int main(int argc, char** argv) { printf("Edge Detection Benchmark ...\n"); ccv_enable_default_cache(); unsigned int elapsed_time; ccv_dense_matrix_t* yuv = 0; ccv_read(argv[1], &yuv, CCV_IO_GRAY | CCV_IO_ANY_FILE); /* ORIGIN */ ccv_dense_matrix_t* canny = 0; elapsed_time = get_current_time(); ccv_canny(yuv, &canny, 0, 3, 175, 320); elapsed_time = get_current_time() - elapsed_time; printf("origin: %ums\n", elapsed_time); ccv_matrix_free(canny); /* SLICE & DETECT */ int X_SLICE = atoi(argv[2]), Y_SLICE = atoi(argv[3]); int i, count = X_SLICE * Y_SLICE; int slice_rows = yuv->rows / Y_SLICE; int slice_cols = yuv->cols / X_SLICE; ccv_dense_matrix_t* canny_arr[count]; elapsed_time = get_current_time(); #pragma omp parallel for for (i = 0; i < count; i++) { int y = i / X_SLICE; int x = i - X_SLICE * y; ccv_dense_matrix_t* slice = 0; ccv_slice(yuv, (ccv_matrix_t**)&slice, 0, slice_rows * y, slice_cols * x, slice_rows, slice_cols); #ifdef DEBUG cos_ccv_slice_output(slice, y, x); #endif canny_arr[i] = 0; ccv_canny(slice, &canny_arr[i], 0, 3, 175, 320); } elapsed_time = get_current_time() - elapsed_time; printf("slice & detect: %ums\n", elapsed_time); unsigned int slice_time = elapsed_time; /* save to compute total time */ /* MERGE */ ccv_dense_matrix_t* final_output = 0; elapsed_time = get_current_time(); cos_ccv_merge(canny_arr, &final_output, yuv->rows, yuv->cols, X_SLICE, Y_SLICE); elapsed_time = get_current_time() - elapsed_time; printf("merge: %ums\n", elapsed_time); ccv_matrix_free(final_output); printf("parallel total: %ums\n", slice_time + elapsed_time); ccv_matrix_free(yuv); ccv_disable_cache(); return 0; }
int main(int argc, char** argv) { assert(argc >= 3); int i; ccv_enable_default_cache(); ccv_dense_matrix_t* image = 0; ccv_icf_classifier_cascade_t* cascade = ccv_icf_read_classifier_cascade(argv[2]); ccv_read(argv[1], &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR); if (image != 0) { unsigned int elapsed_time = get_current_time(); ccv_array_t* seq = ccv_icf_detect_objects(image, &cascade, 1, ccv_icf_default_params); elapsed_time = get_current_time() - elapsed_time; for (i = 0; i < seq->rnum; i++) { ccv_comp_t* comp = (ccv_comp_t*)ccv_array_get(seq, i); printf("%d %d %d %d %f\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->confidence); } printf("total : %d in time %dms\n", seq->rnum, elapsed_time); ccv_array_free(seq); ccv_matrix_free(image); } else { FILE* r = fopen(argv[1], "rt"); if (argc == 4) chdir(argv[3]); if(r) { size_t len = 1024; char* file = (char*)malloc(len); ssize_t read; while((read = getline(&file, &len, r)) != -1) { while(read > 1 && isspace(file[read - 1])) read--; file[read] = 0; image = 0; ccv_read(file, &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR); assert(image != 0); ccv_array_t* seq = ccv_icf_detect_objects(image, &cascade, 1, ccv_icf_default_params); for (i = 0; i < seq->rnum; i++) { ccv_comp_t* comp = (ccv_comp_t*)ccv_array_get(seq, i); printf("%s %d %d %d %d %f\n", file, comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->confidence); } ccv_array_free(seq); ccv_matrix_free(image); } free(file); fclose(r); } } ccv_icf_classifier_cascade_free(cascade); ccv_disable_cache(); return 0; }
int main(int argc, char** argv) { assert(argc == 3); ccv_enable_default_cache(); ccv_dense_matrix_t* image = 0; ccv_read(argv[1], &image, CCV_IO_RGB_COLOR | CCV_IO_ANY_FILE); ccv_mser_param_t params = { .min_area = 60, .max_area = (int)(image->rows * image->cols * 0.3 + 0.5), .min_diversity = 0.2, .area_threshold = 1.01, .min_margin = 0.003, .max_evolution = 200, .edge_blur_sigma = sqrt(3.0), .delta = 5, .max_variance = 0.25, .direction = CCV_DARK_TO_BRIGHT, }; if (image) { ccv_dense_matrix_t* yuv = 0; // ccv_color_transform(image, &yuv, 0, CCV_RGB_TO_YUV); ccv_read(argv[1], &yuv, CCV_IO_GRAY | CCV_IO_ANY_FILE); unsigned int elapsed_time = get_current_time(); ccv_dense_matrix_t* canny = 0; ccv_canny(yuv, &canny, 0, 3, 175, 320); ccv_dense_matrix_t* outline = 0; ccv_close_outline(canny, &outline, 0); ccv_matrix_free(canny); ccv_dense_matrix_t* mser = 0; ccv_array_t* mser_keypoint = ccv_mser(yuv, outline, &mser, 0, params); elapsed_time = get_current_time() - elapsed_time; ccv_matrix_free(outline); printf("total : %d in time %dms\n", mser_keypoint->rnum, elapsed_time); ccv_array_free(mser_keypoint); ccv_make_matrix_mutable(image); int i, j; for (i = 0; i < image->rows; i++) for (j = 0; j < image->cols; j++) { if (mser->data.i32[i * mser->cols + j]) { image->data.u8[i * image->step + j * 3] = colors[mser->data.i32[i * mser->cols + j] % 6][0]; image->data.u8[i * image->step + j * 3 + 1] = colors[mser->data.i32[i * mser->cols + j] % 6][1]; image->data.u8[i * image->step + j * 3 + 2] = colors[mser->data.i32[i * mser->cols + j] % 6][2]; } } ccv_write(image, argv[2], 0, CCV_IO_PNG_FILE, 0); ccv_matrix_free(yuv); ccv_matrix_free(image); } ccv_disable_cache(); return 0; }
void TDetector::pdetect(ccv_dense_matrix_t* image, std::vector<Text2D>& text2d) { text2d.clear(); //text2d.erase(text2d.begin(), text2d.end()); if (image != 0) { for (int i = 0; i < params.size(); i++) { ccv_array_t* words = ccv_swt_detect_words(image, params.at(i)); if (words) { text2d.reserve(words->rnum); ccv_rect_t* rect; for (int j = 0; j < words->rnum; j++) { rect = (ccv_rect_t*) ccv_array_get(words, j); //printf("%d %d %d %d\n", rect->x, rect->y, rect->width, rect->height); text2d.push_back( Text2D(rect->x, rect->y, rect->x + rect->width, rect->y + rect->height, "")); } ccv_array_free(words); } } ccv_matrix_free(image); } }
void _hccv_dense_matrix_unref (ccv_dense_matrix_t *mat) { /* return; */ /* printf ("-- unref\n"); */ if (--mat->refcount == 0) { /* printf (" + free\n"); */ ccv_matrix_free(mat); } }
void ccv_gradient(ccv_dense_matrix_t* a, ccv_dense_matrix_t** theta, int ttype, ccv_dense_matrix_t** m, int mtype, int dx, int dy) { ccv_declare_derived_signature(tsig, a->sig != 0, ccv_sign_with_format(64, "ccv_gradient(theta,%d,%d)", dx, dy), a->sig, CCV_EOF_SIGN); ccv_declare_derived_signature(msig, a->sig != 0, ccv_sign_with_format(64, "ccv_gradient(m,%d,%d)", dx, dy), a->sig, CCV_EOF_SIGN); int ch = CCV_GET_CHANNEL(a->type); ccv_dense_matrix_t* dtheta = *theta = ccv_dense_matrix_renew(*theta, a->rows, a->cols, CCV_32F | ch, CCV_32F | ch, tsig); ccv_dense_matrix_t* dm = *m = ccv_dense_matrix_renew(*m, a->rows, a->cols, CCV_32F | ch, CCV_32F | ch, msig); ccv_object_return_if_cached(, dtheta, dm); ccv_revive_object_if_cached(dtheta, dm); ccv_dense_matrix_t* tx = 0; ccv_dense_matrix_t* ty = 0; ccv_sobel(a, &tx, CCV_32F | ch, dx, 0); ccv_sobel(a, &ty, CCV_32F | ch, 0, dy); _ccv_atan2(tx->data.f32, ty->data.f32, dtheta->data.f32, dm->data.f32, ch * a->rows * a->cols); ccv_matrix_free(tx); ccv_matrix_free(ty); }
void _hccv_dense_matrix_unref2 (ccv_dense_matrix_t *mat, void *x) { /* return; */ /* printf ("-- unref\n"); */ if (--(mat->refcount) == 0) { /* printf (" * free\n"); */ ccv_matrix_free(mat); } }
int main(int argc, char** argv) { ccv_dense_matrix_t* mat1 = 0; ccv_dense_matrix_t* mat2 = 0; ccv_dense_matrix_t* mat3 = 0; ccv_read(argv[1], &mat1, CCV_IO_GRAY | CCV_IO_ANY_FILE); ccv_read(argv[2], &mat2, CCV_IO_GRAY | CCV_IO_ANY_FILE); ccv_add((ccv_matrix_t *)mat1, (ccv_matrix_t *)mat2, (ccv_matrix_t **)&mat3, mat1->type); ccv_write(mat3, "test.jpeg", 0, CCV_IO_JPEG_FILE, 0); ccv_matrix_free(mat1); ccv_matrix_free(mat2); ccv_matrix_free(mat3); return 0; }
