예제 #1
0
static int change_extents_uuid(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_path path;
	struct btrfs_key key = {0, 0, 0};
	int ret = 0;

	btrfs_init_path(&path);
	/*
	 * Here we don't use transaction as it will takes a lot of reserve
	 * space, and that will make a near-full btrfs unable to change uuid
	 */
	ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
	if (ret < 0)
		goto out;

	while (1) {
		struct btrfs_extent_item *ei;
		struct extent_buffer *eb;
		u64 flags;
		u64 bytenr;

		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
		    key.type != BTRFS_METADATA_ITEM_KEY)
			goto next;
		ei = btrfs_item_ptr(path.nodes[0], path.slots[0],
				    struct btrfs_extent_item);
		flags = btrfs_extent_flags(path.nodes[0], ei);
		if (!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
			goto next;

		bytenr = key.objectid;
		eb = read_tree_block(root, bytenr, root->nodesize, 0);
		if (IS_ERR(eb)) {
			error("failed to read tree block: %llu", bytenr);
			ret = PTR_ERR(eb);
			goto out;
		}
		ret = change_header_uuid(root, eb);
		free_extent_buffer(eb);
		if (ret < 0) {
			error("failed to change uuid of tree block: %llu",
				bytenr);
			goto out;
		}
next:
		ret = btrfs_next_item(root, &path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			goto out;
		}
	}

out:
	btrfs_release_path(&path);
	return ret;
}
예제 #2
0
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root)
{
	struct btrfs_block_group_cache *cache[8];
	int ret;
	int err = 0;
	int werr = 0;
	struct radix_tree_root *radix = &root->fs_info->block_group_radix;
	int i;
	struct btrfs_path path;
	btrfs_init_path(&path);

	while(1) {
		ret = radix_tree_gang_lookup_tag(radix, (void **)cache,
						 0, ARRAY_SIZE(cache),
						 BTRFS_BLOCK_GROUP_DIRTY);
		if (!ret)
			break;
		for (i = 0; i < ret; i++) {
			radix_tree_tag_clear(radix, cache[i]->key.objectid +
					     cache[i]->key.offset -1,
					     BTRFS_BLOCK_GROUP_DIRTY);
			err = write_one_cache_group(trans, root,
						    &path, cache[i]);
			if (err)
				werr = err;
		}
	}
	return werr;
}
예제 #3
0
static int change_devices_uuid(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root = fs_info->chunk_root;
	struct btrfs_path path;
	struct btrfs_key key = {0, 0, 0};
	int ret = 0;

	btrfs_init_path(&path);
	/* No transaction again */
	ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
	if (ret < 0)
		goto out;

	while (1) {
		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
		if (key.type != BTRFS_DEV_ITEM_KEY ||
		    key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
			goto next;
		ret = change_device_uuid(root, path.nodes[0], path.slots[0]);
		if (ret < 0)
			goto out;
next:
		ret = btrfs_next_item(root, &path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			goto out;
		}
	}
out:
	btrfs_release_path(&path);
	return ret;
}
예제 #4
0
static int inc_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root
			 *root, u64 blocknr)
{
	struct btrfs_path path;
	int ret;
	struct btrfs_key key;
	struct btrfs_leaf *l;
	struct btrfs_extent_item *item;
	struct btrfs_key ins;
	u32 refs;

	find_free_extent(trans, root->fs_info->extent_root, 0, 0, (u64)-1,
			 &ins);
	btrfs_init_path(&path);
	key.objectid = blocknr;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
	key.offset = 1;
	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path,
				0, 1);
	if (ret != 0)
		BUG();
	BUG_ON(ret != 0);
	l = &path.nodes[0]->leaf;
	item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
	refs = btrfs_extent_refs(item);
	btrfs_set_extent_refs(item, refs + 1);

	BUG_ON(list_empty(&path.nodes[0]->dirty));
	btrfs_release_path(root->fs_info->extent_root, &path);
	finish_current_insert(trans, root->fs_info->extent_root);
	run_pending(trans, root->fs_info->extent_root);
	return 0;
}
예제 #5
0
/*
 * remove an extent from the root, returns 0 on success
 */
static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
			 *root, u64 blocknr, u64 num_blocks, int pin)
{
	struct btrfs_path path;
	struct btrfs_key key;
	struct btrfs_fs_info *info = root->fs_info;
	struct btrfs_root *extent_root = info->extent_root;
	int ret;
	struct btrfs_extent_item *ei;
	struct btrfs_key ins;
	u32 refs;

	BUG_ON(pin && num_blocks != 1);
	key.objectid = blocknr;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
	key.offset = num_blocks;

	find_free_extent(trans, root, 0, 0, (u64)-1, &ins);
	btrfs_init_path(&path);
	ret = btrfs_search_slot(trans, extent_root, &key, &path, -1, 1);
	if (ret) {
		btrfs_print_tree(extent_root, extent_root->node);
		printf("failed to find %llu\n",
		       (u64)key.objectid);
		BUG();
	}
	ei = btrfs_item_ptr(&path.nodes[0]->leaf, path.slots[0],
			    struct btrfs_extent_item);
	BUG_ON(ei->refs == 0);
	refs = btrfs_extent_refs(ei) - 1;
	btrfs_set_extent_refs(ei, refs);
	if (refs == 0) {
		u64 super_blocks_used;
		if (pin) {
			int err;
			unsigned long bl = blocknr;
			radix_tree_preload(GFP_KERNEL);
			err = radix_tree_insert(&info->pinned_radix,
						blocknr, (void *)bl);
			BUG_ON(err);
			radix_tree_preload_end();
		}
		super_blocks_used = btrfs_super_blocks_used(info->disk_super);
		btrfs_set_super_blocks_used(info->disk_super,
					    super_blocks_used - num_blocks);
		ret = btrfs_del_item(trans, extent_root, &path);
		if (!pin && extent_root->fs_info->last_insert.objectid >
		    blocknr)
			extent_root->fs_info->last_insert.objectid = blocknr;
		if (ret)
			BUG();
		ret = update_block_group(trans, root, blocknr, num_blocks, 0);
		BUG_ON(ret);
	}
	btrfs_release_path(extent_root, &path);
	finish_current_insert(trans, extent_root);
	return ret;
}
예제 #6
0
int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
			  *root, char *name, int name_len, u64 dir,
			  struct btrfs_key *location, u8 type)
{
	int ret = 0;
	struct btrfs_path path;
	struct btrfs_dir_item *dir_item;
	char *name_ptr;
	struct btrfs_key key;
	u32 data_size;

	key.objectid = dir;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY);
	if (name_len == 1 && *name == '.')
		key.offset = 1;
	else if (name_len == 2 && name[0] == '.' && name[1] == '.')
		key.offset = 2;
	else
		ret = btrfs_name_hash(name, name_len, &key.offset);
	BUG_ON(ret);
	btrfs_init_path(&path);
	data_size = sizeof(*dir_item) + name_len;
	dir_item = insert_with_overflow(trans, root, &path, &key, data_size);
	if (!dir_item) {
		ret = -1;
		goto out;
	}
	btrfs_cpu_key_to_disk(&dir_item->location, location);
	btrfs_set_dir_type(dir_item, type);
	btrfs_set_dir_flags(dir_item, 0);
	btrfs_set_dir_name_len(dir_item, name_len);
	name_ptr = (char *)(dir_item + 1);
	memcpy(name_ptr, name, name_len);

