int main (int argc, char **argv)
{
    int n, i, j, k, nuser, dim = 1;
    int cgfile, cgbase, cgzone, cgcoord, cgdset;
    int size[9];
    int ptlist[3] = {1, 2, 3};
    int ptrange[6] = {1, 1, 1, 2, 2, 2};
    int bcpoints[6], bcfaces[6];
    static char *fname = "gotest.cgns";
    char name[33];
    float data1 = 1;
    float data2 = 2;
    float exponents[8], rate[3], center[3];
    GridLocation_t gridloc;
    int ordinal, ndata, cgfam, cgbc, nunits, nexps;
    int elecflag, magnflag, condflag, dirichlet, neumann;
    PointSetType_t pttype;
    DataClass_t dclass;
    DataType_t dtype;
    BCType_t bctype;
    MassUnits_t mass;
    LengthUnits_t length;
    TimeUnits_t time;
    TemperatureUnits_t temp;
    AngleUnits_t angle;
    ElectricCurrentUnits_t current;
    SubstanceAmountUnits_t amount;
    LuminousIntensityUnits_t intensity;
    ModelType_t elecmodel;
    ModelType_t magnmodel;
    ModelType_t emconduct;

    /* errors and warnings go to error_exit */

    cg_configure(CG_CONFIG_ERROR, (void *)error_exit);

    for (n = 0; n < 8; n++)
        exponents[n] = (float)n;
    for (n = 0; n < 3; n++) {
        rate[n] = (float)n;
        center[n] = (float)n;
    }
    for (n = 0; n < NUM_SIDE*NUM_SIDE*NUM_SIDE; n++)
        coord[n] = (float)n;

    unlink (fname);
    printf ("creating CGNS file %s\n", fname);
    cg_open (fname, CG_MODE_WRITE, &cgfile);
    cg_base_write (cgfile, "Base", 3, 3, &cgbase);

    /* write electomagnetics model under base */

    puts ("writing electromagnetics");
    cg_goto(cgfile, cgbase, NULL);
    cg_equationset_write (3);
    cg_goto(cgfile, cgbase, "FlowEquationSet_t", 1, NULL);
    cg_model_write("EMElectricFieldModel_t", Voltage);
    cg_model_write("EMMagneticFieldModel_t", Interpolated);
    cg_model_write("EMConductivityModel_t", Equilibrium_LinRessler);

    /* write rotating coordinates under family_t */

    puts ("writing family/rotating");
    cg_family_write(cgfile, cgbase, "Family", &cgfam);
    /* go to a named node */
    cg_goto(cgfile, cgbase, "Family", 0, NULL);
    cg_rotating_write (rate, center);

    /* write BCDataSet under FamilyBC_t */

    puts("writing FamilyBCDataSet");
    cg_fambc_write(cgfile, cgbase, cgfam, "FamilyBC", BCWall, &cgbc);
    /* relative go to */
    cg_gorel(cgfile, "FamilyBC_t", cgbc, NULL);
    cg_bcdataset_write ("FamilyBCDataSet", BCWallInviscid, Dirichlet);

    /* write user data under base */

    puts("writing user defined data under base");
    /* relative path */
    cg_gopath (cgfile, "../..");
    cg_user_data_write ("User");
    /* absolute path */
    cg_gopath (cgfile, "/Base/User");
    cg_gridlocation_write (CellCenter);
    cg_famname_write ("Family");
    cg_ordinal_write (0);
    cg_array_write ("Data1", RealSingle, 1, &dim, &data1);
    cg_array_write ("Data2", RealSingle, 1, &dim, &data2);

    for (n = 1; n <= 2; n++) {
        cg_goto (cgfile, cgbase, "User", 0, "DataArray_t", n, "end");
        cg_dataclass_write (Dimensional);
        cg_units_write (Kilogram, Meter, Second, Kelvin, Radian);
        cg_exponents_write (RealSingle, exponents);
    }

    /* this should fail since ptset not allowed as child of
       user data, except below a zone_t node */

    cg_configure(CG_CONFIG_ERROR, NULL);
    if (cg_ptset_write (PointList, 1, ptlist) == CG_OK)
        printf ("WHAT!! - ptset should not work under base/userdata\n");
    cg_configure(CG_CONFIG_ERROR, (void *)error_exit);

    /* write zone */

    puts("writing zone");
    for (n = 0; n < 3; n++) {
        size[n]   = NUM_SIDE;
        size[n+3] = NUM_SIDE - 1;
        size[n+6] = 0;
    }
    cg_zone_write (cgfile, cgbase, "Zone", size, Structured, &cgzone);
    cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
        "CoordinateX", coord, &cgcoord);
    cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
        "CoordinateY", coord, &cgcoord);
    cg_coord_write(cgfile, cgbase, cgzone, RealSingle,
        "CoordinateZ", coord, &cgcoord);