int main(int argc, char** argv) { ccv_nnc_init(); ccv_convnet_t* convnet = ccv_convnet_read(0, argv[2]); ccv_dense_matrix_t* image = 0; ccv_read(argv[1], &image, CCV_IO_ANY_FILE | CCV_IO_RGB_COLOR); if (image != 0) { ccv_dense_matrix_t* input = 0; ccv_convnet_input_formation(convnet->input, image, &input); ccv_matrix_free(image); ccv_dense_matrix_t* sliced = 0; ccv_slice(input, (ccv_matrix_t**)&sliced, 0, (input->rows - 225) / 2, (input->cols - 225) / 2, 225, 225); ccv_matrix_free(input); ccv_dense_matrix_t* b = 0; unsigned int elapsed_time = get_current_time(); ccv_convnet_encode(convnet, &sliced, &b, 1); printf("ccv_convnet_encode %u ms\n", get_current_time() - elapsed_time); ccv_nnc_tensor_t* c = ccv_nnc_tensor_new(0, ONE_CPU_TENSOR(1000), 0); ccv_nnc_graph_exec_t source, dest; ccv_array_t* tensors = ccv_array_new(sizeof(ccv_nnc_tensor_t*), 1, 0); ccv_nnc_graph_t* graph = ccv_nnc_simple_graph(convnet, (ccv_nnc_tensor_t*)sliced, c, &source, &dest, tensors); elapsed_time = get_current_time(); ccv_nnc_graph_run(graph, 0, &source, 1, &dest, 1); printf("ccv_nnc_graph_run %u ms\n", get_current_time() - elapsed_time); int i; for (i = 0; i < 1000; i++) if (fabsf(b->data.f32[i] - c->data.f32[i]) > 1e-4) printf("mis-match at %d: %f %f\n", i, b->data.f32[i], c->data.f32[i]); ccv_nnc_tensor_free(c); ccv_matrix_free(sliced); ccv_matrix_free(b); ccv_nnc_graph_free(graph); for (i = 0; i < tensors->rnum; i++) ccv_nnc_tensor_free(*(ccv_nnc_tensor_t**)ccv_array_get(tensors, i)); ccv_array_free(tensors); } ccv_convnet_free(convnet); return 0; }
int main(int argc, char **argv) { ccv_dense_matrix_t* a = ccv_dense_matrix_new(3, 2, CCV_64F | CCV_C1, 0, 0); a->data.f64[0] = 0.11; a->data.f64[1] = 0.12; a->data.f64[2] = 0.13; a->data.f64[3] = 0.21; a->data.f64[4] = 0.22; a->data.f64[5] = 0.23; ccv_dense_matrix_t* b = ccv_dense_matrix_new(3, 2, CCV_64F | CCV_C1, 0, 0); b->data.f64[0] = 1011; b->data.f64[1] = 1012; b->data.f64[2] = 1021; b->data.f64[3] = 1022; b->data.f64[4] = 1031; b->data.f64[5] = 1032; ccv_dense_matrix_t* y = 0; ccv_gemm(a, b, 1, 0, 0, CCV_A_TRANSPOSE, (ccv_matrix_t**)&y, 0); ccv_matrix_free(a); ccv_matrix_free(b); ccv_matrix_free(y); }
int main(int argc, char** argv) { if (argc != 5) { print_help(); return -1; } ccv_enable_default_cache(); int i, rt; int posnum = atoi(argv[2]); FILE* pf = fopen(argv[1], "r"); ccv_dense_matrix_t** posimg = (ccv_dense_matrix_t**)malloc(sizeof(posimg[0]) * posnum); for (i = 0; i < posnum; i++) { char buf[1024]; rt = fscanf(pf, "%s", buf); ccv_read(buf, &posimg[i], CCV_IO_GRAY | CCV_IO_ANY_FILE); } fclose(pf); int negnum = atoi(argv[4]); FILE* bgf = fopen(argv[3], "r"); int bgnum; rt = fscanf(bgf, "%d", &bgnum); char** bgfiles = (char**)malloc(sizeof(bgfiles[0]) * bgnum); for (i = 0; i < bgnum; i++) { bgfiles[i] = (char*)malloc(1024); rt = fscanf(bgf, "%s", bgfiles[i]); } fclose(bgf); ccv_bbf_new_param_t params = { .pos_crit = 0.9975, .neg_crit = 0.50, .balance_k = 1.0, .layer = 24, .feature_number = 100, .optimizer = CCV_BBF_GENETIC_OPT | CCV_BBF_FLOAT_OPT, }; ccv_bbf_classifier_cascade_new(posimg, posnum, bgfiles, bgnum, negnum, ccv_size(24, 24), "data", params); for (i = 0; i < bgnum; i++) free(bgfiles[i]); for (i = 0; i < posnum; i++) ccv_matrix_free(&posimg[i]); free(posimg); free(bgfiles); ccv_disable_cache(); return 0; }
int main(int argc, char** argv) { ccv_dense_matrix_t* image = 0; ccv_read(argv[1], &image, CCV_IO_RGB_COLOR | CCV_IO_ANY_FILE); ccv_scd_classifier_cascade_t* cascade = ccv_scd_classifier_cascade_read(argv[2]); ccv_array_t* faces = ccv_scd_detect_objects(image, &cascade, 1, ccv_scd_default_params); int i; for (i = 0; i < faces->rnum; i++) { ccv_comp_t* face = (ccv_comp_t*)ccv_array_get(faces, i); printf("%d %d %d %d\n", face->rect.x, face->rect.y, face->rect.width, face->rect.height); } ccv_array_free(faces); ccv_scd_classifier_cascade_free(cascade); ccv_matrix_free(image); return 0; }
int main(int argc, char** argv) { printf("Face Detection Benchmark ...\n"); ccv_enable_default_cache(); ccv_dense_matrix_t* image = 0; ccv_bbf_classifier_cascade_t* cascade = ccv_bbf_read_classifier_cascade(argv[4]); ccv_read(argv[1], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); unsigned int elapsed_time; ccv_array_t* seq; elapsed_time = get_current_time(); seq = ccv_bbf_detect_objects(image, &cascade, 1, ccv_bbf_default_params); elapsed_time = get_current_time() - elapsed_time; printf("origin: %d in %dms\n", seq->rnum, elapsed_time); ccv_array_free(seq); int X_SLICE = atoi(argv[2]), Y_SLICE = atoi(argv[3]); int sliced_total = 0; int slice_rows = image->rows / Y_SLICE; int slice_cols = image->cols / X_SLICE; int i, count = X_SLICE * Y_SLICE; elapsed_time = get_current_time(); #pragma omp parallel for shared(sliced_total) for (i = 0; i < count; i++) { int y = i / X_SLICE; int x = i - X_SLICE * y; ccv_dense_matrix_t* slice = 0; ccv_slice(image, (ccv_matrix_t**)&slice, 0, slice_rows * y, slice_cols * x, slice_rows, slice_cols); ccv_array_t* sseq = ccv_bbf_detect_objects(slice, &cascade, 1, ccv_bbf_default_params); sliced_total += sseq->rnum; #ifdef DEBUG cos_ccv_slice_output(slice, y, x); #endif } elapsed_time = get_current_time() - elapsed_time; printf("slice & detect: %d in %dms\n", sliced_total, elapsed_time); ccv_matrix_free(image); ccv_bbf_classifier_cascade_free(cascade); ccv_disable_cache(); return 0; }
void ccv_visualize(ccv_matrix_t* a, ccv_dense_matrix_t** b, int type) { ccv_dense_matrix_t* da = ccv_get_dense_matrix(a); ccv_declare_derived_signature(sig, da->sig != 0, ccv_sign_with_literal("ccv_visualize"), da->sig, CCV_EOF_SIGN); ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, da->rows, da->cols, CCV_8U | CCV_C1, CCV_8U | CCV_C1, sig); ccv_object_return_if_cached(, db); ccv_dense_matrix_t* dc = 0; if (CCV_GET_CHANNEL(da->type) > CCV_C1) { ccv_flatten(da, (ccv_matrix_t**)&dc, 0, 0); da = dc; } int i, j; double minval = DBL_MAX, maxval = -DBL_MAX; unsigned char* aptr = da->data.u8; unsigned char* bptr = db->data.u8; #define for_block(_, _for_get) \ for (i = 0; i < da->rows; i++) \ { \ for (j = 0; j < da->cols; j++) \ { \ minval = ccv_min(minval, _for_get(aptr, j, 0)); \ maxval = ccv_max(maxval, _for_get(aptr, j, 0)); \ } \ aptr += da->step; \ } \ aptr = da->data.u8; \ for (i = 0; i < da->rows; i++) \ { \ for (j = 0; j < da->cols; j++) \ bptr[j] = ccv_clamp((_for_get(aptr, j, 0) - minval) * 255.0 / (maxval - minval), 0, 255); \ aptr += da->step; \ bptr += db->step; \ } ccv_matrix_getter(da->type, for_block); #undef for_block if (dc != 0) ccv_matrix_free(dc); }
int main(int argc, char** argv) { // process arguments char* image_file = ""; int scale_invariant = 0; int min_height = 0; int min_area = 0; char ch; while ((ch = getopt(argc, argv, "a:h:i")) != EOF) switch(ch) { case 'i': scale_invariant = 1; printf("Scale invariant\n"); break; case 'h': min_height = atoi(optarg); printf("Min height %d\n", min_height); continue; case 'a': min_area = atoi(optarg); printf("Min area %d\n", min_area); continue; } argc -= optind; argv += optind; image_file = argv[0]; ccv_enable_default_cache(); ccv_dense_matrix_t* image = 0; ccv_read(image_file, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); if (image==0) { fprintf(stderr, "ERROR: image could not be read\n"); return 1; } unsigned int elapsed_time = get_current_time(); ccv_swt_param_t params = ccv_swt_default_params; if (scale_invariant) params.scale_invariant = 1; if (min_height) params.min_height = min_height; if (min_area) params.min_area = min_area; ccv_array_t* letters = ccv_swt_detect_chars_contour(image, params); elapsed_time = get_current_time() - elapsed_time; if (letters) { printf("total : %d in time %dms\n", letters->rnum, elapsed_time); int i; for (i = 0; i < letters->rnum; i++) { // for each letter ccv_contour_t* cont = *(ccv_contour_t**)ccv_array_get(letters, i); printf("Contour %d (size=%d):\n", i, cont->size); for (int j = 0; j < cont->size; j++) { // for each point in contour ccv_point_t* point = (ccv_point_t*)ccv_array_get(cont->set, j); printf("%d %d\n", point->x, point->y); } printf("End contour %d\n", i); } ccv_array_free(letters); } ccv_matrix_free(image); ccv_drain_cache(); return 0; }
