry is a page number and a page index offset. The offset is for * the page traversed on the search. We've just split a page, so we * have to insert a new key into the parent page. * * If the insert into the parent page causes it to split, may have to * continue splitting all the way up the tree. We stop if the root * splits or the page inserted into didn't have to split to hold the * new key. Some algorithms replace the key for the old page as well * as the new page. We don't, as there's no reason to believe that the * first key on the old page is any better than the key we have, and, * in the case of a key being placed at index 0 causing the split, the * key is unavailable. * * There are a maximum of 5 pages pinned at any time. We keep the left * and right pages pinned while working on the parent. The 5 are the * two children, left parent and right parent (when the parent splits) * and the root page or the overflow key page when calling bt_preserve. * This code must make sure that all pins are released other than the * root page or overflow page which is unlocked elsewhere. */ while ((parent = BT_POP(t)) != NULL) { lchild = l; rchild = r; /* Get the parent page. */ if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) goto err2; /* * The new key goes ONE AFTER the index, because the split * was to the right. */ skip = parent->index + 1; /* * Calculate the space needed on the parent page. * * Prefix trees: space hack when inserting into BINTERNAL * pages. Retain only what's needed to distinguish between * the new entry and the LAST entry on the page to its left. * If the keys compare equal, retain the entire key. Note, * we don't touch overflow keys, and the entire key must be * retained for the next-to-left most key on the leftmost * page of each level, or the search will fail. Applicable * ONLY to internal pages that have leaf pages as children. * Further reduction of the key between pairs of internal * pages loses too much information. */ switch (rchild->flags & P_TYPE) { case P_BINTERNAL: bi = GETBINTERNAL(rchild, 0); nbytes = NBINTERNAL(bi->ksize); break; case P_BLEAF: bl = GETBLEAF(rchild, 0); nbytes = NBINTERNAL(bl->ksize); if (t->bt_pfx && !(bl->flags & P_BIGKEY) && (h->prevpg != P_INVALID || skip > 1)) { tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1); a.size = tbl->ksize; a.data = tbl->bytes; b.size = bl->ksize; b.data = bl->bytes; nksize = t->bt_pfx(&a, &b); n = NBINTERNAL(nksize); if (n < nbytes) { #ifdef STATISTICS bt_pfxsaved += nbytes - n; #endif nbytes = n; } else nksize = 0; } else nksize = 0; break; case P_RINTERNAL: case P_RLEAF: nbytes = NRINTERNAL; break; default: abort(); } /* Split the parent page if necessary or shift the indices. */ if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) { sp = h; h = h->pgno == P_ROOT ? bt_root(t, h, &l, &r, &skip, nbytes) : bt_page(t, h, &l, &r, &skip, nbytes); if (h == NULL) goto err1; parentsplit = 1; } else { if (skip < (nxtindex = NEXTINDEX(h))) memmove(h->linp + skip + 1, h->linp + skip, (nxtindex - skip) * sizeof(indx_t)); h->lower += sizeof(indx_t); parentsplit = 0; } /* Insert the key into the parent page. */ switch (rchild->flags & P_TYPE) { case P_BINTERNAL: h->linp[skip] = h->upper -= nbytes; dest = (char *)h + h->linp[skip]; memmove(dest, bi, nbytes); ((BINTERNAL *)dest)->pgno = rchild->pgno; break; case P_BLEAF: h->linp[skip] = h->upper -= nbytes; dest = (char *)h + h->linp[skip]; WR_BINTERNAL(dest, nksize ? nksize : bl->ksize, rchild->pgno, bl->flags & P_BIGKEY); memmove(dest, bl->bytes, nksize ? nksize : bl->ksize); if (bl->flags & P_BIGKEY) { pgno_t pgno; memcpy(&pgno, bl->bytes, sizeof(pgno)); if (bt_preserve(t, pgno) == RET_ERROR) goto err1; } break; case P_RINTERNAL: /* * Update the left page count. If split * added at index 0, fix the correct page. */ if (skip > 0) dest = (char *)h + h->linp[skip - 1]; else dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; ((RINTERNAL *)dest)->nrecs = rec_total(lchild); ((RINTERNAL *)dest)->pgno = lchild->pgno; /* Update the right page count. */ h->linp[skip] = h->upper -= nbytes; dest = (char *)h + h->linp[skip]; ((RINTERNAL *)dest)->nrecs = rec_total(rchild); ((RINTERNAL *)dest)->pgno = rchild->pgno; break; case P_RLEAF: /* * Update the left page count. If split * added at index 0, fix the correct page. */ if (skip > 0) dest = (char *)h + h->linp[skip - 1]; else dest = (char *)l + l->linp[NEXTINDEX(l) - 1]; ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild); ((RINTERNAL *)dest)->pgno = lchild->pgno; /* Update the right page count. */ h->linp[skip] = h->upper -= nbytes; dest = (char *)h + h->linp[skip]; ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild); ((RINTERNAL *)dest)->pgno = rchild->pgno; break; default: abort(); } /* Unpin the held pages. */ if (!parentsplit) { mpool_put(t->bt_mp, h, MPOOL_DIRTY); break; } /* If the root page was split, make it look right. */ if (sp->pgno == P_ROOT && (F_ISSET(t, R_RECNO) ? bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR) goto err1; mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); } /* Unpin the held pages. */ mpool_put(t->bt_mp, l, MPOOL_DIRTY); mpool_put(t->bt_mp, r, MPOOL_DIRTY); /* Clear any pages left on the stack. */ return (RET_SUCCESS); /* * If something fails in the above loop we were already walking back * up the tree and the tree is now inconsistent. Nothing much we can * do about it but release any memory we're holding. */ err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY); mpool_put(t->bt_mp, rchild, MPOOL_DIRTY); err2: mpool_put(t->bt_mp, l, 0); mpool_put(t->bt_mp, r, 0); __dbpanic(t->bt_dbp); return (RET_ERROR); }