	/* FIXME, use some real flag for selecting the extra index */
	if (root == root->fs_info->tree_root)
		goto out;

	btrfs_release_path(root, &path);
	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
	key.offset = location->objectid;
	dir_item = insert_with_overflow(trans, root, &path, &key, data_size);
	if (!dir_item) {
		ret = -1;
		goto out;
	}
	btrfs_cpu_key_to_disk(&dir_item->location, location);
	btrfs_set_dir_type(dir_item, type);
	btrfs_set_dir_flags(dir_item, 0);
	btrfs_set_dir_name_len(dir_item, name_len);
	name_ptr = (char *)(dir_item + 1);
	memcpy(name_ptr, name, name_len);
out:
	btrfs_release_path(root, &path);
	return ret;
}
예제 #7
0
int btrfs_read_block_groups(struct btrfs_root *root)
{
	struct btrfs_path path;
	int ret;
	int err = 0;
	struct btrfs_block_group_item *bi;
	struct btrfs_block_group_cache *cache;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_leaf *leaf;
	u64 group_size_blocks = BTRFS_BLOCK_GROUP_SIZE / root->blocksize;

	root = root->fs_info->extent_root;
	key.objectid = 0;
	key.offset = group_size_blocks;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
	btrfs_init_path(&path);

	while(1) {
		ret = btrfs_search_slot(NULL, root->fs_info->extent_root,
					&key, &path, 0, 0);
		if (ret != 0) {
			err = ret;
			break;
		}
		leaf = &path.nodes[0]->leaf;
		btrfs_disk_key_to_cpu(&found_key,
				      &leaf->items[path.slots[0]].key);
		cache = malloc(sizeof(*cache));
		if (!cache) {
			err = -1;
			break;
		}
		bi = btrfs_item_ptr(leaf, path.slots[0],
				    struct btrfs_block_group_item);
		memcpy(&cache->item, bi, sizeof(*bi));
		memcpy(&cache->key, &found_key, sizeof(found_key));
		key.objectid = found_key.objectid + found_key.offset;
		btrfs_release_path(root, &path);
		ret = radix_tree_insert(&root->fs_info->block_group_radix,
					found_key.objectid +
					found_key.offset - 1, (void *)cache);
		BUG_ON(ret);
		if (key.objectid >=
		    btrfs_super_total_blocks(root->fs_info->disk_super))
			break;
	}
	btrfs_release_path(root, &path);
	return 0;
}
예제 #8
0
static int copy_file(struct btrfs_root *root, int fd, struct btrfs_key *key,
		     const char *file)
{
	struct extent_buffer *leaf;
	struct btrfs_path path;
	struct btrfs_file_extent_item *fi;
	struct btrfs_inode_item *inode_item;
	struct btrfs_timespec *bts;
	struct btrfs_key found_key;
	int ret;
	int extent_type;
	int compression;
	int loops = 0;
	u64 found_size = 0;
	struct timespec times[2];
	int times_ok = 0;

	btrfs_init_path(&path);
	ret = btrfs_lookup_inode(NULL, root, &path, key, 0);
	if (ret == 0) {
		inode_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
				    struct btrfs_inode_item);
		found_size = btrfs_inode_size(path.nodes[0], inode_item);

		if (restore_metadata) {
			/*
			 * Change the ownership and mode now, set times when
			 * copyout is finished.
			 */

			ret = fchown(fd, btrfs_inode_uid(path.nodes[0], inode_item),
					btrfs_inode_gid(path.nodes[0], inode_item));
			if (ret && !ignore_errors)
				goto out;

			ret = fchmod(fd, btrfs_inode_mode(path.nodes[0], inode_item));
			if (ret && !ignore_errors)
				goto out;

			bts = btrfs_inode_atime(inode_item);
			times[0].tv_sec = btrfs_timespec_sec(path.nodes[0], bts);
			times[0].tv_nsec = btrfs_timespec_nsec(path.nodes[0], bts);

			bts = btrfs_inode_mtime(inode_item);
			times[1].tv_sec = btrfs_timespec_sec(path.nodes[0], bts);
			times[1].tv_nsec = btrfs_timespec_nsec(path.nodes[0], bts);
			times_ok = 1;
		}
	}
예제 #9
0
static int copy_metadata(struct btrfs_root *root, int fd,
		struct btrfs_key *key)
{
	struct btrfs_path path;
	struct btrfs_inode_item *inode_item;
	int ret;

	btrfs_init_path(&path);
	ret = btrfs_lookup_inode(NULL, root, &path, key, 0);
	if (ret == 0) {
		struct btrfs_timespec *bts;
		struct timespec times[2];

		inode_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
				struct btrfs_inode_item);

		ret = fchown(fd, btrfs_inode_uid(path.nodes[0], inode_item),
				btrfs_inode_gid(path.nodes[0], inode_item));
		if (ret) {
			error("failed to change owner: %m");
			goto out;
		}

		ret = fchmod(fd, btrfs_inode_mode(path.nodes[0], inode_item));
		if (ret) {
			error("failed to change mode: %m");
			goto out;
		}

		bts = btrfs_inode_atime(inode_item);
		times[0].tv_sec = btrfs_timespec_sec(path.nodes[0], bts);
		times[0].tv_nsec = btrfs_timespec_nsec(path.nodes[0], bts);

		bts = btrfs_inode_mtime(inode_item);
		times[1].tv_sec = btrfs_timespec_sec(path.nodes[0], bts);
		times[1].tv_nsec = btrfs_timespec_nsec(path.nodes[0], bts);

