void s390_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; int i; if (env->cc_op > 3) { cpu_fprintf(f, "PSW=mask %016" PRIx64 " addr %016" PRIx64 " cc %15s\n", env->psw.mask, env->psw.addr, cc_name(env->cc_op)); } else { cpu_fprintf(f, "PSW=mask %016" PRIx64 " addr %016" PRIx64 " cc %02x\n", env->psw.mask, env->psw.addr, env->cc_op); } for (i = 0; i < 16; i++) { cpu_fprintf(f, "R%02d=%016" PRIx64, i, env->regs[i]); if ((i % 4) == 3) { cpu_fprintf(f, "\n"); } else { cpu_fprintf(f, " "); } } if (flags & CPU_DUMP_FPU) { if (s390_has_feat(S390_FEAT_VECTOR)) { for (i = 0; i < 32; i++) { cpu_fprintf(f, "V%02d=%016" PRIx64 "%016" PRIx64 "%c", i, env->vregs[i][0].ll, env->vregs[i][1].ll, i % 2 ? '\n' : ' '); } } else { for (i = 0; i < 16; i++) { cpu_fprintf(f, "F%02d=%016" PRIx64 "%c", i, get_freg(env, i)->ll, (i % 4) == 3 ? '\n' : ' '); } } } #ifndef CONFIG_USER_ONLY for (i = 0; i < 16; i++) { cpu_fprintf(f, "C%02d=%016" PRIx64, i, env->cregs[i]); if ((i % 4) == 3) { cpu_fprintf(f, "\n"); } else { cpu_fprintf(f, " "); } } #endif #ifdef DEBUG_INLINE_BRANCHES for (i = 0; i < CC_OP_MAX; i++) { cpu_fprintf(f, " %15s = %10ld\t%10ld\n", cc_name(i), inline_branch_miss[i], inline_branch_hit[i]); } #endif cpu_fprintf(f, "\n"); }
/* Text representation of status */ void tty_report(int cyc) { sim_log("\nCycle %d. CC=%s, Stat=%s\n", cyc, cc_name(cc), stat_name(status)); sim_log("F: predPC = 0x%x\n", pc_curr->pc); sim_log("D: instr = %s, rA = %s, rB = %s, valC = 0x%x, valP = 0x%x, Stat = %s\n", iname(HPACK(if_id_curr->icode, if_id_curr->ifun)), reg_name(if_id_curr->ra), reg_name(if_id_curr->rb), if_id_curr->valc, if_id_curr->valp, stat_name(if_id_curr->status)); sim_log("E: instr = %s, valC = 0x%x, valA = 0x%x, valB = 0x%x\n srcA = %s, srcB = %s, dstE = %s, dstM = %s, Stat = %s\n", iname(HPACK(id_ex_curr->icode, id_ex_curr->ifun)), id_ex_curr->valc, id_ex_curr->vala, id_ex_curr->valb, reg_name(id_ex_curr->srca), reg_name(id_ex_curr->srcb), reg_name(id_ex_curr->deste), reg_name(id_ex_curr->destm), stat_name(id_ex_curr->status)); sim_log("M: instr = %s, Cnd = %d, valE = 0x%x, valA = 0x%x\n dstE = %s, dstM = %s, Stat = %s\n", iname(HPACK(ex_mem_curr->icode, ex_mem_curr->ifun)), ex_mem_curr->takebranch, ex_mem_curr->vale, ex_mem_curr->vala, reg_name(ex_mem_curr->deste), reg_name(ex_mem_curr->destm), stat_name(ex_mem_curr->status)); sim_log("W: instr = %s, valE = 0x%x, valM = 0x%x, dstE = %s, dstM = %s, Stat = %s\n", iname(HPACK(mem_wb_curr->icode, mem_wb_curr->ifun)), mem_wb_curr->vale, mem_wb_curr->valm, reg_name(mem_wb_curr->deste), reg_name(mem_wb_curr->destm), stat_name(mem_wb_curr->status)); }