/* it is a supposely cleaner and faster implementation than original OpenCV (ccv_canny_deprecated, * removed, since the newer implementation achieve bit accuracy with OpenCV's), after a lot * profiling, the current implementation still uses integer to speed up */ void ccv_canny(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int type, int size, double low_thresh, double high_thresh) { assert(CCV_GET_CHANNEL(a->type) == CCV_C1); ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_format(64, "ccv_canny(%d,%la,%la)", size, low_thresh, high_thresh), a->sig, CCV_EOF_SIGN); type = (type == 0) ? CCV_8U | CCV_C1 : CCV_GET_DATA_TYPE(type) | CCV_C1; ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, a->rows, a->cols, CCV_C1 | CCV_ALL_DATA_TYPE, type, sig); ccv_object_return_if_cached(, db); printc("begin process\n"); if ((a->type & CCV_8U) || (a->type & CCV_32S)) { ccv_dense_matrix_t* dx = 0; ccv_dense_matrix_t* dy = 0; printc("begin ccv_sobel\n"); ccv_sobel(a, &dx, 0, size, 0); ccv_sobel(a, &dy, 0, 0, size); printc("done ccv_sobel\n"); /* special case, all integer */ int low = (int)(low_thresh + 0.5); int high = (int)(high_thresh + 0.5); int* dxi = dx->data.i32; int* dyi = dy->data.i32; int i, j; int* mbuf = (int*)malloc(3 * (a->cols + 2) * sizeof(int)); memset(mbuf, 0, 3 * (a->cols + 2) * sizeof(int)); int* rows[3]; rows[0] = mbuf + 1; rows[1] = mbuf + (a->cols + 2) + 1; rows[2] = mbuf + 2 * (a->cols + 2) + 1; for (j = 0; j < a->cols; j++) rows[1][j] = abs(dxi[j]) + abs(dyi[j]); dxi += a->cols; dyi += a->cols; /*int* map = (int*)ccmalloc(sizeof(int) * (a->rows + 2) * (a->cols + 2));*/ int* map = (int*)malloc(sizeof(int) * (a->rows + 2) * (a->cols + 2)); memset(map, 0, sizeof(int) * (a->cols + 2)); int* map_ptr = map + a->cols + 2 + 1; int map_cols = a->cols + 2; /*int** stack = (int**)ccmalloc(sizeof(int*) * a->rows * a->cols);*/ int** stack = (int**)malloc(sizeof(int*) * a->rows * a->cols); int** stack_top = stack; int** stack_bottom = stack; for (i = 1; i <= a->rows; i++) { /* the if clause should be unswitched automatically, no need to manually do so */ if (i == a->rows) memset(rows[2], 0, sizeof(int) * a->cols); else for (j = 0; j < a->cols; j++) rows[2][j] = abs(dxi[j]) + abs(dyi[j]); int* _dx = dxi - a->cols; int* _dy = dyi - a->cols; map_ptr[-1] = 0; int suppress = 0; for (j = 0; j < a->cols; j++) { int f = rows[1][j]; if (f > low) { int x = abs(_dx[j]); int y = abs(_dy[j]); int s = _dx[j] ^ _dy[j]; /* x * tan(22.5) */ int tg22x = x * (int)(0.4142135623730950488016887242097 * (1 << 15) + 0.5); /* x * tan(67.5) == 2 * x + x * tan(22.5) */ int tg67x = tg22x + ((x + x) << 15); y <<= 15; /* it is a little different from the Canny original paper because we adopted the coordinate system of * top-left corner as origin. Thus, the derivative of y convolved with matrix: * |-1 -2 -1| * | 0 0 0| * | 1 2 1| * actually is the reverse of real y. Thus, the computed angle will be mirrored around x-axis. * In this case, when angle is -45 (135), we compare with north-east and south-west, and for 45, * we compare with north-west and south-east (in traditional coordinate system sense, the same if we * adopt top-left corner as origin for "north", "south", "east", "west" accordingly) */ #define high_block \ { \ if (f > high && !suppress && map_ptr[j - map_cols] != 2) \ { \ map_ptr[j] = 2; \ suppress = 1; \ *(stack_top++) = map_ptr + j; \ } else { \ map_ptr[j] = 1; \ } \ continue; \ } /* sometimes, we end up with same f in integer domain, for that case, we will take the first occurrence * suppressing the second with flag */ if (y < tg22x) { if (f > rows[1][j - 1] && f >= rows[1][j + 1]) high_block; } else if (y > tg67x) { if (f > rows[0][j] && f >= rows[2][j]) high_block; } else { s = s < 0 ? -1 : 1; if (f > rows[0][j - s] && f > rows[2][j + s]) high_block; } #undef high_block } map_ptr[j] = 0; suppress = 0; } map_ptr[a->cols] = 0; map_ptr += map_cols; dxi += a->cols; dyi += a->cols; int* row = rows[0]; rows[0] = rows[1]; rows[1] = rows[2]; rows[2] = row; } memset(map_ptr - map_cols - 1, 0, sizeof(int) * (a->cols + 2)); int dr[] = {-1, 1, -map_cols - 1, -map_cols, -map_cols + 1, map_cols - 1, map_cols, map_cols + 1}; while (stack_top > stack_bottom) { map_ptr = *(--stack_top); for (i = 0; i < 8; i++) if (map_ptr[dr[i]] == 1) { map_ptr[dr[i]] = 2; *(stack_top++) = map_ptr + dr[i]; } } map_ptr = map + map_cols + 1; unsigned char* b_ptr = db->data.u8; #define for_block(_, _for_set) \ for (i = 0; i < a->rows; i++) \ { \ for (j = 0; j < a->cols; j++) \ _for_set(b_ptr, j, (map_ptr[j] == 2), 0); \ map_ptr += map_cols; \ b_ptr += db->step; \ } ccv_matrix_setter(db->type, for_block); #undef for_block /*ccfree(stack);*/ /*ccfree(map);*/ free(stack); free(map); ccv_matrix_free(dx); ccv_matrix_free(dy); free(mbuf); } else { /* general case, use all ccv facilities to deal with it */ ccv_dense_matrix_t* mg = 0; ccv_dense_matrix_t* ag = 0; ccv_gradient(a, &ag, 0, &mg, 0, size, size); ccv_matrix_free(ag); ccv_matrix_free(mg); /* FIXME: Canny implementation for general case */ } }
int uri_dpm_detect_objects(const void* context, const void* parsed, ebb_buf* buf) { if (!parsed) return -1; dpm_param_parser_t* parser = (dpm_param_parser_t*)parsed; param_parser_terminate(&parser->param_parser); if (parser->source.data == 0) { free(parser); return -1; } if (parser->mixture_model == 0) { free(parser->source.data); free(parser); return -1; } ccv_dense_matrix_t* image = 0; ccv_read(parser->source.data, &image, CCV_IO_ANY_STREAM | CCV_IO_GRAY, parser->source.written); free(parser->source.data); if (image == 0) { free(parser); return -1; } ccv_array_t* seq = ccv_dpm_detect_objects(image, &parser->mixture_model, 1, parser->params); ccv_matrix_free(image); if (seq == 0) { free(parser); return -1; } if (seq->rnum > 0) { int i, j; buf->len = 192 + seq->rnum * 131 + 2; char* data = (char*)malloc(buf->len); data[0] = '['; buf->written = 1; for (i = 0; i < seq->rnum; i++) { char cell[128]; ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i); snprintf(cell, 128, "{\"x\":%d,\"y\":%d,\"width\":%d,\"height\":%d,\"confidence\":%f,\"parts\":[", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->confidence); size_t len = strnlen(cell, 128); while (buf->written + len >= buf->len) { buf->len = (buf->len * 3 + 1) / 2; data = (char*)realloc(data, buf->len); } memcpy(data + buf->written, cell, len); buf->written += len; for (j = 0; j < comp->pnum; j++) { snprintf(cell, 128, "{\"x\":%d,\"y\":%d,\"width\":%d,\"height\":%d,\"confidence\":%f}", comp->part[j].rect.x, comp->part[j].rect.y, comp->part[j].rect.width, comp->part[j].rect.height, comp->part[j].confidence); len = strnlen(cell, 128); while (buf->written + len + 3 >= buf->len) { buf->len = (buf->len * 3 + 1) / 2; data = (char*)realloc(data, buf->len); } memcpy(data + buf->written, cell, len); buf->written += len + 1; data[buf->written - 1] = (j == comp->pnum - 1) ? ']' : ','; } buf->written += 2; data[buf->written - 2] = '}'; data[buf->written - 1] = (i == seq->rnum - 1) ? ']' : ','; } char http_header[192]; snprintf(http_header, 192, ebb_http_header, buf->written); size_t len = strnlen(http_header, 192); if (buf->written + len + 1 >= buf->len) { buf->len = buf->written + len + 1; data = (char*)realloc(data, buf->len); } memmove(data + len, data, buf->written); memcpy(data, http_header, len); buf->written += len + 1; data[buf->written - 1] = '\n'; buf->data = data; buf->len = buf->written; buf->on_release = uri_ebb_buf_free; } else { buf->data = (void*)ebb_http_empty_array; buf->len = sizeof(ebb_http_empty_array); buf->on_release = 0; } ccv_array_free(seq); free(parser); return 0; }