		ret = futimens(fd, times);
		if (ret) {
			error("failed to set times: %m");
			goto out;
		}
	}
out:
	btrfs_release_path(&path);
	return ret;
}
예제 #10
0
static int lookup_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root
			    *root, u64 blocknr, u32 *refs)
{
	struct btrfs_path path;
	int ret;
	struct btrfs_key key;
	struct btrfs_leaf *l;
	struct btrfs_extent_item *item;
	btrfs_init_path(&path);
	key.objectid = blocknr;
	key.offset = 1;
	key.flags = 0;
	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path,
				0, 0);
	if (ret != 0)
		BUG();
	l = &path.nodes[0]->leaf;
	item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
	*refs = btrfs_extent_refs(item);
	btrfs_release_path(root->fs_info->extent_root, &path);
	return 0;
}
예제 #11
0
/*
 * drop the reference count on the tree rooted at 'snap'.  This traverses
 * the tree freeing any blocks that have a ref count of zero after being
 * decremented.
 */
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
			*root, struct btrfs_buffer *snap)
{
	int ret = 0;
	int wret;
	int level;
	struct btrfs_path path;
	int i;
	int orig_level;

	btrfs_init_path(&path);

	level = btrfs_header_level(&snap->node.header);
	orig_level = level;
	path.nodes[level] = snap;
	path.slots[level] = 0;
	while(1) {
		wret = walk_down_tree(trans, root, &path, &level);
		if (wret > 0)
			break;
		if (wret < 0)
			ret = wret;

		wret = walk_up_tree(trans, root, &path, &level);
		if (wret > 0)
			break;
		if (wret < 0)
			ret = wret;
	}
	for (i = 0; i <= orig_level; i++) {
		if (path.nodes[i]) {
			btrfs_block_release(root, path.nodes[i]);
		}
	}
	return ret;
}
예제 #12
0
int main(int ac, char **av)
{
    struct btrfs_root *root;
    struct btrfs_fs_info *info;
    struct btrfs_path path;
    struct btrfs_key key;
    struct btrfs_root_item ri;
    struct extent_buffer *leaf;
    struct btrfs_disk_key disk_key;
    struct btrfs_key found_key;
    char uuidbuf[BTRFS_UUID_UNPARSED_SIZE];
    int ret;
    int slot;
    int extent_only = 0;
    int device_only = 0;
    int uuid_tree_only = 0;
    int roots_only = 0;
    int root_backups = 0;
    u64 block_only = 0;
    struct btrfs_root *tree_root_scan;
    u64 tree_id = 0;

    radix_tree_init();

    while(1) {
        int c;
        static const struct option long_options[] = {
            { "help", no_argument, NULL, GETOPT_VAL_HELP},
            { NULL, 0, NULL, 0 }
        };

        c = getopt_long(ac, av, "deb:rRut:", long_options, NULL);
        if (c < 0)
            break;
        switch(c) {
        case 'e':
            extent_only = 1;
            break;
        case 'd':
            device_only = 1;
            break;
        case 'r':
            roots_only = 1;
            break;
        case 'u':
            uuid_tree_only = 1;
            break;
        case 'R':
            roots_only = 1;
            root_backups = 1;
            break;
        case 'b':
            block_only = arg_strtou64(optarg);
            break;
        case 't':
            tree_id = arg_strtou64(optarg);
            break;
        case GETOPT_VAL_HELP:
        default:
            print_usage(c != GETOPT_VAL_HELP);
        }
    }
    set_argv0(av);
    ac = ac - optind;
    if (check_argc_exact(ac, 1))
        print_usage(1);

    ret = check_arg_type(av[optind]);
    if (ret != BTRFS_ARG_BLKDEV && ret != BTRFS_ARG_REG) {
        fprintf(stderr, "'%s' is not a block device or regular file\n",
                av[optind]);
        exit(1);
    }

    info = open_ctree_fs_info(av[optind], 0, 0, OPEN_CTREE_PARTIAL);
    if (!info) {
        fprintf(stderr, "unable to open %s\n", av[optind]);
        exit(1);
    }

    root = info->fs_root;
    if (!root) {
        fprintf(stderr, "unable to open %s\n", av[optind]);
        exit(1);
    }

    if (block_only) {
        leaf = read_tree_block(root,
                               block_only,
                               root->leafsize, 0);

        if (extent_buffer_uptodate(leaf) &&
                btrfs_header_level(leaf) != 0) {
            free_extent_buffer(leaf);
            leaf = NULL;
        }

        if (!leaf) {
            leaf = read_tree_block(root,
                                   block_only,
                                   root->nodesize, 0);
        }
        if (!extent_buffer_uptodate(leaf)) {
            fprintf(stderr, "failed to read %llu\n",
                    (unsigned long long)block_only);
            goto close_root;
        }
        btrfs_print_tree(root, leaf, 0);
        free_extent_buffer(leaf);
        goto close_root;
    }

    if (!(extent_only || uuid_tree_only || tree_id)) {
        if (roots_only) {
            printf("root tree: %llu level %d\n",
                   (unsigned long long)info->tree_root->node->start,
                   btrfs_header_level(info->tree_root->node));
            printf("chunk tree: %llu level %d\n",
                   (unsigned long long)info->chunk_root->node->start,
                   btrfs_header_level(info->chunk_root->node));
        } else {
            if (info->tree_root->node) {
                printf("root tree\n");
                btrfs_print_tree(info->tree_root,
                                 info->tree_root->node, 1);
            }

            if (info->chunk_root->node) {
                printf("chunk tree\n");
                btrfs_print_tree(info->chunk_root,
                                 info->chunk_root->node, 1);
            }
        }
    }
    tree_root_scan = info->tree_root;

    btrfs_init_path(&path);
again:
    if (!extent_buffer_uptodate(tree_root_scan->node))
        goto no_node;