int main(int argc, char *argv[]) { FILE *binfile; int max_steps = MAX_STEP; y86sim_t *sim; mem_t *saver, *savem; int step = 0; stat_t e = STAT_AOK; if (argc < 2 || argc > 3) usage(argv[0]); /* set max steps */ if (argc > 2) max_steps = atoi(argv[2]); /* load binary file to memory */ if (strcmp(argv[1]+(strlen(argv[1])-4), ".bin")) usage(argv[0]); /* only support *.bin file */ binfile = fopen(argv[1], "rb"); if (!binfile) { err_print("Can't open binary file '%s'", argv[1]); exit(1); } sim = new_y86sim(MEM_SIZE); if (load_binfile(sim->m, binfile) < 0) { err_print("Failed to load binary file '%s'", argv[1]); free_y86sim(sim); exit(1); } fclose(binfile); /* save initial register and memory stat */ saver = dup_reg(sim->r); savem = dup_mem(sim->m); /* execute binary code step-by-step */ for (step = 0; step < max_steps && e == STAT_AOK; step++) e = nexti(sim); /* print final stat of y86sim */ printf("Stopped in %d steps at PC = 0x%x. Status '%s', CC %s\n", step, sim->pc, stat_name(e), cc_name(sim->cc)); printf("Changes to registers:\n"); diff_reg(saver, sim->r, stdout); printf("\nChanges to memory:\n"); diff_mem(savem, sim->m, stdout); free_y86sim(sim); free_reg(saver); free_mem(savem); return 0; }
int main(int argc, char *argv[]) { FILE *code_file; int max_steps = 10000; // edit by leo init_sharemem(); // edit end state_ptr s = new_state(MEM_SIZE); mem_t saver = copy_reg(s->r); mem_t savem; int step = 0; stat_t e = STAT_AOK; if (argc < 2 || argc > 3) usage(argv[0]); code_file = fopen(argv[1], "r"); if (!code_file) { fprintf(stderr, "Can't open code file '%s'\n", argv[1]); exit(1); } if (!load_mem(s->m, code_file, 1)) { printf("Exiting\n"); return 1; } savem = copy_mem(s->m); // edit by leo // printf("error happen after here!\n"); // edit end if (argc > 2) max_steps = atoi(argv[2]); for (step = 0; step < max_steps && e == STAT_AOK; step++) e = step_state(s, stdout); printf("Stopped in %d steps at PC = 0x%x. Status '%s', CC %s\n", step, s->pc, stat_name(e), cc_name(s->cc)); printf("Changes to registers:\n"); diff_reg(saver, s->r, stdout); printf("\nChanges to memory:\n"); diff_mem(savem, s->m, stdout); free_state(s); free_reg(saver); free_mem(savem); return 0; }
void do_ex_stage() { alu_t alufun = gen_alufun(); bool_t setcc = gen_set_cc(); word_t alua, alub; alua = gen_aluA(); alub = gen_aluB(); e_bcond = take_branch(cc, id_ex_curr->ifun); ex_mem_next->takebranch = id_ex_curr->icode == I_JMP && e_bcond; if (id_ex_curr->icode == I_JMP) sim_log("Execute: %s instruction, cc = %s, branch %staken\n", iname(HPACK(id_ex_curr->icode, id_ex_curr->ifun)), cc_name(cc), ex_mem_next->takebranch ? "" : "not "); /* Perform the ALU operation */ ex_mem_next->vale = compute_alu(alufun, alua, alub); { byte_t instr = HPACK(id_ex_curr->icode, id_ex_curr->ifun); sim_log("Execute: Instruction %s\n", iname(instr)); } if (setcc) { cc_in = compute_cc(alufun, alua, alub); sim_log("Execute: CC cc = %s\n", cc_name(cc_in)); } ex_mem_next->icode = id_ex_curr->icode; ex_mem_next->ifun = id_ex_curr->ifun; ex_mem_next->vala = gen_new_M_valA(); ex_mem_next->deste = id_ex_curr->deste; ex_mem_next->destm = id_ex_curr->destm; ex_mem_next->srca = id_ex_curr->srca; ex_mem_next->exception = id_ex_curr->exception; ex_mem_next->stage_pc = id_ex_curr->stage_pc; }