    /* create a BC node with point range and Dirichlet node*/

    puts("writing Dirichlet BC with vertex range");
    for (n = 0; n < 3; n++) {
        bcpoints[n]   = 1;
        bcpoints[n+3] = NUM_SIDE;
        bcfaces[n]    = 1;
        bcfaces[n+3]  = NUM_SIDE - 1;
    }
    bcpoints[5] = bcfaces[5] = 1;
    cg_boco_write (cgfile, cgbase, cgzone, "BC", BCWall,
        PointList, 1, bcpoints, &cgbc);
    cg_dataset_write (cgfile, cgbase, cgzone, cgbc,
        "DataSet", BCWallViscous, &cgdset);
    cg_bcdata_write (cgbase, cgfile, cgzone, cgbc, cgdset, Dirichlet);

    /* create Dirichlet data at faces */

    puts("writing Dirichlet data at faces");
    cg_gopath (cgfile, "/Base/Zone/ZoneBC/BC/DataSet");
    cg_gridlocation_write (KFaceCenter);
    cg_ptset_write (PointRange, 2, bcfaces);

    size[0] = (NUM_SIDE - 1) * (NUM_SIDE - 1);
    cg_gorel (cgfile, "BCData_t", Dirichlet, NULL);
    cg_array_write ("Data", RealSingle, 1, size, coord);

    /* write recursive user data */

    puts("writing recursive user defined data under zone");
    cg_goto(cgfile, cgbase, "Zone", 0, NULL);
    for (i = 1; i <= 4; i++) {
        sprintf (name, "User%d", i);
        cg_user_data_write (name);
        cg_gorel(cgfile, name, 0, NULL);
        cg_gridlocation_write (CellCenter);
        cg_famname_write ("Family");
        cg_ordinal_write (i);
        cg_ptset_write (PointList, 1, ptlist);
        cg_array_write ("Data1", RealSingle, 1, &dim, &data1);
        cg_array_write ("Data2", RealSingle, 1, &dim, &data2);
        for (n = 1; n <= 2; n++) {
            cg_gorel (cgfile, "DataArray_t", n, "end");
            cg_dataclass_write (Dimensional);
            cg_unitsfull_write (Kilogram, Meter, Second, Kelvin, Radian,
                Ampere, Mole, Candela);
            cg_expfull_write (RealSingle, exponents);
            cg_gopath (cgfile, "..");
        }

        for (j = 1; j <= 3; j++) {
            sprintf (name, "User%d.%d", i, j);
            cg_user_data_write (name);
            cg_gopath (cgfile, name);
            cg_gridlocation_write (Vertex);
            cg_famname_write ("Family");
            cg_ordinal_write (i + j);
            cg_ptset_write (PointRange, 2, ptrange);
            cg_array_write ("Data1", RealSingle, 1, &dim, &data1);
            cg_array_write ("Data2", RealSingle, 1, &dim, &data2);
            for (n = 1; n <= 2; n++) {
                cg_gorel (cgfile, "DataArray_t", n, "end");
                cg_dataclass_write (Dimensional);
                cg_unitsfull_write (Kilogram, Meter, Second, Kelvin,
                    Radian, Ampere, Mole, Candela);
                cg_expfull_write (RealSingle, exponents);
                cg_gorel (cgfile, "..", 0, NULL);
            }

            for (k = 1; k <= 2; k++) {
                sprintf (name, "User%d.%d.%d", i, j, k);
                cg_user_data_write (name);
                cg_gorel (cgfile, name, 0, NULL);
                cg_array_write ("Data1", RealSingle, 1, &dim, &data1);
                cg_array_write ("Data2", RealSingle, 1, &dim, &data2);
                for (n = 1; n <= 2; n++) {
                    cg_gorel (cgfile, "DataArray_t", n, "end");
                    cg_dataclass_write (Dimensional);
                    cg_unitsfull_write (Kilogram, Meter, Second, Kelvin,
                        Radian, Ampere, Mole, Candela);
                    cg_expfull_write (RealSingle, exponents);
                    cg_gopath (cgfile, "..");
                }

                for (n = 1; n <= 2; n++) {
                    sprintf (name, "User%d.%d.%d.%d", i, j, k, n);
                    cg_user_data_write (name);
                    cg_gopath (cgfile, name);
                    cg_array_write ("Data1", RealSingle, 1, &dim, &data1);
                    cg_array_write ("Data2", RealSingle, 1, &dim, &data2);
                    cg_gopath (cgfile, "..");
                }
                cg_gopath (cgfile, "..");
            }
            cg_gopath (cgfile, "..");
        }
        cg_gopath (cgfile, "..");
    }

    puts ("closing and reopening in read mode");
    cg_close (cgfile);