    /*
     * Tree's that are not pointed by the tree of tree roots
     */
    if (tree_id && tree_id == BTRFS_ROOT_TREE_OBJECTID) {
        if (!info->tree_root->node) {
            error("cannot print root tree, invalid pointer");
            goto no_node;
        }
        printf("root tree\n");
        btrfs_print_tree(info->tree_root, info->tree_root->node, 1);
        goto no_node;
    }

    if (tree_id && tree_id == BTRFS_CHUNK_TREE_OBJECTID) {
        if (!info->chunk_root->node) {
            error("cannot print chunk tree, invalid pointer");
            goto no_node;
        }
        printf("chunk tree\n");
        btrfs_print_tree(info->chunk_root, info->chunk_root->node, 1);
        goto no_node;
    }

    key.offset = 0;
    key.objectid = 0;
    btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
    ret = btrfs_search_slot(NULL, tree_root_scan, &key, &path, 0, 0);
    BUG_ON(ret < 0);
    while(1) {
        leaf = path.nodes[0];
        slot = path.slots[0];
        if (slot >= btrfs_header_nritems(leaf)) {
            ret = btrfs_next_leaf(tree_root_scan, &path);
            if (ret != 0)
                break;
            leaf = path.nodes[0];
            slot = path.slots[0];
        }
        btrfs_item_key(leaf, &disk_key, path.slots[0]);
        btrfs_disk_key_to_cpu(&found_key, &disk_key);
        if (btrfs_key_type(&found_key) == BTRFS_ROOT_ITEM_KEY) {
            unsigned long offset;
            struct extent_buffer *buf;
            int skip = extent_only | device_only | uuid_tree_only;

            offset = btrfs_item_ptr_offset(leaf, slot);
            read_extent_buffer(leaf, &ri, offset, sizeof(ri));
            buf = read_tree_block(tree_root_scan,
                                  btrfs_root_bytenr(&ri),
                                  btrfs_level_size(tree_root_scan,
                                                   btrfs_root_level(&ri)),
                                  0);
            if (!extent_buffer_uptodate(buf))
                goto next;
            if (tree_id && found_key.objectid != tree_id) {
                free_extent_buffer(buf);
                goto next;
            }

            switch(found_key.objectid) {
            case BTRFS_ROOT_TREE_OBJECTID:
                if (!skip)
                    printf("root");
                break;
            case BTRFS_EXTENT_TREE_OBJECTID:
                if (!device_only && !uuid_tree_only)
                    skip = 0;
                if (!skip)
                    printf("extent");
                break;
            case BTRFS_CHUNK_TREE_OBJECTID:
                if (!skip) {
                    printf("chunk");
                }
                break;
            case BTRFS_DEV_TREE_OBJECTID:
                if (!uuid_tree_only)
                    skip = 0;
                if (!skip)
                    printf("device");
                break;
            case BTRFS_FS_TREE_OBJECTID:
                if (!skip) {
                    printf("fs");
                }
                break;
            case BTRFS_ROOT_TREE_DIR_OBJECTID:
                skip = 0;
                printf("directory");
                break;
            case BTRFS_CSUM_TREE_OBJECTID:
                if (!skip) {
                    printf("checksum");
                }
                break;
            case BTRFS_ORPHAN_OBJECTID:
                if (!skip) {
                    printf("orphan");
                }
                break;
            case BTRFS_TREE_LOG_OBJECTID:
                if (!skip) {
                    printf("log");
                }
                break;
            case BTRFS_TREE_LOG_FIXUP_OBJECTID:
                if (!skip) {
                    printf("log fixup");
                }
                break;
            case BTRFS_TREE_RELOC_OBJECTID:
                if (!skip) {
                    printf("reloc");
                }
                break;
            case BTRFS_DATA_RELOC_TREE_OBJECTID:
                if (!skip) {
                    printf("data reloc");
                }
                break;
            case BTRFS_EXTENT_CSUM_OBJECTID:
                if (!skip) {
                    printf("extent checksum");
                }
                break;
            case BTRFS_QUOTA_TREE_OBJECTID:
                if (!skip) {
                    printf("quota");
                }
                break;
            case BTRFS_UUID_TREE_OBJECTID:
                if (!extent_only && !device_only)
                    skip = 0;
                if (!skip)
                    printf("uuid");
                break;
            case BTRFS_FREE_SPACE_TREE_OBJECTID:
                if (!skip)
                    printf("free space");
                break;
            case BTRFS_MULTIPLE_OBJECTIDS:
                if (!skip) {
                    printf("multiple");
                }
                break;
            default:
                if (!skip) {
                    printf("file");
                }
            }
            if (extent_only && !skip) {
                print_extents(tree_root_scan, buf);
            } else if (!skip) {
                printf(" tree ");
                btrfs_print_key(&disk_key);
                if (roots_only) {
                    printf(" %llu level %d\n",
                           (unsigned long long)buf->start,
                           btrfs_header_level(buf));
                } else {
                    printf(" \n");
                    btrfs_print_tree(tree_root_scan, buf, 1);
                }
            }
            free_extent_buffer(buf);
        }
next:
        path.slots[0]++;
    }
no_node:
    btrfs_release_path(&path);

    if (tree_root_scan == info->tree_root &&
            info->log_root_tree) {
        tree_root_scan = info->log_root_tree;
        goto again;
    }

    if (extent_only || device_only || uuid_tree_only)
        goto close_root;

    if (root_backups)
        print_old_roots(info->super_copy);

    printf("total bytes %llu\n",
           (unsigned long long)btrfs_super_total_bytes(info->super_copy));
    printf("bytes used %llu\n",
           (unsigned long long)btrfs_super_bytes_used(info->super_copy));
    uuidbuf[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0';
    uuid_unparse(info->super_copy->fsid, uuidbuf);
    printf("uuid %s\n", uuidbuf);
    printf("%s\n", PACKAGE_STRING);
close_root:
    ret = close_ctree(root);
    btrfs_close_all_devices();
    return ret;
}
예제 #13
0
int main(int ac, char **av)
{
	struct btrfs_root *root;
	struct btrfs_fs_info *info;
	struct btrfs_path path;
	struct btrfs_key key;
	struct btrfs_root_item ri;
	struct extent_buffer *leaf;
	struct btrfs_disk_key disk_key;
	struct btrfs_key found_key;
	char uuidbuf[37];
	int ret;
	int slot;
	int extent_only = 0;
	int device_only = 0;
	int roots_only = 0;
	int root_backups = 0;
	u64 block_only = 0;
	struct btrfs_root *tree_root_scan;

	radix_tree_init();

	while(1) {
		int c;
		c = getopt(ac, av, "deb:rR");
		if (c < 0)
			break;
		switch(c) {
			case 'e':
				extent_only = 1;
				break;
			case 'd':
				device_only = 1;
				break;
			case 'r':
				roots_only = 1;
				break;
			case 'R':
				roots_only = 1;
				root_backups = 1;
				break;
			case 'b':
				block_only = atoll(optarg);
				break;
			default:
				print_usage();
		}
	}
	ac = ac - optind;
	if (ac != 1)
		print_usage();

	info = open_ctree_fs_info(av[optind], 0, 0, 1);
	if (!info) {
		fprintf(stderr, "unable to open %s\n", av[optind]);
		exit(1);
	}
	root = info->fs_root;