bool_t diff_state(state_ptr olds, state_ptr news, FILE *outfile) { bool_t diff = FALSE; if (olds->pc != news->pc) { diff = TRUE; if (outfile) { fprintf(outfile, "pc:\t0x%.8x\t0x%.8x\n", olds->pc, news->pc); } } if (olds->cc != news->cc) { diff = TRUE; if (outfile) { fprintf(outfile, "cc:\t%s\t%s\n", cc_name(olds->cc), cc_name(news->cc)); } } if (diff_reg(olds->r, news->r, outfile)) diff = TRUE; if (diff_mem(olds->m, news->m, outfile)) diff = TRUE; return diff; }
void do_ex_stage() { alu_t alufun = gen_alufun(); bool_t setcc = gen_set_cc(); word_t alua, alub; alua = gen_aluA(); alub = gen_aluB(); e_bcond = cond_holds(cc, id_ex_curr->ifun); ex_mem_next->takebranch = e_bcond; if (id_ex_curr->icode == I_JMP) sim_log("\tExecute: instr = %s, cc = %s, branch %staken\n", iname(HPACK(id_ex_curr->icode, id_ex_curr->ifun)), cc_name(cc), ex_mem_next->takebranch ? "" : "not "); /* Perform the ALU operation */ word_t aluout = compute_alu(alufun, alua, alub); ex_mem_next->vale = aluout; sim_log("\tExecute: ALU: %c 0x%x 0x%x --> 0x%x\n", op_name(alufun), alua, alub, aluout); if (setcc) { cc_in = compute_cc(alufun, alua, alub); sim_log("\tExecute: New cc = %s\n", cc_name(cc_in)); } ex_mem_next->icode = id_ex_curr->icode; ex_mem_next->ifun = id_ex_curr->ifun; ex_mem_next->vala = gen_e_valA(); ex_mem_next->deste = gen_e_dstE(); ex_mem_next->destm = id_ex_curr->destm; ex_mem_next->srca = id_ex_curr->srca; ex_mem_next->status = id_ex_curr->status; ex_mem_next->stage_pc = id_ex_curr->stage_pc; }
int main(int argc, char *argv[]) { FILE *code_file; int max_steps = 10000; state_ptr s = new_state(MEM_SIZE); mem_t saver = copy_reg(s->r); mem_t savem; int step = 0; exc_t e = EXC_NONE; if (argc < 2 || argc > 3) usage(argv[0]); code_file = fopen(argv[1], "r"); if (!code_file) { fprintf(stderr, "Can't open code file '%s'\n", argv[1]); exit(1); } if (!load_mem(s->m, code_file, 1)) { printf("Exiting\n"); return 1; } savem = copy_mem(s->m); if (argc > 2) max_steps = atoi(argv[2]); for (step = 0; step < max_steps && e == EXC_NONE; step++) e = step_state(s, stdout); printf("Stopped in %d steps at PC = 0x%x. Exception '%s', CC %s\n", step, s->pc, exc_name(e), cc_name(s->cc)); printf("Changes to registers:\n"); diff_reg(saver, s->r, stdout); printf("\nChanges to memory:\n"); diff_mem(savem, s->m, stdout); free_state(s); free_reg(saver); free_mem(savem); return 0; }
static void dec10_reg_scc(DisasContext *dc) { int cond = dc->dst; LOG_DIS("s%s $r%u\n", cc_name(cond), dc->src); if (cond != CC_A) { int l1; gen_tst_cc (dc, cpu_R[dc->src], cond); l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_R[dc->src], 0, l1); tcg_gen_movi_tl(cpu_R[dc->src], 1); gen_set_label(l1); } else { tcg_gen_movi_tl(cpu_R[dc->src], 1); } cris_cc_mask(dc, 0); }