int main(int argc, char** argv) { static struct option bbf_options[] = { /* help */ {"help", 0, 0, 0}, /* required parameters */ {"positive-list", 1, 0, 0}, {"background-list", 1, 0, 0}, {"working-dir", 1, 0, 0}, {"negative-count", 1, 0, 0}, {"width", 1, 0, 0}, {"height", 1, 0, 0}, /* optional parameters */ {"base-dir", 1, 0, 0}, {"layer", 1, 0, 0}, {"positive-criteria", 1, 0, 0}, {"negative-criteria", 1, 0, 0}, {"balance", 1, 0, 0}, {"feature-number", 1, 0, 0}, {0, 0, 0, 0} }; char* positive_list = 0; char* background_list = 0; char* working_dir = 0; char* base_dir = 0; int negnum = 0; int width = 0, height = 0; ccv_bbf_new_param_t params = { .pos_crit = 0.9975, .neg_crit = 0.50, .balance_k = 1.0, .layer = 24, .feature_number = 100, .optimizer = CCV_BBF_GENETIC_OPT | CCV_BBF_FLOAT_OPT, }; int i, k; while (getopt_long_only(argc, argv, "", bbf_options, &k) != -1) { switch (k) { case 0: exit_with_help(); case 1: positive_list = optarg; break; case 2: background_list = optarg; break; case 3: working_dir = optarg; break; case 4: negnum = atoi(optarg); break; case 5: width = atoi(optarg); break; case 6: height = atoi(optarg); break; case 7: base_dir = optarg; break; case 8: params.layer = atoi(optarg); break; case 9: params.pos_crit = atof(optarg); break; case 10: params.neg_crit = atof(optarg); break; case 11: params.balance_k = atof(optarg); break; case 12: params.feature_number = atoi(optarg); break; } } assert(positive_list != 0); assert(background_list != 0); assert(working_dir != 0); assert(negnum > 0); assert(width > 0 && height > 0); ccv_enable_default_cache(); FILE* r0 = fopen(positive_list, "r"); assert(r0 && "positive-list doesn't exists"); FILE* r1 = fopen(background_list, "r"); assert(r1 && "background-list doesn't exists"); char* file = (char*)malloc(1024); int dirlen = (base_dir != 0) ? strlen(base_dir) + 1 : 0; size_t len = 1024; ssize_t read; int capacity = 32, size = 0; ccv_dense_matrix_t** posimg = (ccv_dense_matrix_t**)ccmalloc(sizeof(ccv_dense_matrix_t*) * capacity); while ((read = getline(&file, &len, r0)) != -1) { while(read > 1 && isspace(file[read - 1])) read--; file[read] = 0; char* posfile = (char*)ccmalloc(1024); if (base_dir != 0) { strncpy(posfile, base_dir, 1024); posfile[dirlen - 1] = '/'; } strncpy(posfile + dirlen, file, 1024 - dirlen); posimg[size] = 0; ccv_read(posfile, &posimg[size], CCV_IO_GRAY | CCV_IO_ANY_FILE); if (posimg != 0) { ++size; if (size >= capacity) { capacity *= 2; posimg = (ccv_dense_matrix_t**)ccrealloc(posimg, sizeof(ccv_dense_matrix_t*) * capacity); } } } fclose(r0); int posnum = size; capacity = 32; size = 0; char** bgfiles = (char**)ccmalloc(sizeof(char*) * capacity); while ((read = getline(&file, &len, r1)) != -1) { while(read > 1 && isspace(file[read - 1])) read--; file[read] = 0; bgfiles[size] = (char*)ccmalloc(1024); if (base_dir != 0) { strncpy(bgfiles[size], base_dir, 1024); bgfiles[size][dirlen - 1] = '/'; } strncpy(bgfiles[size] + dirlen, file, 1024 - dirlen); ++size; if (size >= capacity) { capacity *= 2; bgfiles = (char**)ccrealloc(bgfiles, sizeof(char*) * capacity); } } fclose(r1); int bgnum = size; free(file); ccv_bbf_classifier_cascade_new(posimg, posnum, bgfiles, bgnum, negnum, ccv_size(width, height), working_dir, params); for (i = 0; i < bgnum; i++) free(bgfiles[i]); for (i = 0; i < posnum; i++) ccv_matrix_free(&posimg[i]); free(posimg); free(bgfiles); ccv_disable_cache(); return 0; }
int main(int argc, char** argv) { FILE* file; char *output_file = "my_output.txt"; int i, ret_val; ccv_dense_matrix_t* image = 0; ccv_array_t* seq; accept_roi_begin(); assert(argc >= 3); ccv_enable_default_cache(); ccv_bbf_classifier_cascade_t* cascade = ccv_bbf_read_classifier_cascade(argv[2]); ccv_read(argv[1], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); if (image != 0) { unsigned int elapsed_time = get_current_time(); seq = ccv_bbf_detect_objects(image, &cascade, 1, ccv_bbf_default_params); elapsed_time = get_current_time() - elapsed_time; for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); printf("%d %d %d %d %f\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence); } printf("total : %d in time %dms\n", seq->rnum, elapsed_time); ccv_bbf_classifier_cascade_free(cascade); ccv_disable_cache(); accept_roi_end(); file = fopen(output_file, "w"); if (file == NULL) { perror("fopen for write failed"); return EXIT_FAILURE; } // latest changes struct coordinates { APPROX int x; APPROX int y; }; for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*) ENDORSE(ccv_array_get(seq, i)); struct coordinates upperleft, upperright, lowerleft, lowerright; upperleft.x = comp->rect.x; upperleft.y = comp->rect.y; upperright.x = comp->rect.x + comp->rect.width; upperright.y = upperleft.y; lowerleft.x = upperleft.x; lowerleft.y = upperleft.y + comp->rect.height; lowerright.x = upperright.x; lowerright.y = lowerleft.y; ret_val = fprintf(file, "%d %d\n%d %d\n%d %d\n%d %d\n", upperleft.x, upperleft.y, upperright.x, upperright.y, lowerright.x, lowerright.y, lowerleft.x, lowerleft.y); // latest changes if (ret_val < 0) { perror("fprintf of coordinates failed"); fclose(file); return EXIT_FAILURE; } } ret_val = fclose(file); if (ret_val != 0) { perror("fclose failed"); return EXIT_FAILURE; } ccv_array_free(seq); ccv_matrix_free(image); } else { FILE* r = fopen(argv[1], "rt"); if (argc == 4) chdir(argv[3]); if(r) { size_t len = 1024; char* file = (char*)malloc(len); ssize_t read; while((read = getline(&file, &len, r)) != -1) { while(read > 1 && isspace(file[read - 1])) read--; file[read] = 0; image = 0; ccv_read(file, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); assert(image != 0); seq = ccv_bbf_detect_objects(image, &cascade, 1, ccv_bbf_default_params); // seq already declared above for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*) ENDORSE(ccv_array_get(seq, i)); printf("%s %d %d %d %d %f\n", file, comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence); } } free(file); fclose(r); } ccv_bbf_classifier_cascade_free(cascade); ccv_disable_cache(); accept_roi_end(); file = fopen(output_file, "w"); if (file == NULL) { perror("fopen for write failed"); return EXIT_FAILURE; } for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*) ENDORSE(ccv_array_get(seq, i)); ret_val = fprintf(file, "%d\n%d\n%d\n%d\n%f\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence); if (ret_val < 0) { perror("fprintf of coordinates and confidence failed"); fclose(file); return EXIT_FAILURE; } } ret_val = fclose(file); if (ret_val != 0) { perror("fclose failed"); return EXIT_FAILURE; } ccv_array_free(seq); ccv_matrix_free(image); } return 0; }
