static CodeBook unpack_codebook(GetBitContext* gb, unsigned depth, unsigned size) { unsigned i, j; CodeBook cb = { 0 }; if (!can_safely_read(gb, size * 34)) return cb; if (size >= INT_MAX / sizeof(MacroBlock)) return cb; cb.blocks = av_malloc(size ? size * sizeof(MacroBlock) : 1); if (!cb.blocks) return cb; cb.depth = depth; cb.size = size; for (i = 0; i < size; i++) { unsigned mask_bits = get_bits(gb, 4); unsigned color0 = get_bits(gb, 15); unsigned color1 = get_bits(gb, 15); for (j = 0; j < 4; j++) { if (mask_bits & (1 << j)) cb.blocks[i].pixels[j] = color1; else cb.blocks[i].pixels[j] = color0; } } return cb; }
static int GetLine( T* p, lua_State *L ) { can_safely_read(p, L); RString string; p->GetLine(string); lua_pushstring( L, string ); return 1; }
static int ReadBytes( T* p, lua_State *L ) { can_safely_read(p, L); RString string; p->Read( string, IArg(1) ); lua_pushstring( L, string ); return 1; }
static unsigned decode_skip_count(GetBitContext* gb) { unsigned value; // This function reads a maximum of 23 bits, // which is within the padding space if (!can_safely_read(gb, 1)) return -1; value = get_bits1(gb); if (!value) return value; value += get_bits(gb, 3); if (value != (1 + ((1 << 3) - 1))) return value; value += get_bits(gb, 7); if (value != (1 + ((1 << 3) - 1)) + ((1 << 7) - 1)) return value; return value + get_bits(gb, 12); }
static int AtEOF( T* p, lua_State *L ) { can_safely_read(p, L); lua_pushboolean( L, p->AtEOF() ); return 1; }
static int Tell( T* p, lua_State *L ) { can_safely_read(p, L); lua_pushinteger( L, p->Tell() ); return 1; }
static int Seek( T* p, lua_State *L ) { can_safely_read(p, L); lua_pushinteger( L, p->Seek( IArg(1) ) ); return 1; }
static int escape124_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; Escape124Context *s = avctx->priv_data; AVFrame *frame = data; GetBitContext gb; unsigned frame_flags, frame_size; unsigned i; unsigned superblock_index, cb_index = 1, superblock_col_index = 0, superblocks_per_row = avctx->width / 8, skip = -1; uint16_t* old_frame_data, *new_frame_data; unsigned old_stride, new_stride; int ret; init_get_bits(&gb, buf, buf_size * 8); // This call also guards the potential depth reads for the // codebook unpacking. if (!can_safely_read(&gb, 64)) return -1; frame_flags = get_bits_long(&gb, 32); frame_size = get_bits_long(&gb, 32); // Leave last frame unchanged // FIXME: Is this necessary? I haven't seen it in any real samples if (!(frame_flags & 0x114) || !(frame_flags & 0x7800000)) { if (!s->frame->data[0]) return AVERROR_INVALIDDATA; av_log(NULL, AV_LOG_DEBUG, "Skipping frame\n"); *got_frame = 1; if ((ret = av_frame_ref(frame, s->frame)) < 0) return ret; return frame_size; } for (i = 0; i < 3; i++) { if (frame_flags & (1 << (17 + i))) { unsigned cb_depth, cb_size; if (i == 2) { // This codebook can be cut off at places other than // powers of 2, leaving some of the entries undefined. cb_size = get_bits_long(&gb, 20); cb_depth = av_log2(cb_size - 1) + 1; } else { cb_depth = get_bits(&gb, 4); if (i == 0) { // This is the most basic codebook: pow(2,depth) entries // for a depth-length key cb_size = 1 << cb_depth; } else { // This codebook varies per superblock // FIXME: I don't think this handles integer overflow // properly cb_size = s->num_superblocks << cb_depth; } } av_free(s->codebooks[i].blocks); s->codebooks[i] = unpack_codebook(&gb, cb_depth, cb_size); if (!s->codebooks[i].blocks) return -1; } } if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } new_frame_data = (uint16_t*)frame->data[0]; new_stride = frame->linesize[0] / 2; old_frame_data = (uint16_t*)s->frame->data[0]; old_stride = s->frame->linesize[0] / 2; for (superblock_index = 0; superblock_index < s->num_superblocks; superblock_index++) { MacroBlock mb; SuperBlock sb; unsigned multi_mask = 0; if (skip == -1) { // Note that this call will make us skip the rest of the blocks // if the frame prematurely ends skip = decode_skip_count(&gb); } if (skip) { copy_superblock(new_frame_data, new_stride, old_frame_data, old_stride); } else { copy_superblock(sb.pixels, 8, old_frame_data, old_stride); while (can_safely_read(&gb, 1) && !get_bits1(&gb)) { unsigned mask; mb = decode_macroblock(s, &gb, &cb_index, superblock_index); mask = get_bits(&gb, 16); multi_mask |= mask; for (i = 0; i < 16; i++) { if (mask & mask_matrix[i]) { insert_mb_into_sb(&sb, mb, i); } } } if (can_safely_read(&gb, 1) && !get_bits1(&gb)) { unsigned inv_mask = get_bits(&gb, 4); for (i = 0; i < 4; i++) { if (inv_mask & (1 << i)) { multi_mask ^= 0xF << i*4; } else { multi_mask ^= get_bits(&gb, 4) << i*4; } } for (i = 0; i < 16; i++) { if (multi_mask & mask_matrix[i]) { if (!can_safely_read(&gb, 1)) break; mb = decode_macroblock(s, &gb, &cb_index, superblock_index); insert_mb_into_sb(&sb, mb, i); } } } else if (frame_flags & (1 << 16)) { while (can_safely_read(&gb, 1) && !get_bits1(&gb)) { mb = decode_macroblock(s, &gb, &cb_index, superblock_index); insert_mb_into_sb(&sb, mb, get_bits(&gb, 4)); } } copy_superblock(new_frame_data, new_stride, sb.pixels, 8); } superblock_col_index++; new_frame_data += 8; if (old_frame_data) old_frame_data += 8; if (superblock_col_index == superblocks_per_row) { new_frame_data += new_stride * 8 - superblocks_per_row * 8; if (old_frame_data) old_frame_data += old_stride * 8 - superblocks_per_row * 8; superblock_col_index = 0; } skip--; } av_log(NULL, AV_LOG_DEBUG, "Escape sizes: %i, %i, %i\n", frame_size, buf_size, get_bits_count(&gb) / 8); av_frame_unref(s->frame); if ((ret = av_frame_ref(s->frame, frame)) < 0) return ret; *got_frame = 1; return frame_size; }