/* * run_tty_sim - Run the simulator in TTY mode */ static void run_tty_sim() { int icount = 0; exc_t status = EXC_NONE; cc_t result_cc = 0; int byte_cnt = 0; mem_t mem0, reg0; state_ptr isa_state = NULL; /* In TTY mode, the default object file comes from stdin */ if (!object_file) { object_file = stdin; } /* Initializations */ if (verbosity >= 2) sim_set_dumpfile(stdout); sim_init(); /* Emit simulator name */ printf("%s\n", simname); byte_cnt = load_mem(mem, object_file, 1); if (byte_cnt == 0) { fprintf(stderr, "No lines of code found\n"); exit(1); } else if (verbosity >= 2) { printf("%d bytes of code read\n", byte_cnt); } fclose(object_file); if (do_check) { isa_state = new_state(0); free_mem(isa_state->r); free_mem(isa_state->m); isa_state->m = copy_mem(mem); isa_state->r = copy_mem(reg); isa_state->cc = cc; } mem0 = copy_mem(mem); reg0 = copy_mem(reg); icount = sim_run(instr_limit, &status, &result_cc); if (verbosity > 0) { printf("%d instructions executed\n", icount); printf("Exception status = %s\n", exc_name(status)); printf("Condition Codes: %s\n", cc_name(result_cc)); printf("Changed Register State:\n"); diff_reg(reg0, reg, stdout); printf("Changed Memory State:\n"); diff_mem(mem0, mem, stdout); } if (do_check) { exc_t e = EXC_NONE; int step; bool_t match = TRUE; for (step = 0; step < instr_limit && e == EXC_NONE; step++) { e = step_state(isa_state, stdout); } if (diff_reg(isa_state->r, reg, NULL)) { match = FALSE; if (verbosity > 0) { printf("ISA Register != Pipeline Register File\n"); diff_reg(isa_state->r, reg, stdout); } } if (diff_mem(isa_state->m, mem, NULL)) { match = FALSE; if (verbosity > 0) { printf("ISA Memory != Pipeline Memory\n"); diff_mem(isa_state->m, mem, stdout); } } if (isa_state->cc != result_cc) { match = FALSE; if (verbosity > 0) { printf("ISA Cond. Codes (%s) != Pipeline Cond. Codes (%s)\n", cc_name(isa_state->cc), cc_name(result_cc)); } } if (match) { printf("ISA Check Succeeds\n"); } else { printf("ISA Check Fails\n"); } } }
/* * run_tty_sim - Run the simulator in TTY mode */ static void run_tty_sim() { int icount = 0; byte_t run_status = STAT_AOK; cc_t result_cc = 0; int byte_cnt = 0; mem_t mem0, reg0; state_ptr isa_state = NULL; /* In TTY mode, the default object file comes from stdin */ if (!object_file) { object_file = stdin; } if (verbosity >= 2) sim_set_dumpfile(stdout); sim_init(); /* Emit simulator name */ if (verbosity >= 2) printf("%s\n", simname); byte_cnt = load_mem(mem, object_file, 1, START_PLACE); if (byte_cnt == 0) { fprintf(stderr, "No lines of code found\n"); exit(1); } else if (verbosity >= 2) { printf("%d bytes of code read\n", byte_cnt); } fclose(object_file); if (do_check) { isa_state = new_state(0); free_reg(isa_state->r); free_mem(isa_state->m); isa_state->m = copy_mem(mem); isa_state->r = copy_reg(reg); isa_state->cc = cc; } if(verbosity > 0){ mem0 = copy_mem(mem); reg0 = copy_reg(reg); } icount = sim_run_pipe(instr_limit, 5*instr_limit, &run_status, &result_cc); if (verbosity > 0) { printf("%d instructions executed\n", icount); printf("Status = %s\n", stat_name(run_status)); printf("Condition Codes: %s\n", cc_name(result_cc)); printf("Changed Register State:\n"); diff_reg(reg0, reg, stdout); printf("Changed Memory State:\n"); diff_mem(mem0, mem, stdout); } if (do_check) { exit(0); byte_t e = STAT_AOK; int step; bool_t match = TRUE; for (step = 0; step < instr_limit && e == STAT_AOK; step++) { e = step_state(isa_state, stdout); } if (diff_reg(isa_state->r, reg, NULL)) { match = FALSE; if (verbosity > 0) { printf("ISA Register != Pipeline Register File\n"); diff_reg(isa_state->r, reg, stdout); } } if (diff_mem(isa_state->m, mem, NULL)) { match = FALSE; if (verbosity > 0) { printf("ISA Memory != Pipeline Memory\n"); diff_mem(isa_state->m, mem, stdout); } } if (isa_state->cc != result_cc) { match = FALSE; if (verbosity > 0) { printf("ISA Cond. Codes (%s) != Pipeline Cond. Codes (%s)\n", cc_name(isa_state->cc), cc_name(result_cc)); } } if (match) { printf("ISA Check Succeeds\n"); } else { printf("ISA Check Fails\n"); } } /* Emit CPI statistics */ { double cpi = instructions > 0 ? (double) cycles/instructions : 1.0; printf("%d CPI: %d cycles/%d instructions = %.2f\n", PSIM_ID, cycles, instructions, cpi); } }
static unsigned int dec10_quick_imm(DisasContext *dc) { int32_t imm, simm; int op; /* sign extend. */ imm = dc->ir & ((1 << 6) - 1); simm = (int8_t) (imm << 2); simm >>= 2; switch (dc->opcode) { case CRISV10_QIMM_BDAP_R0: case CRISV10_QIMM_BDAP_R1: case CRISV10_QIMM_BDAP_R2: case CRISV10_QIMM_BDAP_R3: simm = (int8_t)dc->ir; LOG_DIS("bdap %d $r%d\n", simm, dc->dst); LOG_DIS("pc=%x mode=%x quickimm %d r%d r%d\n", dc->pc, dc->mode, dc->opcode, dc->src, dc->dst); cris_set_prefix(dc); if (dc->dst == 15) { tcg_gen_movi_tl(cpu_PR[PR_PREFIX], dc->pc + 2 + simm); } else { tcg_gen_addi_tl(cpu_PR[PR_PREFIX], cpu_R[dc->dst], simm); } break; case CRISV10_QIMM_MOVEQ: LOG_DIS("moveq %d, $r%d\n", simm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(simm), 4); break; case CRISV10_QIMM_CMPQ: LOG_DIS("cmpq %d, $r%d\n", simm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(simm), 4); break; case CRISV10_QIMM_ADDQ: LOG_DIS("addq %d, $r%d\n", imm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(imm), 4); break; case CRISV10_QIMM_ANDQ: LOG_DIS("andq %d, $r%d\n", simm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_AND, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(simm), 4); break; case CRISV10_QIMM_ASHQ: LOG_DIS("ashq %d, $r%d\n", simm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); op = imm & (1 << 5); imm &= 0x1f; if (op) { cris_alu(dc, CC_OP_ASR, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(imm), 4); } else { /* BTST */ cris_update_cc_op(dc, CC_OP_FLAGS, 4); gen_helper_btst(cpu_PR[PR_CCS], cpu_R[dc->dst], tcg_const_tl(imm), cpu_PR[PR_CCS]); } break; case CRISV10_QIMM_LSHQ: LOG_DIS("lshq %d, $r%d\n", simm, dc->dst); op = CC_OP_LSL; if (imm & (1 << 5)) { op = CC_OP_LSR; } imm &= 0x1f; cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, op, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(imm), 4); break; case CRISV10_QIMM_SUBQ: LOG_DIS("subq %d, $r%d\n", imm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(imm), 4); break; case CRISV10_QIMM_ORQ: LOG_DIS("andq %d, $r%d\n", simm, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_OR, cpu_R[dc->dst], cpu_R[dc->dst], tcg_const_tl(simm), 4); break; case CRISV10_QIMM_BCC_R0: case CRISV10_QIMM_BCC_R1: case CRISV10_QIMM_BCC_R2: case CRISV10_QIMM_BCC_R3: imm = dc->ir & 0xff; /* bit 0 is a sign bit. */ if (imm & 1) { imm |= 0xffffff00; /* sign extend. */ imm &= ~1; /* get rid of the sign bit. */ } imm += 2; LOG_DIS("b%s %d\n", cc_name(dc->cond), imm); cris_cc_mask(dc, 0); cris_prepare_cc_branch(dc, imm, dc->cond); break; default: LOG_DIS("pc=%x mode=%x quickimm %d r%d r%d\n", dc->pc, dc->mode, dc->opcode, dc->src, dc->dst); cpu_abort(dc->env, "Unhandled quickimm\n"); break; } return 2; }
static unsigned int dec10_ind(DisasContext *dc) { unsigned int insn_len = 2; unsigned int size = dec10_size(dc->size); uint32_t imm; int32_t simm; TCGv t[2]; if (dc->size != 3) { switch (dc->opcode) { case CRISV10_IND_MOVE_M_R: return dec10_ind_move_m_r(dc, size); break; case CRISV10_IND_MOVE_R_M: return dec10_ind_move_r_m(dc, size); break; case CRISV10_IND_CMP: LOG_DIS("cmp size=%d op=%d %d\n", size, dc->src, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); insn_len += dec10_ind_alu(dc, CC_OP_CMP, size); break; case CRISV10_IND_TEST: LOG_DIS("test size=%d op=%d %d\n", size, dc->src, dc->dst); cris_evaluate_flags(dc); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_m_alloc_temps(t); insn_len += dec10_prep_move_m(dc, 0, size, t[0]); tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~3); cris_alu(dc, CC_OP_CMP, cpu_R[dc->dst], t[0], tcg_const_tl(0), size); cris_alu_m_free_temps(t); break; case CRISV10_IND_ADD: LOG_DIS("add size=%d op=%d %d\n", size, dc->src, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); insn_len += dec10_ind_alu(dc, CC_OP_ADD, size); break; case CRISV10_IND_SUB: LOG_DIS("sub size=%d op=%d %d\n", size, dc->src, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); insn_len += dec10_ind_alu(dc, CC_OP_SUB, size); break; case CRISV10_IND_BOUND: LOG_DIS("bound size=%d op=%d %d\n", size, dc->src, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); insn_len += dec10_ind_bound(dc, size); break; case CRISV10_IND_AND: LOG_DIS("and size=%d op=%d %d\n", size, dc->src, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); insn_len += dec10_ind_alu(dc, CC_OP_AND, size); break; case CRISV10_IND_OR: LOG_DIS("or size=%d op=%d %d\n", size, dc->src, dc->dst); cris_cc_mask(dc, CC_MASK_NZVC); insn_len += dec10_ind_alu(dc, CC_OP_OR, size); break; case CRISV10_IND_MOVX: insn_len = dec10_alux_m(dc, CC_OP_MOVE); break; case CRISV10_IND_ADDX: insn_len = dec10_alux_m(dc, CC_OP_ADD); break; case CRISV10_IND_SUBX: insn_len = dec10_alux_m(dc, CC_OP_SUB); break; case CRISV10_IND_CMPX: insn_len = dec10_alux_m(dc, CC_OP_CMP); break; case CRISV10_IND_MUL: /* This is a reg insn coded in the mem indir space. */ LOG_DIS("mul pc=%x opcode=%d\n", dc->pc, dc->opcode); cris_cc_mask(dc, CC_MASK_NZVC); dec10_reg_mul(dc, size, dc->ir & (1 << 10)); break; case CRISV10_IND_BDAP_M: insn_len = dec10_bdap_m(dc, size); break; default: LOG_DIS("pc=%x var-ind.%d %d r%d r%d\n", dc->pc, size, dc->opcode, dc->src, dc->dst); cpu_abort(dc->env, "Unhandled opcode"); break; } return insn_len; } switch (dc->opcode) { case CRISV10_IND_MOVE_M_SPR: insn_len = dec10_ind_move_m_pr(dc); break; case CRISV10_IND_MOVE_SPR_M: insn_len = dec10_ind_move_pr_m(dc); break; case CRISV10_IND_JUMP_M: if (dc->src == 15) { LOG_DIS("jump.%d %d r%d r%d direct\n", size, dc->opcode, dc->src, dc->dst); imm = ldl_code(dc->pc + 2); if (dc->mode == CRISV10_MODE_AUTOINC) insn_len += size; t_gen_mov_preg_TN(dc, dc->dst, tcg_const_tl(dc->pc + insn_len)); dc->jmp_pc = imm; cris_prepare_jmp(dc, JMP_DIRECT); dc->delayed_branch--; /* v10 has no dslot here. */ } else { if (dc->dst == 14) { LOG_DIS("break %d\n", dc->src); cris_evaluate_flags(dc); tcg_gen_movi_tl(env_pc, dc->pc + 2); t_gen_raise_exception(EXCP_BREAK); dc->is_jmp = DISAS_UPDATE; return insn_len; } LOG_DIS("%d: jump.%d %d r%d r%d\n", __LINE__, size, dc->opcode, dc->src, dc->dst); t[0] = tcg_temp_new(); t_gen_mov_preg_TN(dc, dc->dst, tcg_const_tl(dc->pc + insn_len)); crisv10_prepare_memaddr(dc, t[0], size); gen_load(dc, env_btarget, t[0], 4, 0); insn_len += crisv10_post_memaddr(dc, size); cris_prepare_jmp(dc, JMP_INDIRECT); dc->delayed_branch--; /* v10 has no dslot here. */ tcg_temp_free(t[0]); } break; case CRISV10_IND_MOVEM_R_M: LOG_DIS("movem_r_m pc=%x opcode=%d r%d r%d\n", dc->pc, dc->opcode, dc->dst, dc->src); dec10_movem_r_m(dc); break; case CRISV10_IND_MOVEM_M_R: LOG_DIS("movem_m_r pc=%x opcode=%d\n", dc->pc, dc->opcode); dec10_movem_m_r(dc); break; case CRISV10_IND_JUMP_R: LOG_DIS("jmp pc=%x opcode=%d r%d r%d\n", dc->pc, dc->opcode, dc->dst, dc->src); tcg_gen_mov_tl(env_btarget, cpu_R[dc->src]); t_gen_mov_preg_TN(dc, dc->dst, tcg_const_tl(dc->pc + insn_len)); cris_prepare_jmp(dc, JMP_INDIRECT); dc->delayed_branch--; /* v10 has no dslot here. */ break; case CRISV10_IND_MOVX: insn_len = dec10_alux_m(dc, CC_OP_MOVE); break; case CRISV10_IND_ADDX: insn_len = dec10_alux_m(dc, CC_OP_ADD); break; case CRISV10_IND_SUBX: insn_len = dec10_alux_m(dc, CC_OP_SUB); break; case CRISV10_IND_CMPX: insn_len = dec10_alux_m(dc, CC_OP_CMP); break; case CRISV10_IND_DIP: insn_len = dec10_dip(dc); break; case CRISV10_IND_BCC_M: cris_cc_mask(dc, 0); imm = ldsw_code(dc->pc + 2); simm = (int16_t)imm; simm += 4; LOG_DIS("bcc_m: b%s %x\n", cc_name(dc->cond), dc->pc + simm); cris_prepare_cc_branch(dc, simm, dc->cond); insn_len = 4; break; default: LOG_DIS("ERROR pc=%x opcode=%d\n", dc->pc, dc->opcode); cpu_abort(dc->env, "Unhandled opcode"); break; } return insn_len; }
static uint32_t do_calc_cc(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { S390CPU *cpu = s390_env_get_cpu(env); uint32_t r = 0; switch (cc_op) { case CC_OP_CONST0: case CC_OP_CONST1: case CC_OP_CONST2: case CC_OP_CONST3: /* cc_op value _is_ cc */ r = cc_op; break; case CC_OP_LTGT0_32: r = cc_calc_ltgt0_32(dst); break; case CC_OP_LTGT0_64: r = cc_calc_ltgt0_64(dst); break; case CC_OP_LTGT_32: r = cc_calc_ltgt_32(src, dst); break; case CC_OP_LTGT_64: r = cc_calc_ltgt_64(src, dst); break; case CC_OP_LTUGTU_32: r = cc_calc_ltugtu_32(src, dst); break; case CC_OP_LTUGTU_64: r = cc_calc_ltugtu_64(src, dst); break; case CC_OP_TM_32: r = cc_calc_tm_32(src, dst); break; case CC_OP_TM_64: r = cc_calc_tm_64(src, dst); break; case CC_OP_NZ: r = cc_calc_nz(dst); break; case CC_OP_ADD_64: r = cc_calc_add_64(src, dst, vr); break; case CC_OP_ADDU_64: r = cc_calc_addu_64(src, dst, vr); break; case CC_OP_ADDC_64: r = cc_calc_addc_64(src, dst, vr); break; case CC_OP_SUB_64: r = cc_calc_sub_64(src, dst, vr); break; case CC_OP_SUBU_64: r = cc_calc_subu_64(src, dst, vr); break; case CC_OP_SUBB_64: r = cc_calc_subb_64(src, dst, vr); break; case CC_OP_ABS_64: r = cc_calc_abs_64(dst); break; case CC_OP_NABS_64: r = cc_calc_nabs_64(dst); break; case CC_OP_COMP_64: r = cc_calc_comp_64(dst); break; case CC_OP_ADD_32: r = cc_calc_add_32(src, dst, vr); break; case CC_OP_ADDU_32: r = cc_calc_addu_32(src, dst, vr); break; case CC_OP_ADDC_32: r = cc_calc_addc_32(src, dst, vr); break; case CC_OP_SUB_32: r = cc_calc_sub_32(src, dst, vr); break; case CC_OP_SUBU_32: r = cc_calc_subu_32(src, dst, vr); break; case CC_OP_SUBB_32: r = cc_calc_subb_32(src, dst, vr); break; case CC_OP_ABS_32: r = cc_calc_abs_32(dst); break; case CC_OP_NABS_32: r = cc_calc_nabs_32(dst); break; case CC_OP_COMP_32: r = cc_calc_comp_32(dst); break; case CC_OP_ICM: r = cc_calc_icm(src, dst); break; case CC_OP_SLA_32: r = cc_calc_sla_32(src, dst); break; case CC_OP_SLA_64: r = cc_calc_sla_64(src, dst); break; case CC_OP_FLOGR: r = cc_calc_flogr(dst); break; case CC_OP_NZ_F32: r = set_cc_nz_f32(dst); break; case CC_OP_NZ_F64: r = set_cc_nz_f64(dst); break; case CC_OP_NZ_F128: r = set_cc_nz_f128(make_float128(src, dst)); break; default: cpu_abort(CPU(cpu), "Unknown CC operation: %s\n", cc_name(cc_op)); } HELPER_LOG("%s: %15s 0x%016lx 0x%016lx 0x%016lx = %d\n", __func__, cc_name(cc_op), src, dst, vr, r); return r; }