	if (block_only) {
		if (!root) {
			fprintf(stderr, "unable to open %s\n", av[optind]);
			exit(1);
		}
		leaf = read_tree_block(root,
				      block_only,
				      root->leafsize, 0);

		if (leaf && btrfs_header_level(leaf) != 0) {
			free_extent_buffer(leaf);
			leaf = NULL;
		}

		if (!leaf) {
			leaf = read_tree_block(root,
					      block_only,
					      root->nodesize, 0);
		}
		if (!leaf) {
			fprintf(stderr, "failed to read %llu\n",
				(unsigned long long)block_only);
			return 0;
		}
		btrfs_print_tree(root, leaf, 0);
		return 0;
	}

	if (!extent_only) {
		if (roots_only) {
			printf("root tree: %llu level %d\n",
			     (unsigned long long)info->tree_root->node->start,
			     btrfs_header_level(info->tree_root->node));
			printf("chunk tree: %llu level %d\n",
			     (unsigned long long)info->chunk_root->node->start,
			     btrfs_header_level(info->chunk_root->node));
		} else {
			if (info->tree_root->node) {
				printf("root tree\n");
				btrfs_print_tree(info->tree_root,
						 info->tree_root->node, 1);
			}

			if (info->chunk_root->node) {
				printf("chunk tree\n");
				btrfs_print_tree(info->chunk_root,
						 info->chunk_root->node, 1);
			}
		}
	}
	tree_root_scan = info->tree_root;

	btrfs_init_path(&path);
again:
	if (!extent_buffer_uptodate(tree_root_scan->node))
		goto no_node;

	key.offset = 0;
	key.objectid = 0;
	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
	ret = btrfs_search_slot(NULL, tree_root_scan, &key, &path, 0, 0);
	BUG_ON(ret < 0);
	while(1) {
		leaf = path.nodes[0];
		slot = path.slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(tree_root_scan, &path);
			if (ret != 0)
				break;
			leaf = path.nodes[0];
			slot = path.slots[0];
		}
		btrfs_item_key(leaf, &disk_key, path.slots[0]);
		btrfs_disk_key_to_cpu(&found_key, &disk_key);
		if (btrfs_key_type(&found_key) == BTRFS_ROOT_ITEM_KEY) {
			unsigned long offset;
			struct extent_buffer *buf;
			int skip = extent_only | device_only;

			offset = btrfs_item_ptr_offset(leaf, slot);
			read_extent_buffer(leaf, &ri, offset, sizeof(ri));
			buf = read_tree_block(tree_root_scan,
					      btrfs_root_bytenr(&ri),
					      btrfs_level_size(tree_root_scan,
							btrfs_root_level(&ri)),
					      0);
			if (!extent_buffer_uptodate(buf))
				goto next;

			switch(found_key.objectid) {
			case BTRFS_ROOT_TREE_OBJECTID:
				if (!skip)
					printf("root");
				break;
			case BTRFS_EXTENT_TREE_OBJECTID:
				if (!device_only)
					skip = 0;
				if (!extent_only && !device_only)
					printf("extent");
				break;
			case BTRFS_CHUNK_TREE_OBJECTID:
				if (!skip) {
					printf("chunk");
				}
				break;
			case BTRFS_DEV_TREE_OBJECTID:
				skip = 0;
				printf("device");
				break;
			case BTRFS_FS_TREE_OBJECTID:
				if (!skip) {
					printf("fs");
				}
				break;
			case BTRFS_ROOT_TREE_DIR_OBJECTID:
				skip = 0;
				printf("directory");
				break;
			case BTRFS_CSUM_TREE_OBJECTID:
				if (!skip) {
					printf("checksum");
				}
				break;
			case BTRFS_ORPHAN_OBJECTID:
				if (!skip) {
					printf("orphan");
				}
				break;
			case BTRFS_TREE_LOG_OBJECTID:
				if (!skip) {
					printf("log");
				}
				break;
			case BTRFS_TREE_LOG_FIXUP_OBJECTID:
				if (!skip) {
					printf("log fixup");
				}
				break;
			case BTRFS_TREE_RELOC_OBJECTID:
				if (!skip) {
					printf("reloc");
				}
				break;
			case BTRFS_DATA_RELOC_TREE_OBJECTID:
				if (!skip) {
					printf("data reloc");
				}
				break;
			case BTRFS_EXTENT_CSUM_OBJECTID:
				if (!skip) {
					printf("extent checksum");
				}
				break;
			case BTRFS_QUOTA_TREE_OBJECTID:
				if (!skip) {
					printf("quota");
				}
				break;
			case BTRFS_MULTIPLE_OBJECTIDS:
				if (!skip) {
					printf("multiple");
				}
				break;
			default:
				if (!skip) {
					printf("file");
				}
			}
			if (extent_only && !skip) {
				print_extents(tree_root_scan, buf);
			} else if (!skip) {
				printf(" tree ");
				btrfs_print_key(&disk_key);
				if (roots_only) {
					printf(" %llu level %d\n",
					       (unsigned long long)buf->start,
					       btrfs_header_level(buf));
				} else {
					printf(" \n");
					btrfs_print_tree(tree_root_scan, buf, 1);
				}
			}
		}
next:
		path.slots[0]++;
	}
no_node:
	btrfs_release_path(root, &path);

	if (tree_root_scan == info->tree_root &&
	    info->log_root_tree) {
		tree_root_scan = info->log_root_tree;
		goto again;
	}

	if (extent_only || device_only)
		return 0;

	if (root_backups)
		print_old_roots(&info->super_copy);

	printf("total bytes %llu\n",
	       (unsigned long long)btrfs_super_total_bytes(&info->super_copy));
	printf("bytes used %llu\n",
	       (unsigned long long)btrfs_super_bytes_used(&info->super_copy));
	uuidbuf[36] = '\0';
	uuid_unparse(info->super_copy.fsid, uuidbuf);
	printf("uuid %s\n", uuidbuf);
	printf("%s\n", BTRFS_BUILD_VERSION);
	return 0;
}
예제 #14
0
static int set_file_xattrs(struct btrfs_root *root, u64 inode,
			   int fd, const char *file_name)
{
	struct btrfs_key key;
	struct btrfs_path path;
	struct extent_buffer *leaf;
	struct btrfs_dir_item *di;
	u32 name_len = 0;
	u32 data_len = 0;
	u32 len = 0;
	u32 cur, total_len;
	char *name = NULL;
	char *data = NULL;
	int ret = 0;

	btrfs_init_path(&path);
	key.objectid = inode;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
	if (ret < 0)
		goto out;