    /* read file and check values */

    cg_configure(CG_CONFIG_ERROR, NULL);

    if (cg_open (fname, CG_MODE_READ, &cgfile))
        cg_error_exit ();
    cgbase = cgzone = 1;

    /* check electomagnetics model under base */

    puts ("checking electromagnetics");
    if (cg_goto(cgfile, cgbase, NULL) ||
        cg_equationset_elecmagn_read(&elecflag, &magnflag, &condflag) ||
        cg_goto(cgfile, cgbase, "FlowEquationSet_t", 1, NULL) ||
        cg_model_read ("EMElectricFieldModel_t", &elecmodel) ||
        cg_model_read ("EMMagneticFieldModel_t", &magnmodel) ||
        cg_model_read ("EMConductivityModel_t", &emconduct))
        cg_error_exit();
    CHECK ("ElectricFieldFlag", elecflag == 1);
    CHECK ("ElectricFieldModel", elecmodel == Voltage);
    CHECK ("MagneticFieldFlag", magnflag == 1);
    CHECK ("MagneticFieldModel", magnmodel == Interpolated);
    CHECK ("EMConductivityFlag", condflag == 1);
    CHECK ("EMConductivityModel", emconduct == Equilibrium_LinRessler);

    /* check rotating coordinates under family_t */

    puts ("checking family/rotating");
    if (cg_goto(cgfile, cgbase, "Family_t", 1, NULL) ||
        cg_rotating_read (rate, center))
        cg_error_exit();
    for (n = 0; n < 3; n++) {
        CHECK ("rotation rate", rate[n] == (float)n);
        CHECK ("rotation center", center[n] == (float)n);
    }

    /* check BCDataSet under FamilyBC_t */

    puts("checking FamilyBCDataSet");
    *name = 0;
    if (cg_goto(cgfile, cgbase, "Family_t", 1, "FamilyBC_t", 1, NULL) ||
        cg_bcdataset_info(&ndata) ||
        cg_bcdataset_read (1, name, &bctype, &dirichlet, &neumann))
        cg_error_exit();
    CHECK("bcdataset_info", ndata == 1);
    CHECK("bcdatset name", strcmp(name, "FamilyBCDataSet") == 0);
    CHECK("bcdatset type", bctype == BCWallInviscid);
    CHECK("bcdatset dirichlet", dirichlet == 1);
    CHECK("bcdatset neumann", neumann == 0);

    /* check BC data */

    puts("checking BC data");
    if (cg_boco_info (cgfile, cgbase, cgzone, 1, name, &bctype, &pttype,
            &n, size, &i, &dtype, &ndata))
        cg_error_exit();
    CHECK("BC_t name", strcmp(name, "BC") == 0);
    CHECK("BC_t type", bctype == BCWall);
    CHECK("BC_t pntset type", pttype == PointList);
    CHECK("BC_t npnts", n == 1);

    if (cg_dataset_read (cgfile, cgbase, cgzone, 1, 1, name,
            &bctype, &dirichlet, &neumann) ||
        cg_goto (cgfile, cgbase, "Zone_t", 1, "ZoneBC_t", 1, "BC_t", 1,
            "BCDataSet_t", 1, NULL) ||
        cg_gridlocation_read (&gridloc) ||
        cg_ptset_info (&pttype, &n))
        cg_error_exit();
    CHECK("BCDataSet_t name", strcmp(name, "DataSet") == 0);
    CHECK("BCDataSet_t type", bctype == BCWallViscous);
    CHECK("BCDataSet_t location", gridloc == KFaceCenter);
    CHECK("BCDataSet_t pntset type", pttype == PointRange);
    CHECK("BC_t npnts", n == 2);
    CHECK("BCDataSet_t dirichlet", dirichlet == 1);
    CHECK("BCDataSet_t neumann", neumann == 0);

    /* check user defined data */

    puts("checking user defined data");
    *name = 0;
    if (cg_goto (cgfile, cgbase, "UserDefinedData_t", 1, "end") ||
        cg_gridlocation_read (&gridloc) ||
        cg_famname_read (name) ||
        cg_ordinal_read (&ordinal) ||
        cg_narrays (&ndata))
        cg_error_exit ();
    CHECK ("gridlocation", gridloc == CellCenter);
    CHECK ("famname", strcmp (name, "Family") == 0);
    CHECK ("ordinal", ordinal == 0);
    CHECK ("narrays", ndata == 2);

    if (cg_goto (cgfile, cgbase, "Zone_t", cgzone, "end") ||
        cg_nuser_data (&nuser))
        cg_error_exit ();
    CHECK ("nuserdata", nuser == 4);