void ccv_hog(ccv_dense_matrix_t* a, ccv_dense_matrix_t** b, int b_type, int sbin, int size) { assert(a->rows >= size && a->cols >= size && (4 + sbin * 3) <= CCV_MAX_CHANNEL); int rows = a->rows / size; int cols = a->cols / size; b_type = (CCV_GET_DATA_TYPE(b_type) == CCV_64F) ? CCV_64F | (4 + sbin * 3) : CCV_32F | (4 + sbin * 3); ccv_declare_derived_signature(sig, a->sig != 0, ccv_sign_with_format(64, "ccv_hog(%d,%d)", sbin, size), a->sig, CCV_EOF_SIGN); ccv_dense_matrix_t* db = *b = ccv_dense_matrix_renew(*b, rows, cols, CCV_64F | CCV_32F | (4 + sbin * 3), b_type, sig); ccv_object_return_if_cached(, db); ccv_dense_matrix_t* ag = 0; ccv_dense_matrix_t* mg = 0; ccv_gradient(a, &ag, 0, &mg, 0, 1, 1); float* agp = ag->data.f32; float* mgp = mg->data.f32; int i, j, k, ch = CCV_GET_CHANNEL(a->type); ccv_dense_matrix_t* cn = ccv_dense_matrix_new(rows, cols, CCV_GET_DATA_TYPE(db->type) | (sbin * 2), 0, 0); ccv_dense_matrix_t* ca = ccv_dense_matrix_new(rows, cols, CCV_GET_DATA_TYPE(db->type) | CCV_C1, 0, 0); ccv_zero(cn); // normalize sbin direction-sensitive and sbin * 2 insensitive over 4 normalization factor // accumulating them over sbin * 2 + sbin + 4 channels // TNA - truncation - normalization - accumulation #define TNA(_for_type, idx, a, b, c, d) \ { \ _for_type norm = 1.0 / sqrt(cap[a] + cap[b] + cap[c] + cap[d] + 1e-4); \ for (k = 0; k < sbin * 2; k++) \ { \ _for_type v = 0.5 * ccv_min(cnp[k] * norm, 0.2); \ dbp[4 + sbin + k] += v; \ dbp[idx] += v; \ } \ dbp[idx] *= 0.2357; \ for (k = 0; k < sbin; k++) \ { \ _for_type v = 0.5 * ccv_min((cnp[k] + cnp[k + sbin]) * norm, 0.2); \ dbp[4 + k] += v; \ } \ } #define for_block(_, _for_type) \ _for_type* cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \ for (i = 0; i < rows * size; i++) \ { \ for (j = 0; j < cols * size; j++) \ { \ _for_type agv = agp[j * ch]; \ _for_type mgv = mgp[j * ch]; \ for (k = 1; k < ch; k++) \ if (mgp[j * ch + k] > mgv) \ { \ mgv = mgp[j * ch + k]; \ agv = agp[j * ch + k]; \ } \ _for_type agr0 = (ccv_clamp(agv, 0, 359.99) / 360.0) * (sbin * 2); \ int ag0 = (int)agr0; \ int ag1 = (ag0 + 1 < sbin * 2) ? ag0 + 1 : 0; \ agr0 = agr0 - ag0; \ _for_type agr1 = 1.0 - agr0; \ mgv = mgv / 255.0; \ _for_type yp = ((_for_type)i + 0.5) / (_for_type)size - 0.5; \ _for_type xp = ((_for_type)j + 0.5) / (_for_type)size - 0.5; \ int iyp = (int)floor(yp); \ assert(iyp < rows); \ int ixp = (int)floor(xp); \ assert(ixp < cols); \ _for_type vy0 = yp - iyp; \ _for_type vx0 = xp - ixp; \ _for_type vy1 = 1.0 - vy0; \ _for_type vx1 = 1.0 - vx0; \ if (ixp >= 0 && iyp >= 0) \ { \ cnp[iyp * cn->cols * sbin * 2 + ixp * sbin * 2 + ag0] += agr1 * vx1 * vy1 * mgv; \ cnp[iyp * cn->cols * sbin * 2 + ixp * sbin * 2 + ag1] += agr0 * vx1 * vy1 * mgv; \ } \ if (ixp + 1 < cn->cols && iyp >= 0) \ { \ cnp[iyp * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag0] += agr1 * vx0 * vy1 * mgv; \ cnp[iyp * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag1] += agr0 * vx0 * vy1 * mgv; \ } \ if (ixp >= 0 && iyp + 1 < cn->rows) \ { \ cnp[(iyp + 1) * cn->cols * sbin * 2 + ixp * sbin * 2 + ag0] += agr1 * vx1 * vy0 * mgv; \ cnp[(iyp + 1) * cn->cols * sbin * 2 + ixp * sbin * 2 + ag1] += agr0 * vx1 * vy0 * mgv; \ } \ if (ixp + 1 < cn->cols && iyp + 1 < cn->rows) \ { \ cnp[(iyp + 1) * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag0] += agr1 * vx0 * vy0 * mgv; \ cnp[(iyp + 1) * cn->cols * sbin * 2 + (ixp + 1) * sbin * 2 + ag1] += agr0 * vx0 * vy0 * mgv; \ } \ } \ agp += a->cols * ch; \ mgp += a->cols * ch; \ } \ ccv_matrix_free(ag); \ ccv_matrix_free(mg); \ cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \ _for_type* cap = (_for_type*)ccv_get_dense_matrix_cell(ca, 0, 0, 0); \ for (i = 0; i < rows; i++) \ { \ for (j = 0; j < cols; j++) \ { \ *cap = 0; \ for (k = 0; k < sbin; k++) \ *cap += (cnp[k] + cnp[k + sbin]) * (cnp[k] + cnp[k + sbin]); \ cnp += 2 * sbin; \ cap++; \ } \ } \ cnp = (_for_type*)ccv_get_dense_matrix_cell(cn, 0, 0, 0); \ cap = (_for_type*)ccv_get_dense_matrix_cell(ca, 0, 0, 0); \ ccv_zero(db); \ _for_type* dbp = (_for_type*)ccv_get_dense_matrix_cell(db, 0, 0, 0); \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, 1, 0, 0); \ TNA(_for_type, 2, 0, cols, cols, 0); \ TNA(_for_type, 3, 0, 0, 0, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (j = 1; j < cols - 1; j++) \ { \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, 1, 0, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -1, 0, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 0, cols, cols, 0); \ TNA(_for_type, 1, 0, 0, 0, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -1, 0, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (i = 1; i < rows - 1; i++) \ { \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, 0, cols, cols, 0); \ TNA(_for_type, 3, 0, -cols, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (j = 1; j < cols - 1; j++) \ { \ TNA(_for_type, 0, 1, cols + 1, cols, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 0, cols, cols, 0); \ TNA(_for_type, 1, 0, -cols, -cols, 0); \ TNA(_for_type, 2, -1, cols - 1, cols, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 1, 1, 0, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, 0, 0, 0, 0); \ TNA(_for_type, 3, 0, -cols, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ for (j = 1; j < cols - 1; j++) \ { \ TNA(_for_type, 0, 1, 1, 0, 0); \ TNA(_for_type, 1, 1, -cols + 1, -cols, 0); \ TNA(_for_type, 2, -1, -1, 0, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); \ cnp += 2 * sbin; \ dbp += 3 * sbin + 4; \ cap++; \ } \ TNA(_for_type, 0, 0, 0, 0, 0); \ TNA(_for_type, 1, 0, -cols, -cols, 0); \ TNA(_for_type, 2, -1, -1, 0, 0); \ TNA(_for_type, 3, -1, -cols - 1, -cols, 0); ccv_matrix_typeof(db->type, for_block); #undef for_block #undef TNA ccv_matrix_free(cn); ccv_matrix_free(ca); }
int main(int argc, char** argv) { #ifdef HAVE_AVCODEC #ifdef HAVE_AVFORMAT #ifdef HAVE_SWSCALE assert(argc == 6); ccv_rect_t box = ccv_rect(atoi(argv[2]), atoi(argv[3]), atoi(argv[4]), atoi(argv[5])); box.width = box.width - box.x + 1; box.height = box.height - box.y + 1; printf("%d,%d,%d,%d,%f\n", box.x, box.y, box.width + box.x - 1, box.height + box.y - 1, 1.0f); // init av-related structs AVFormatContext* ic = 0; int video_stream = -1; AVStream* video_st = 0; AVFrame* picture = 0; AVFrame rgb_picture; memset(&rgb_picture, 0, sizeof(AVPicture)); AVPacket packet; memset(&packet, 0, sizeof(AVPacket)); av_init_packet(&packet); av_register_all(); avformat_network_init(); // load video and codec avformat_open_input(&ic, argv[1], 0, 0); avformat_find_stream_info(ic, 0); int i; for (i = 0; i < ic->nb_streams; i++) { AVCodecContext* enc = ic->streams[i]->codec; enc->thread_count = 2; if (AVMEDIA_TYPE_VIDEO == enc->codec_type && video_stream < 0) { AVCodec* codec = avcodec_find_decoder(enc->codec_id); if (!codec || avcodec_open2(enc, codec, 0) < 0) continue; video_stream = i; video_st = ic->streams[i]; picture = avcodec_alloc_frame(); rgb_picture.data[0] = (uint8_t*)ccmalloc(avpicture_get_size(PIX_FMT_RGB24, enc->width, enc->height)); avpicture_fill((AVPicture*)&rgb_picture, rgb_picture.data[0], PIX_FMT_RGB24, enc->width, enc->height); break; } } int got_picture = 0; while (!got_picture) { int result = av_read_frame(ic, &packet); if (result == AVERROR(EAGAIN)) continue; avcodec_decode_video2(video_st->codec, picture, &got_picture, &packet); } ccv_enable_default_cache(); struct SwsContext* picture_ctx = sws_getCachedContext(0, video_st->codec->width, video_st->codec->height, video_st->codec->pix_fmt, video_st->codec->width, video_st->codec->height, PIX_FMT_RGB24, SWS_BICUBIC, 0, 0, 0); sws_scale(picture_ctx, (const uint8_t* const*)picture->data, picture->linesize, 0, video_st->codec->height, rgb_picture.data, rgb_picture.linesize); ccv_dense_matrix_t* x = 0; ccv_read(rgb_picture.data[0], &x, CCV_IO_RGB_RAW | CCV_IO_GRAY, video_st->codec->height, video_st->codec->width, rgb_picture.linesize[0]); ccv_tld_t* tld = ccv_tld_new(x, box, ccv_tld_default_params); ccv_dense_matrix_t* y = 0; for (;;) { got_picture = 0; int result = av_read_frame(ic, &packet); if (result == AVERROR(EAGAIN)) continue; avcodec_decode_video2(video_st->codec, picture, &got_picture, &packet); if (!got_picture) break; sws_scale(picture_ctx, (const uint8_t* const*)picture->data, picture->linesize, 0, video_st->codec->height, rgb_picture.data, rgb_picture.linesize); ccv_read(rgb_picture.data[0], &y, CCV_IO_RGB_RAW | CCV_IO_GRAY, video_st->codec->height, video_st->codec->width, rgb_picture.linesize[0]); ccv_tld_info_t info; ccv_comp_t newbox = ccv_tld_track_object(tld, x, y, &info); printf("%04d: performed learn: %d, performed track: %d, successfully track: %d; %d passed fern detector, %d passed nnc detector, %d merged, %d confident matches, %d close matches\n", tld->count, info.perform_learn, info.perform_track, info.track_success, info.ferns_detects, info.nnc_detects, info.clustered_detects, info.confident_matches, info.close_matches); ccv_dense_matrix_t* image = 0; ccv_read(rgb_picture.data[0], &image, CCV_IO_RGB_RAW | CCV_IO_RGB_COLOR, video_st->codec->height, video_st->codec->width, rgb_picture.linesize[0]); // draw out // for (i = 0; i < tld->top->rnum; i++) if (tld->found) { ccv_comp_t* comp = &newbox; // (ccv_comp_t*)ccv_array_get(tld->top, i); if (comp->rect.x >= 0 && comp->rect.x + comp->rect.width < image->cols && comp->rect.y >= 0 && comp->rect.y + comp->rect.height < image->rows) { int x, y; for (x = comp->rect.x; x < comp->rect.x + comp->rect.width; x++) { image->data.u8[image->step * comp->rect.y + x * 3] = image->data.u8[image->step * (comp->rect.y + comp->rect.height - 1) + x * 3] = 255; image->data.u8[image->step * comp->rect.y + x * 3 + 1] = image->data.u8[image->step * (comp->rect.y + comp->rect.height - 1) + x * 3 + 1] = image->data.u8[image->step * comp->rect.y + x * 3 + 2] = image->data.u8[image->step * (comp->rect.y + comp->rect.height - 1) + x * 3 + 2] = 0; } for (y = comp->rect.y; y < comp->rect.y + comp->rect.height; y++) { image->data.u8[image->step * y + comp->rect.x * 3] = image->data.u8[image->step * y + (comp->rect.x + comp->rect.width - 1) * 3] = 255; image->data.u8[image->step * y + comp->rect.x * 3 + 1] = image->data.u8[image->step * y + (comp->rect.x + comp->rect.width - 1) * 3 + 1] = image->data.u8[image->step * y + comp->rect.x * 3 + 2] = image->data.u8[image->step * y + (comp->rect.x + comp->rect.width - 1) * 3 + 2] = 0; } } } char filename[1024]; sprintf(filename, "tld-out/output-%04d.png", tld->count); ccv_write(image, filename, 0, CCV_IO_PNG_FILE, 0); ccv_matrix_free(image); if (tld->found) printf("%d,%d,%d,%d,%f\n", newbox.rect.x, newbox.rect.y, newbox.rect.width + newbox.rect.x - 1, newbox.rect.height + newbox.rect.y - 1, newbox.confidence); else printf("NaN,NaN,NaN,NaN,NaN\n"); x = y; y = 0; } ccv_matrix_free(x); ccv_tld_free(tld); ccfree(rgb_picture.data[0]); ccv_disable_cache(); #endif #endif #endif return 0; }
/* this code is a rewrite from OpenCV's legendary Lucas-Kanade optical flow implementation */ void ccv_optical_flow_lucas_kanade(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_array_t* point_a, ccv_array_t** point_b, ccv_size_t win_size, int level, double min_eigen) { assert(a && b && a->rows == b->rows && a->cols == b->cols); assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(b->type) && CCV_GET_DATA_TYPE(a->type) == CCV_GET_DATA_TYPE(b->type)); assert(CCV_GET_CHANNEL(a->type) == 1); assert(CCV_GET_DATA_TYPE(a->type) == CCV_8U); assert(point_a->rnum > 0); level = ccv_clamp(level + 1, 1, (int)(log((double)ccv_min(a->rows, a->cols) / ccv_max(win_size.width * 2, win_size.height * 2)) / log(2.0) + 0.5)); ccv_declare_derived_signature(sig, a->sig != 0 && b->sig != 0 && point_a->sig != 0, ccv_sign_with_format(128, "ccv_optical_flow_lucas_kanade(%d,%d,%d,%la)", win_size.width, win_size.height, level, min_eigen), a->sig, b->sig, point_a->sig, CCV_EOF_SIGN); ccv_array_t* seq = *point_b = ccv_array_new(sizeof(ccv_decimal_point_with_status_t), point_a->rnum, sig); ccv_object_return_if_cached(, seq); seq->rnum = point_a->rnum; ccv_dense_matrix_t** pyr_a = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_a_dx = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_a_dy = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_b = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); int i, j, t, x, y; /* generating image pyramid */ pyr_a[0] = a; pyr_a_dx[0] = pyr_a_dy[0] = 0; ccv_sobel(pyr_a[0], &pyr_a_dx[0], 0, 3, 0); ccv_sobel(pyr_a[0], &pyr_a_dy[0], 0, 0, 3); pyr_b[0] = b; for (i = 1; i < level; i++) { pyr_a[i] = pyr_a_dx[i] = pyr_a_dy[i] = pyr_b[i] = 0; ccv_sample_down(pyr_a[i - 1], &pyr_a[i], 0, 0, 0); ccv_sobel(pyr_a[i], &pyr_a_dx[i], 0, 3, 0); ccv_sobel(pyr_a[i], &pyr_a_dy[i], 0, 0, 3); ccv_sample_down(pyr_b[i - 1], &pyr_b[i], 0, 0, 0); } int* wi = (int*)malloc(sizeof(int) * win_size.width * win_size.height); int* widx = (int*)malloc(sizeof(int) * win_size.width * win_size.height); int* widy = (int*)malloc(sizeof(int) * win_size.width * win_size.height); ccv_decimal_point_t half_win = ccv_decimal_point((win_size.width - 1) * 0.5f, (win_size.height - 1) * 0.5f); const int W_BITS14 = 14, W_BITS7 = 7, W_BITS9 = 9; const float FLT_SCALE = 1.0f / (1 << 25); // clean up status to 1 for (i = 0; i < point_a->rnum; i++) { ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i); point_with_status->status = 1; } int prev_rows, prev_cols; for (t = level - 1; t >= 0; t--) { ccv_dense_matrix_t* a = pyr_a[t]; ccv_dense_matrix_t* adx = pyr_a_dx[t]; ccv_dense_matrix_t* ady = pyr_a_dy[t]; assert(CCV_GET_DATA_TYPE(adx->type) == CCV_32S); assert(CCV_GET_DATA_TYPE(ady->type) == CCV_32S); ccv_dense_matrix_t* b = pyr_b[t]; for (i = 0; i < point_a->rnum; i++) { ccv_decimal_point_t prev_point = *(ccv_decimal_point_t*)ccv_array_get(point_a, i); ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i); prev_point.x = prev_point.x / (float)(1 << t); prev_point.y = prev_point.y / (float)(1 << t); ccv_decimal_point_t next_point; if (t == level - 1) next_point = prev_point; else { next_point.x = point_with_status->point.x * 2 + (a->cols - prev_cols * 2) * 0.5; next_point.y = point_with_status->point.y * 2 + (a->rows - prev_rows * 2) * 0.5; } point_with_status->point = next_point; prev_point.x -= half_win.x; prev_point.y -= half_win.y; ccv_point_t iprev_point = ccv_point((int)prev_point.x, (int)prev_point.y); if (iprev_point.x < 0 || iprev_point.x >= a->cols - win_size.width - 1 || iprev_point.y < 0 || iprev_point.y >= a->rows - win_size.height - 1) { if (t == 0) point_with_status->status = 0; continue; } float xd = prev_point.x - iprev_point.x; float yd = prev_point.y - iprev_point.y; int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5); int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5); int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5); int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10; float a11 = 0, a12 = 