	leaf = path.nodes[0];
	while (1) {
		if (path.slots[0] >= btrfs_header_nritems(leaf)) {
			do {
				ret = next_leaf(root, &path);
				if (ret < 0) {
					error("searching for extended attributes: %d",
						ret);
					goto out;
				} else if (ret) {
					/* No more leaves to search */
					ret = 0;
					goto out;
				}
				leaf = path.nodes[0];
			} while (!leaf);
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
		if (key.type != BTRFS_XATTR_ITEM_KEY || key.objectid != inode)
			break;
		cur = 0;
		total_len = btrfs_item_size_nr(leaf, path.slots[0]);
		di = btrfs_item_ptr(leaf, path.slots[0],
				    struct btrfs_dir_item);

		while (cur < total_len) {
			len = btrfs_dir_name_len(leaf, di);
			if (len > name_len) {
				free(name);
				name = (char *) malloc(len + 1);
				if (!name) {
					ret = -ENOMEM;
					goto out;
				}
			}
			read_extent_buffer(leaf, name,
					   (unsigned long)(di + 1), len);
			name[len] = '\0';
			name_len = len;

			len = btrfs_dir_data_len(leaf, di);
			if (len > data_len) {
				free(data);
				data = (char *) malloc(len);
				if (!data) {
					ret = -ENOMEM;
					goto out;
				}
			}
			read_extent_buffer(leaf, data,
					   (unsigned long)(di + 1) + name_len,
					   len);
			data_len = len;

			if (fsetxattr(fd, name, data, data_len, 0))
				error("setting extended attribute %s on file %s: %m",
					name, file_name);

			len = sizeof(*di) + name_len + data_len;
			cur += len;
			di = (struct btrfs_dir_item *)((char *)di + len);
		}
		path.slots[0]++;
	}
	ret = 0;
out:
	btrfs_release_path(&path);
	free(name);
	free(data);

	return ret;
}
예제 #15
0
static int record_file_extent(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root, u64 objectid,
			      struct btrfs_inode_item *inode,
			      u64 file_pos, u64 disk_bytenr,
			      u64 num_bytes)
{
	int ret;
	struct btrfs_fs_info *info = root->fs_info;
	struct btrfs_root *extent_root = info->extent_root;
	struct extent_buffer *leaf;
	struct btrfs_file_extent_item *fi;
	struct btrfs_key ins_key;
	struct btrfs_path path;
	struct btrfs_extent_item *ei;

	btrfs_init_path(&path);

	ins_key.objectid = objectid;
	ins_key.offset = 0;
	btrfs_set_key_type(&ins_key, BTRFS_EXTENT_DATA_KEY);
	ret = btrfs_insert_empty_item(trans, root, &path, &ins_key,
				      sizeof(*fi));
	if (ret)
		goto fail;
	leaf = path.nodes[0];
	fi = btrfs_item_ptr(leaf, path.slots[0],
			    struct btrfs_file_extent_item);
	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
	btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
	btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
	btrfs_set_file_extent_offset(leaf, fi, 0);
	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
	btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
	btrfs_set_file_extent_compression(leaf, fi, 0);
	btrfs_set_file_extent_encryption(leaf, fi, 0);
	btrfs_set_file_extent_other_encoding(leaf, fi, 0);
	btrfs_mark_buffer_dirty(leaf);

	btrfs_release_path(root, &path);

	ins_key.objectid = disk_bytenr;
	ins_key.offset = num_bytes;
	ins_key.type = BTRFS_EXTENT_ITEM_KEY;

	ret = btrfs_insert_empty_item(trans, extent_root, &path,
				&ins_key, sizeof(*ei));
	if (ret == 0) {
		leaf = path.nodes[0];
		ei = btrfs_item_ptr(leaf, path.slots[0],
				    struct btrfs_extent_item);

		btrfs_set_extent_refs(leaf, ei, 0);
		btrfs_set_extent_generation(leaf, ei, trans->transid);
		btrfs_set_extent_flags(leaf, ei, BTRFS_EXTENT_FLAG_DATA);

		btrfs_mark_buffer_dirty(leaf);
		ret = btrfs_update_block_group(trans, root, disk_bytenr,
					       num_bytes, 1, 0);
		if (ret)
			goto fail;
	} else if (ret != -EEXIST) {
예제 #16
0
int main(int ac, char **av) {
	struct btrfs_key ins;
	struct btrfs_key last = { (u64)-1, 0, 0};
	char *buf;
	int i;
	int num;
	int ret;
	int run_size = 300000;
	int max_key =  100000000;
	int tree_size = 2;
	struct btrfs_path path;
	struct btrfs_root *root;
	struct btrfs_trans_handle *trans;

	buf = malloc(512);
	memset(buf, 0, 512);

	radix_tree_init();

	root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES);
	if (!root) {
		fprintf(stderr, "Open ctree failed\n");
		exit(1);
	}
	trans = btrfs_start_transaction(root, 1);
	srand(55);
	btrfs_set_key_type(&ins, BTRFS_STRING_ITEM_KEY);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		// num = i;
		sprintf(buf, "string-%d", num);
		if (i % 10000 == 0)
			fprintf(stderr, "insert %d:%d\n", num, i);
		ins.objectid = num;
		ins.offset = 0;
		ret = btrfs_insert_item(trans, root, &ins, buf, 512);
		if (!ret)
			tree_size++;
		if (i == run_size - 5) {
			btrfs_commit_transaction(trans, root);
			trans = btrfs_start_transaction(root, 1);
		}
	}
	btrfs_commit_transaction(trans, root);
	close_ctree(root);
	exit(1);
	root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES);
	if (!root) {
		fprintf(stderr, "Open ctree failed\n");
		exit(1);
	}
	printf("starting search\n");
	srand(55);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		btrfs_init_path(&path);
		if (i % 10000 == 0)
			fprintf(stderr, "search %d:%d\n", num, i);
		ret = btrfs_search_slot(NULL, root, &ins, &path, 0, 0);
		if (ret) {
			btrfs_print_tree(root, root->node, 1);
			printf("unable to find %d\n", num);
			exit(1);
		}
		btrfs_release_path(&path);
	}
	close_ctree(root);

