void Rover::update_navigation() { switch (control_mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: case INITIALISING: break; case AUTO: mission.update(); if (do_auto_rotation) { do_yaw_rotation(); } break; case RTL: // no loitering around the wp with the rover, goes direct to the wp position calc_lateral_acceleration(); calc_nav_steer(); if (verify_RTL()) { SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, g.throttle_min.get()); set_mode(HOLD); } break; case GUIDED: switch (guided_mode) { case Guided_Angle: nav_set_yaw_speed(); break; case Guided_WP: // no loitering around the wp with the rover, goes direct to the wp position calc_lateral_acceleration(); calc_nav_steer(); if (rtl_complete || verify_RTL()) { // we have reached destination so stop where we are SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, g.throttle_min.get()); SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); lateral_acceleration = 0; } break; default: gcs_send_text(MAV_SEVERITY_WARNING, "Unknown GUIDED mode"); break; } break; } }
void Rover::update_navigation() { switch (control_mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: case INITIALISING: break; case AUTO: mission.update(); break; case RTL: // no loitering around the wp with the rover, goes direct to the wp position calc_lateral_acceleration(); calc_nav_steer(); if (verify_RTL()) { channel_throttle->servo_out = g.throttle_min.get(); set_mode(HOLD); } break; case GUIDED: // no loitering around the wp with the rover, goes direct to the wp position calc_lateral_acceleration(); calc_nav_steer(); if (!rtl_complete) { if (verify_RTL()) { // we have reached destination so stop where we are channel_throttle->servo_out = g.throttle_min.get(); channel_steer->servo_out = 0; lateral_acceleration = 0; } } break; } }
void Rover::update_current_mode(void) { switch (control_mode){ case AUTO: case RTL: set_reverse(false); calc_lateral_acceleration(); calc_nav_steer(); calc_throttle(g.speed_cruise); break; case GUIDED: set_reverse(false); if (rtl_complete || verify_RTL()) { // we have reached destination so stop where we are if (channel_throttle->servo_out != g.throttle_min.get()) { gcs_send_mission_item_reached_message(0); } channel_throttle->servo_out = g.throttle_min.get(); channel_steer->servo_out = 0; lateral_acceleration = 0; } else { calc_lateral_acceleration(); calc_nav_steer(); calc_throttle(g.speed_cruise); } break; case STEERING: { /* in steering mode we control lateral acceleration directly. We first calculate the maximum lateral acceleration at full steering lock for this speed. That is V^2/R where R is the radius of turn. We get the radius of turn from half the STEER2SRV_P. */ float max_g_force = ground_speed * ground_speed / steerController.get_turn_radius(); // constrain to user set TURN_MAX_G max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS); lateral_acceleration = max_g_force * (channel_steer->pwm_to_angle()/4500.0f); calc_nav_steer(); // and throttle gives speed in proportion to cruise speed, up // to 50% throttle, then uses nudging above that. float target_speed = channel_throttle->pwm_to_angle() * 0.01f * 2 * g.speed_cruise; set_reverse(target_speed < 0); if (in_reverse) { target_speed = constrain_float(target_speed, -g.speed_cruise, 0); } else { target_speed = constrain_float(target_speed, 0, g.speed_cruise); } calc_throttle(target_speed); break; } case LEARNING: case MANUAL: /* in both MANUAL and LEARNING we pass through the controls. Setting servo_out here actually doesn't matter, as we set the exact value in set_servos(), but it helps for logging */ channel_throttle->servo_out = channel_throttle->control_in; channel_steer->servo_out = channel_steer->pwm_to_angle(); // mark us as in_reverse when using a negative throttle to // stop AHRS getting off set_reverse(channel_throttle->servo_out < 0); break; case HOLD: // hold position - stop motors and center steering channel_throttle->servo_out = 0; channel_steer->servo_out = 0; set_reverse(false); break; case INITIALISING: break; } }
void Rover::update_current_mode(void) { switch (control_mode) { case AUTO: case RTL: if (!in_auto_reverse) { set_reverse(false); } if (!do_auto_rotation) { calc_lateral_acceleration(); calc_nav_steer(); calc_throttle(g.speed_cruise); } else { do_yaw_rotation(); } break; case GUIDED: { if (!in_auto_reverse) { set_reverse(false); } switch (guided_mode) { case Guided_Angle: nav_set_yaw_speed(); break; case Guided_WP: if (rtl_complete || verify_RTL()) { // we have reached destination so stop where we are if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) != g.throttle_min.get()) { gcs_send_mission_item_reached_message(0); } SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, g.throttle_min.get()); SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); lateral_acceleration = 0; } else { calc_lateral_acceleration(); calc_nav_steer(); calc_throttle(g.speed_cruise); Log_Write_GuidedTarget(guided_mode, Vector3f(guided_WP.lat, guided_WP.lng, guided_WP.alt), Vector3f(g.speed_cruise, SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), 0)); } break; default: gcs_send_text(MAV_SEVERITY_WARNING, "Unknown GUIDED mode"); break; } break; } case STEERING: { /* in steering mode we control lateral acceleration directly. We first calculate the maximum lateral acceleration at full steering lock for this speed. That is V^2/R where R is the radius of turn. We get the radius of turn from half the STEER2SRV_P. */ float max_g_force = ground_speed * ground_speed / steerController.get_turn_radius(); // constrain to user set TURN_MAX_G max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS); lateral_acceleration = max_g_force * (channel_steer->get_control_in()/4500.0f); calc_nav_steer(); // and throttle gives speed in proportion to cruise speed, up // to 50% throttle, then uses nudging above that. float target_speed = channel_throttle->get_control_in() * 0.01f * 2 * g.speed_cruise; set_reverse(target_speed < 0); if (in_reverse) { target_speed = constrain_float(target_speed, -g.speed_cruise, 0); } else { target_speed = constrain_float(target_speed, 0, g.speed_cruise); } calc_throttle(target_speed); break; } case LEARNING: case MANUAL: /* in both MANUAL and LEARNING we pass through the controls. Setting servo_out here actually doesn't matter, as we set the exact value in set_servos(), but it helps for logging */ SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, channel_throttle->get_control_in()); SRV_Channels::set_output_scaled(SRV_Channel::k_steering, channel_steer->get_control_in()); // mark us as in_reverse when using a negative throttle to // stop AHRS getting off set_reverse(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0); break; case HOLD: // hold position - stop motors and center steering SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); SRV_Channels::set_output_scaled(SRV_Channel::k_steering, 0); if (!in_auto_reverse) { set_reverse(false); } break; case INITIALISING: break; } }