0, a22 = 0; unsigned char* a_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, a, iprev_point.y, iprev_point.x, 0); int* adx_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, adx, iprev_point.y, iprev_point.x, 0); int* ady_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, ady, iprev_point.y, iprev_point.x, 0); int* wi_ptr = wi; int* widx_ptr = widx; int* widy_ptr = widy; for (y = 0; y < win_size.height; y++) { for (x = 0; x < win_size.width; x++) { wi_ptr[x] = ccv_descale(a_ptr[x] * iw00 + a_ptr[x + 1] * iw01 + a_ptr[x + a->step] * iw10 + a_ptr[x + a->step + 1] * iw11, W_BITS7); // because we use 3x3 sobel, which scaled derivative up by 4 widx_ptr[x] = ccv_descale(adx_ptr[x] * iw00 + adx_ptr[x + 1] * iw01 + adx_ptr[x + adx->cols] * iw10 + adx_ptr[x + adx->cols + 1] * iw11, W_BITS9); widy_ptr[x] = ccv_descale(ady_ptr[x] * iw00 + ady_ptr[x + 1] * iw01 + ady_ptr[x + ady->cols] + iw10 + ady_ptr[x + ady->cols + 1] * iw11, W_BITS9); a11 += (float)(widx_ptr[x] * widx_ptr[x]); a12 += (float)(widx_ptr[x] * widy_ptr[x]); a22 += (float)(widy_ptr[x] * widy_ptr[x]); } a_ptr += a->step; adx_ptr += adx->cols; ady_ptr += ady->cols; wi_ptr += win_size.width; widx_ptr += win_size.width; widy_ptr += win_size.width; } a11 *= FLT_SCALE; a12 *= FLT_SCALE; a22 *= FLT_SCALE; float D = a11 * a22 - a12 * a12; float eigen = (a22 + a11 - sqrtf((a11 - a22) * (a11 - a22) + 4.0f * a12 * a12)) / (2 * win_size.width * win_size.height); if (eigen < min_eigen || D < FLT_EPSILON) { if (t == 0) point_with_status->status = 0; continue; } D = 1.0f / D; next_point.x -= half_win.x; next_point.y -= half_win.y; ccv_decimal_point_t prev_delta; for (j = 0; j < LK_MAX_ITER; j++) { ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y); if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 || inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1) break; float xd = next_point.x - inext_point.x; float yd = next_point.y - inext_point.y; int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5); int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5); int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5); int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10; float b1 = 0, b2 = 0; unsigned char* b_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, b, inext_point.y, inext_point.x, 0); int* wi_ptr = wi; int* widx_ptr = widx; int* widy_ptr = widy; for (y = 0; y < win_size.height; y++) { for (x = 0; x < win_size.width; x++) { int diff = ccv_descale(b_ptr[x] * iw00 + b_ptr[x + 1] * iw01 + b_ptr[x + b->step] * iw10 + b_ptr[x + b->step + 1] * iw11, W_BITS7) - wi_ptr[x]; b1 += (float)(diff * widx_ptr[x]); b2 += (float)(diff * widy_ptr[x]); } b_ptr += b->step; wi_ptr += win_size.width; widx_ptr += win_size.width; widy_ptr += win_size.width; } b1 *= FLT_SCALE; b2 *= FLT_SCALE; ccv_decimal_point_t delta = ccv_decimal_point((a12 * b2 - a22 * b1) * D, (a12 * b1 - a11 * b2) * D); next_point.x += delta.x; next_point.y += delta.y; if (delta.x * delta.x + delta.y * delta.y < LK_EPSILON) break; if (j > 0 && fabs(prev_delta.x - delta.x) < 0.01 && fabs(prev_delta.y - delta.y) < 0.01) { next_point.x -= delta.x * 0.5; next_point.y -= delta.y * 0.5; break; } prev_delta = delta; } ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y); if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 || inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1) point_with_status->status = 0; else { point_with_status->point.x = next_point.x + half_win.x; point_with_status->point.y = next_point.y + half_win.y; } } prev_rows = a->rows; prev_cols = a->cols; ccv_matrix_free(adx); ccv_matrix_free(ady); if (t > 0) { ccv_matrix_free(a); ccv_matrix_free(b); } } free(widy); free(widx); free(wi); free(pyr_b); free(pyr_a_dy); free(pyr_a_dx); free(pyr_a); }
ccv_array_t* ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** _cascade, int count, ccv_bbf_param_t params) { int hr = a->rows / ENDORSE(params.size.height); int wr = a->cols / ENDORSE(params.size.width); double scale = pow(2., 1. / (params.interval + 1.)); APPROX int next = params.interval + 1; int scale_upto = (int)(log((double)ccv_min(hr, wr)) / log(scale)); ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca(ENDORSE(scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*)); memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*)); if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)) ccv_resample(a, &pyr[0], 0, a->rows * ENDORSE(_cascade[0]->size.height / params.size.height), a->cols * ENDORSE(_cascade[0]->size.width / params.size.width), CCV_INTER_AREA); else pyr[0] = a; APPROX int i; int j, k, t, x, y, q; for (i = 1; ENDORSE(i < ccv_min(params.interval + 1, scale_upto + next * 2)); i++) ccv_resample(pyr[0], &pyr[i * 4], 0, (int)(pyr[0]->rows / pow(scale, i)), (int)(pyr[0]->cols / pow(scale, i)), CCV_INTER_AREA); for (i = next; ENDORSE(i < scale_upto + next * 2); i++) ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0); if (params.accurate) for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++) { ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0); ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1); ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1); } ccv_array_t* idx_seq; ccv_array_t* seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0); ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); /* detect in multi scale */ for (t = 0; t < count; t++) { ccv_bbf_classifier_cascade_t* cascade = _cascade[t]; APPROX float scale_x = (float) params.size.width / (float) cascade->size.width; APPROX float scale_y = (float) params.size.height / (float) cascade->size.height; ccv_array_clear(seq); for (i = 0; ENDORSE(i < scale_upto); i++) { APPROX int dx[] = {0, 1, 0, 1}; APPROX int dy[] = {0, 0, 1, 1}; APPROX int i_rows = pyr[i * 4 + next * 8]->rows - ENDORSE(cascade->size.height >> 2); APPROX int steps[] = { pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step }; APPROX int i_cols = pyr[i * 4 + next * 8]->cols - ENDORSE(cascade->size.width >> 2); int paddings[] = { pyr[i * 4]->step * 4 - i_cols * 4, pyr[i * 4 + next * 4]->step * 2 - i_cols * 2, pyr[i * 4 + next * 8]->step - i_cols }; for (q = 0; q < (params.accurate ? 4 : 1); q++) { APPROX unsigned char* u8[] = { pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8 }; for (y = 0; ENDORSE(y < i_rows); y++) { for (x = 0; ENDORSE(x < i_cols); x++) { APPROX float sum; APPROX int flag = 1; ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier; for (j = 0; j < ENDORSE(cascade->count); ++j, ++classifier) { sum = 0; APPROX float* alpha = classifier->alpha; ccv_bbf_feature_t* feature = classifier->feature; for (k = 0; k < ENDORSE(classifier->count); ++k, alpha += 2, ++feature) sum += alpha[_ccv_run_bbf_feature(feature, ENDORSE(steps), u8)]; if (ENDORSE(sum) < ENDORSE(classifier->threshold)) { flag = 0; break; } } if (ENDORSE(flag)) { ccv_comp_t comp; comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5)); comp.neighbors = 1; comp.classification.id = t; comp.classification.confidence = sum; ccv_array_push(seq, &comp); } u8[0] += 4; u8[1] += 2; u8[2] += 1; } u8[0] += paddings[0]; u8[1] += paddings[1]; u8[2] += paddings[2]; } } scale_x *= scale; scale_y *= scale; } /* the following code from OpenCV's haar feature implementation */ if(params.min_neighbors == 0) { for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); ccv_array_push(result_seq, comp); } } else { idx_seq = 0; ccv_array_clear(seq2); // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0); ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t)); memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t)); // count number of neighbors for(i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i)); if (ENDORSE(comps[idx].neighbors) == 0) comps[idx].classification.confidence = r1.classification.confidence; ++comps[idx].neighbors; comps[idx].rect.x += r1.rect.x; comps[idx].rect.y += r1.rect.y; comps[idx].rect.width += r1.rect.width; comps[idx].rect.height += r1.rect.height; comps[idx].classification.id = r1.classification.id; comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence); } // calculate average bounding box for(i = 0; ENDORSE(i < ncomp); i++) { int n = ENDORSE(comps[i].neighbors); if(n >= params.min_neighbors) { ccv_comp_t comp; comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n); comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n); comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n); comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n); comp.neighbors = comps[i].neighbors; comp.classification.id = comps[i].classification.id; comp.classification.confidence = comps[i].classification.confidence; ccv_array_push(seq2, &comp); } } // filter out small face rectangles inside large face rectangles for(i = 0; ENDORSE(i < seq2->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, i)); APPROX int flag = 1; for(j = 0; ENDORSE(j < seq2->rnum); j++) { ccv_comp_t r2 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, j)); APPROX int distance = (int)(r2.rect.width * 0.25 + 0.5); if(ENDORSE(i != j && r1.classification.id == r2.classification.id && r1.rect.x >= r2.rect.x - distance && r1.rect.y >= r2.rect.y - distance && r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance && r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance && (r2.neighbors > ccv_max(3, r1.neighbors) || r1.neighbors < 3))) { flag = 0; break; } } if(ENDORSE(flag)) ccv_array_push(result_seq, &r1); } ccv_array_free(idx_seq); ccfree(comps); } } ccv_array_free(seq); ccv_array_free(seq2); ccv_array_t* result_seq2; /* the following code from OpenCV's haar feature implementation */ if (params.flags & CCV_BBF_NO_NESTED) { result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0); idx_seq = 0; // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0); ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t)); memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t)); // count number of neighbors for(i = 0; ENDORSE(i < result_seq->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(result_seq, i)); int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i)); if (ENDORSE(comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence)) { comps[idx].classification.confidence = r1.classification.confidence; comps[idx].neighbors = 1; comps[idx].rect = r1.rect; comps[idx].classification.id = r1.classification.id; } } // calculate average bounding box for(i = 0; ENDORSE(i < ncomp); i++) if(ENDORSE(comps[i].neighbors)) ccv_array_push(result_seq2, &comps[i]); ccv_array_free(result_seq); ccfree(comps); } else { result_seq2 = result_seq; } for (i = 1; ENDORSE(i < scale_upto + next * 2); i++) ccv_matrix_free(pyr[i * 4]); if (params.accurate) for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++) { ccv_matrix_free(pyr[i * 4 + 1]); ccv_matrix_free(pyr[i * 4 + 2]); ccv_matrix_free(pyr[i * 4 + 3]); } if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)) ccv_matrix_free(pyr[0]); return result_seq2; }
int main(int argc, char** argv) { assert(argc == 3); ccv_enable_default_cache(); ccv_dense_matrix_t* object = 0; ccv_dense_matrix_t* image = 0; ccv_read(argv[1], &object, CCV_IO_GRAY | CCV_IO_ANY_FILE); ccv_read(argv[2], &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); unsigned int elapsed_time = get_current_time(); ccv_sift_param_t params = { .noctaves = 3, .nlevels = 6, .up2x = 1, .edge_threshold = 10, .norm_threshold = 0, .peak_threshold = 0, }; ccv_array_t* obj_keypoints = 0; ccv_dense_matrix_t* obj_desc = 0; ccv_sift(object, &obj_keypoints, &obj_desc, 0, params); ccv_array_t* image_keypoints = 0; ccv_dense_matrix_t* image_desc = 0; ccv_sift(image, &image_keypoints, &image_desc, 0, params); elapsed_time = get_current_time() - elapsed_time; int i, j, k; int match = 0; for (i = 0; i < obj_keypoints->rnum; i++) { float* odesc = obj_desc->data.f32 + i * 128; int minj = -1; double mind = 1e6, mind2 = 1e6; for (j = 0; j < image_keypoints->rnum; j++) { float* idesc = image_desc->data.f32 + j * 128; double d = 0; for (k = 0; k < 128; k++) { d += (odesc[k] - idesc[k]) * (odesc[k] - idesc[k]); if (d > mind2) break; } if (d < mind) { mind2 = mind; mind = d; minj = j; } else if (d < mind2) { mind2 = d; } } if (mind < mind2 * 0.36) { ccv_keypoint_t* op = (ccv_keypoint_t*)ccv_array_get(obj_keypoints, i); ccv_keypoint_t* kp = (ccv_keypoint_t*)ccv_array_get(image_keypoints, minj); printf("%f %f => %f %f\n", op->x, op->y, kp->x, kp->y); match++; } } printf("%dx%d on %dx%d\n", object->cols, object->rows, image->cols, image->rows); printf("%d keypoints out of %d are matched\n", match, obj_keypoints->rnum); printf("elpased time : %d\n", elapsed_time); ccv_array_free(obj_keypoints); ccv_array_free(image_keypoints); ccv_matrix_free(obj_desc); ccv_matrix_free(image_desc); ccv_matrix_free(object); ccv_matrix_free(image); ccv_disable_cache(); return 0; }
int main(int argc, char** argv) { assert(argc >= 3); int i, j; ccv_enable_default_cache(); ccv_dense_matrix_t* image = 0; ccv_read(argv[1], &image, CCV_IO_ANY_FILE); ccv_dpm_mixture_model_t* model = ccv_dpm_read_mixture_model(argv[2]); if (image != 0) { unsigned int elapsed_time = get_current_time(); ccv_array_t* seq = ccv_dpm_detect_objects(image, &model, 1, ccv_dpm_default_params); elapsed_time = get_current_time() - elapsed_time; if (seq) { for (i = 0; i < seq->rnum; i++) { ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i); printf("%d %d %d %d %f %d\n", comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence, comp->pnum); for (j = 0; j < comp->pnum; j++) printf("| %d %d %d %d %f\n", comp->part[j].rect.x, comp->part[j].rect.y, comp->part[j].rect.width, comp->part[j].rect.height, comp->part[j].classification.confidence); } printf("total : %d in time %dms\n", seq->rnum, elapsed_time); ccv_array_free(seq); } else { printf("elapsed time %dms\n", elapsed_time); } ccv_matrix_free(image); } else { FILE* r = fopen(argv[1], "rt"); if (argc == 4) chdir(argv[3]); if(r) { size_t len = 1024; char* file = (char*)malloc(len); ssize_t read; while((read = getline(&file, &len, r)) != -1) { while(read > 1 && isspace(file[read - 1])) read--; file[read] = 0; image = 0; ccv_read(file, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); assert(image != 0); ccv_array_t* seq = ccv_dpm_detect_objects(image, &model, 1, ccv_dpm_default_params); if (seq != 0) { for (i = 0; i < seq->rnum; i++) { ccv_root_comp_t* comp = (ccv_root_comp_t*)ccv_array_get(seq, i); printf("%s %d %d %d %d %f %d\n", file, comp->rect.x, comp->rect.y, comp->rect.width, comp->rect.height, comp->classification.confidence, comp->pnum); for (j = 0; j < comp->pnum; j++) printf("| %d %d %d %d %f\n", comp->part[j].rect.x, comp->part[j].rect.y, comp->part[j].rect.width, comp->part[j].rect.height, comp->part[j].classification.confidence); } ccv_array_free(seq); } ccv_matrix_free(image); } free(file); fclose(r); } } ccv_drain_cache(); ccv_dpm_mixture_model_free(model); return 0; }