	root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES);
	if (!root) {
		fprintf(stderr, "Open ctree failed\n");
		exit(1);
	}
	printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
	        btrfs_header_level(root->node),
		btrfs_header_nritems(root->node),
		(unsigned long)BTRFS_NODEPTRS_PER_BLOCK(root) -
		btrfs_header_nritems(root->node));
	printf("all searches good, deleting some items\n");
	i = 0;
	srand(55);
	trans = btrfs_start_transaction(root, 1);
	for (i = 0 ; i < run_size/4; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		btrfs_init_path(&path);
		ret = btrfs_search_slot(trans, root, &ins, &path, -1, 1);
		if (!ret) {
			if (i % 10000 == 0)
				fprintf(stderr, "del %d:%d\n", num, i);
			ret = btrfs_del_item(trans, root, &path);
			if (ret != 0)
				BUG();
			tree_size--;
		}
		btrfs_release_path(&path);
	}
	btrfs_commit_transaction(trans, root);
	close_ctree(root);

	root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES);
	if (!root) {
		fprintf(stderr, "Open ctree failed\n");
		exit(1);
	}
	trans = btrfs_start_transaction(root, 1);
	srand(128);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		sprintf(buf, "string-%d", num);
		ins.objectid = num;
		if (i % 10000 == 0)
			fprintf(stderr, "insert %d:%d\n", num, i);
		ret = btrfs_insert_item(trans, root, &ins, buf, 512);
		if (!ret)
			tree_size++;
	}
	btrfs_commit_transaction(trans, root);
	close_ctree(root);

	root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES);
	if (!root) {
		fprintf(stderr, "Open ctree failed\n");
		exit(1);
	}
	srand(128);
	printf("starting search2\n");
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		btrfs_init_path(&path);
		if (i % 10000 == 0)
			fprintf(stderr, "search %d:%d\n", num, i);
		ret = btrfs_search_slot(NULL, root, &ins, &path, 0, 0);
		if (ret) {
			btrfs_print_tree(root, root->node, 1);
			printf("unable to find %d\n", num);
			exit(1);
		}
		btrfs_release_path(&path);
	}
	printf("starting big long delete run\n");
	trans = btrfs_start_transaction(root, 1);
	while(root->node && btrfs_header_nritems(root->node) > 0) {
		struct extent_buffer *leaf;
		int slot;
		ins.objectid = (u64)-1;
		btrfs_init_path(&path);
		ret = btrfs_search_slot(trans, root, &ins, &path, -1, 1);
		if (ret == 0)
			BUG();

		leaf = path.nodes[0];
		slot = path.slots[0];
		if (slot != btrfs_header_nritems(leaf))
			BUG();
		while(path.slots[0] > 0) {
			path.slots[0] -= 1;
			slot = path.slots[0];
			leaf = path.nodes[0];

			btrfs_item_key_to_cpu(leaf, &last, slot);

			if (tree_size % 10000 == 0)
				printf("big del %d:%d\n", tree_size, i);
			ret = btrfs_del_item(trans, root, &path);
			if (ret != 0) {
				printf("del_item returned %d\n", ret);
				BUG();
			}
			tree_size--;
		}
		btrfs_release_path(&path);
	}
	/*
	printf("previous tree:\n");
	btrfs_print_tree(root, root->commit_root);
	printf("map before commit\n");
	btrfs_print_tree(root->extent_root, root->extent_root->node);
	*/
	btrfs_commit_transaction(trans, root);
	printf("tree size is now %d\n", tree_size);
	printf("root %p commit root %p\n", root->node, root->commit_root);
	btrfs_print_tree(root, root->node, 1);
	close_ctree(root);
	return 0;
}
예제 #17
0
파일: mkfs.c 프로젝트: kreijack/btrfs-progs
static int traverse_directory(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root, char *dir_name,
			      struct directory_name_entry *dir_head, int out_fd)
{
	int ret = 0;

	struct btrfs_inode_item cur_inode;
	struct btrfs_inode_item *inode_item;
	int count, i, dir_index_cnt;
	struct direct **files;
	struct stat st;
	struct directory_name_entry *dir_entry, *parent_dir_entry;
	struct direct *cur_file;
	ino_t parent_inum, cur_inum;
	ino_t highest_inum = 0;
	char *parent_dir_name;
	struct btrfs_path path;
	struct extent_buffer *leaf;
	struct btrfs_key root_dir_key;
	u64 root_dir_inode_size = 0;

	/* Add list for source directory */
	dir_entry = malloc(sizeof(struct directory_name_entry));
	dir_entry->dir_name = dir_name;
	dir_entry->path = strdup(dir_name);

	parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID;
	dir_entry->inum = parent_inum;
	list_add_tail(&dir_entry->list, &dir_head->list);

	btrfs_init_path(&path);

	root_dir_key.objectid = btrfs_root_dirid(&root->root_item);
	root_dir_key.offset = 0;
	btrfs_set_key_type(&root_dir_key, BTRFS_INODE_ITEM_KEY);
	ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1);
	if (ret) {
		fprintf(stderr, "root dir lookup error\n");
		return -1;
	}

	leaf = path.nodes[0];
	inode_item = btrfs_item_ptr(leaf, path.slots[0],
				    struct btrfs_inode_item);

	root_dir_inode_size = calculate_dir_inode_size(dir_name);
	btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size);
	btrfs_mark_buffer_dirty(leaf);

	btrfs_release_path(&path);

	do {
		parent_dir_entry = list_entry(dir_head->list.next,
					      struct directory_name_entry,
					      list);
		list_del(&parent_dir_entry->list);

		parent_inum = parent_dir_entry->inum;
		parent_dir_name = parent_dir_entry->dir_name;
		if (chdir(parent_dir_entry->path)) {
			fprintf(stderr, "chdir error for %s\n",
				parent_dir_name);
			goto fail_no_files;
		}

		count = scandir(parent_dir_entry->path, &files,
				directory_select, NULL);
		if (count == -1)
		{
			fprintf(stderr, "scandir for %s failed: %s\n",
				parent_dir_name, strerror (errno));
			goto fail;
		}

		for (i = 0; i < count; i++) {
			cur_file = files[i];

			if (lstat(cur_file->d_name, &st) == -1) {
				fprintf(stderr, "lstat failed for file %s\n",
					cur_file->d_name);
				goto fail;
			}

			cur_inum = ++highest_inum + BTRFS_FIRST_FREE_OBJECTID;
			ret = add_directory_items(trans, root,
						  cur_inum, parent_inum,
						  cur_file->d_name,
						  &st, &dir_index_cnt);
			if (ret) {
				fprintf(stderr, "add_directory_items failed\n");
				goto fail;
			}

			ret = add_inode_items(trans, root, &st,
					      cur_file->d_name, cur_inum,
					      parent_inum, dir_index_cnt,
					      &cur_inode);
			if (ret) {
				fprintf(stderr, "add_inode_items failed\n");
				goto fail;
			}

			ret = add_xattr_item(trans, root,
					     cur_inum, cur_file->d_name);
			if (ret) {
				fprintf(stderr, "add_xattr_item failed\n");
				if(ret != -ENOTSUP)
					goto fail;
			}

			if (S_ISDIR(st.st_mode)) {
				dir_entry = malloc(sizeof(struct directory_name_entry));
				dir_entry->dir_name = cur_file->d_name;
				dir_entry->path = make_path(parent_dir_entry->path,
							    cur_file->d_name);
				dir_entry->inum = cur_inum;
				list_add_tail(&dir_entry->list,	&dir_head->list);
			} else if (S_ISREG(st.st_mode)) {
				ret = add_file_items(trans, root, &cur_inode,
						     cur_inum, parent_inum, &st,
						     cur_file->d_name, out_fd);
				if (ret) {
					fprintf(stderr, "add_file_items failed\n");
					goto fail;
				}
			} else if (S_ISLNK(st.st_mode)) {
				ret = add_symbolic_link(trans, root,
						        cur_inum, cur_file->d_name);
				if (ret) {
					fprintf(stderr, "add_symbolic_link failed\n");
					goto fail;
				}
			}
		}

		free_namelist(files, count);
		free(parent_dir_entry->path);
		free(parent_dir_entry);

		index_cnt = 2;

	} while (!list_empty(&dir_head->list));

	return 0;
fail:
	free_namelist(files, count);
fail_no_files:
	free(parent_dir_entry->path);
	free(parent_dir_entry);
	return -1;
}
예제 #18
0
/*
 * walks the btree of allocated inodes and find a hole.
 */
int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root,
			     u64 dirid, u64 *objectid)
{
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret;
	int slot = 0;
	u64 last_ino = 0;
	int start_found;
	struct extent_buffer *l;
	struct btrfs_key search_key;
	u64 search_start = dirid;

	path = btrfs_alloc_path();
	BUG_ON(!path);
	search_start = root->last_inode_alloc;
	search_start = max((unsigned long long)search_start,
				BTRFS_FIRST_FREE_OBJECTID);
	search_key.objectid = search_start;
	search_key.offset = 0;

	btrfs_init_path(path);
	start_found = 0;
	ret = btrfs_search_slot(trans, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto error;

	if (path->slots[0] > 0)
		path->slots[0]--;

	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			if (!start_found) {
				*objectid = search_start;
				start_found = 1;
				goto found;
			}
			*objectid = last_ino > search_start ?
				last_ino : search_start;
			goto found;
		}
		btrfs_item_key_to_cpu(l, &key, slot);
		if (key.objectid >= search_start) {
			if (start_found) {
				if (last_ino < search_start)
					last_ino = search_start;
				if (key.objectid > last_ino) {
					*objectid = last_ino;
					goto found;
				}
			}
		}
		start_found = 1;
		last_ino = key.objectid + 1;
		path->slots[0]++;
	}
	// FIXME -ENOSPC
found:
	root->last_inode_alloc = *objectid;
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	BUG_ON(*objectid < search_start);
	return 0;
error:
	btrfs_release_path(root, path);
	btrfs_free_path(path);
	return ret;
}
예제 #19
0
/*
 * walks the btree of allocated extents and find a hole of a given size.
 * The key ins is changed to record the hole:
 * ins->objectid == block start
 * ins->flags = BTRFS_EXTENT_ITEM_KEY
 * ins->offset == number of blocks
 * Any available blocks before search_start are skipped.
 */
static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
			    *orig_root, u64 num_blocks, u64 search_start, u64
			    search_end, struct btrfs_key *ins)
{
	struct btrfs_path path;
	struct btrfs_key key;
	int ret;
	u64 hole_size = 0;
	int slot = 0;
	u64 last_block = 0;
	u64 test_block;
	int start_found;
	struct btrfs_leaf *l;
	struct btrfs_root * root = orig_root->fs_info->extent_root;
	unsigned int total_needed = num_blocks;

	total_needed += (btrfs_header_level(&root->node->node.header) + 1) * 3;
	if (root->fs_info->last_insert.objectid > search_start)
		search_start = root->fs_info->last_insert.objectid;

	ins->flags = 0;
	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);

check_failed:
	btrfs_init_path(&path);
	ins->objectid = search_start;
	ins->offset = 0;
	start_found = 0;
	ret = btrfs_search_slot(trans, root, ins, &path, 0, 0);
	if (ret < 0)
		goto error;

	if (path.slots[0] > 0)
		path.slots[0]--;

	while (1) {
		l = &path.nodes[0]->leaf;
		slot = path.slots[0];
		if (slot >= btrfs_header_nritems(&l->header)) {
			ret = btrfs_next_leaf(root, &path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			if (!start_found) {
				ins->objectid = search_start;
				ins->offset = (u64)-1 - search_start;
				start_found = 1;
				goto check_pending;
			}
			ins->objectid = last_block > search_start ?
					last_block : search_start;
			ins->offset = (u64)-1 - ins->objectid;
			goto check_pending;
		}
		btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
		if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
			goto next;
		if (key.objectid >= search_start) {
			if (start_found) {
				if (last_block < search_start)
					last_block = search_start;
				hole_size = key.objectid - last_block;
				if (hole_size > total_needed) {
					ins->objectid = last_block;
					ins->offset = hole_size;
					goto check_pending;
				}
			}
		}
		start_found = 1;
		last_block = key.objectid + key.offset;
next:
		path.slots[0]++;
	}
	// FIXME -ENOSPC
check_pending:
	/* we have to make sure we didn't find an extent that has already
	 * been allocated by the map tree or the original allocation
	 */
	btrfs_release_path(root, &path);
	BUG_ON(ins->objectid < search_start);
	for (test_block = ins->objectid;
	     test_block < ins->objectid + total_needed; test_block++) {
		if (radix_tree_lookup(&root->fs_info->pinned_radix,
				      test_block)) {
			search_start = test_block + 1;
			goto check_failed;
		}
	}
	BUG_ON(root->fs_info->current_insert.offset);
	root->fs_info->current_insert.offset = total_needed - num_blocks;
	root->fs_info->current_insert.objectid = ins->objectid + num_blocks;
	root->fs_info->current_insert.flags = 0;
	root->fs_info->last_insert.objectid = ins->objectid;
	ins->offset = num_blocks;
	return 0;
error:
	btrfs_release_path(root, &path);
	return ret;
}