    for (i = 1; i <= 4; i++) {
        *name = 0;
        if (cg_goto (cgfile, cgbase, "Zone_t", cgzone,
                "UserDefinedData_t", i, "end") ||
            cg_gridlocation_read (&gridloc) ||
            cg_famname_read (name) ||
            cg_ordinal_read (&ordinal) ||
            cg_ptset_info (&pttype, &n) ||
            cg_ptset_read (ptlist) ||
            cg_narrays (&ndata) ||
            cg_nuser_data (&nuser))
            cg_error_exit ();
        CHECK ("gridlocation", gridloc == CellCenter);
        CHECK ("famname", strcmp (name, "Family") == 0);
        CHECK ("ordinal", ordinal == i);
        CHECK ("pointtype", pttype == PointList);
        CHECK ("npoints", n == 1);
        CHECK ("narrays", ndata == 2);
        CHECK ("nuserdata", nuser == 3);

        for (j = 1; j <= 3; j++) {
            *name = 0;
            if (cg_goto (cgfile, cgbase, "Zone_t", cgzone,
                    "UserDefinedData_t", i,
                    "UserDefinedData_t", j, "end") ||
                cg_gridlocation_read (&gridloc) ||
                cg_famname_read (name) ||
                cg_ordinal_read (&ordinal) ||
                cg_ptset_info (&pttype, &n) ||
                cg_ptset_read (ptlist) ||
                cg_narrays (&ndata) ||
                cg_nuser_data (&nuser))
                cg_error_exit ();
            CHECK ("gridlocation", gridloc == Vertex);
            CHECK ("famname", strcmp (name, "Family") == 0);
            CHECK ("ordinal", ordinal == (i + j));
            CHECK ("pointtype", pttype == PointRange);
            CHECK ("npoints", n == 2);
            CHECK ("narrays", ndata == 2);
            CHECK ("nuserdata", nuser == 2);

            for (n = 1; n <= 2; n++) {
                if (cg_goto (cgfile, cgbase, "Zone_t", cgzone,
                        "UserDefinedData_t", i,
                        "UserDefinedData_t", j,
                        "DataArray_t", n, "end") ||
                    cg_dataclass_read (&dclass) ||
                    cg_nunits (&nunits) ||
                    cg_unitsfull_read (&mass, &length, &time, &temp, &angle,
                        &current, &amount, &intensity) ||
                    cg_nexponents (&nexps) ||
                    cg_expfull_read (exponents))
                    cg_error_exit ();
                CHECK ("dataclass", dclass == Dimensional);
                CHECK ("nunits", nunits == 8);
                CHECK ("massunits", mass == Kilogram);
                CHECK ("lengthunits", length == Meter);
                CHECK ("timeunits", time == Second);
                CHECK ("tempunits", temp == Kelvin);
                CHECK ("angleunits", angle == Radian);
                CHECK ("currentunits", current == Ampere);
                CHECK ("amountunits", amount == Mole);
                CHECK ("intensityunits", intensity == Candela);
                CHECK ("nexponents", nexps == 8);
                for (n = 0; n < 8; n++)
                    CHECK ("exponents", exponents[n] == (float)n);
            }
        }
    }

    if (cg_goto (cgfile, cgbase, "Zone_t", cgzone,
            "UserDefinedData_t", 2, "UserDefinedData_t", 2,
            "UserDefinedData_t", 2, "UserDefinedData_t", 1, "end") ||
        cg_narrays (&ndata) ||
        cg_nuser_data (&nuser) ||
        cg_array_info (2, name, &dtype, &n, &dim) ||
        cg_array_read (1, &data1) ||
        cg_array_read (2, &data2))
        cg_error_exit ();
    CHECK ("narrays", ndata == 2);
    CHECK ("nuserdata", nuser == 0);
    CHECK ("arrayname", strcmp (name, "Data2") == 0);
    CHECK ("datatype", dtype == RealSingle);
    CHECK ("ndims", n == 1);
    CHECK ("dims", dim == 1);
    CHECK ("data1", data1 == 1.0);
    CHECK ("data2", data2 == 2.0);

    /* read partial units/exponents as full */

    puts("checking units and exponents");
    if (cg_goto(cgfile, cgbase, "UserDefinedData_t", 1,
            "DataArray_t", 1, NULL) ||
        cg_nunits (&nunits) ||
        cg_unitsfull_read (&mass, &length, &time, &temp, &angle,
            &current, &amount, &intensity) ||
        cg_nexponents (&nexps) ||
        cg_expfull_read (exponents))
        cg_error_exit ();
    CHECK ("nunits", nunits == 5);
    CHECK ("massunits", mass == Kilogram);
    CHECK ("lengthunits", length == Meter);
    CHECK ("timeunits", time == Second);
    CHECK ("tempunits", temp == Kelvin);
    CHECK ("angleunits", angle == Radian);
    CHECK ("currentunits", current == 0);
    CHECK ("amountunits", amount == 0);
    CHECK ("intensityunits", intensity == 0);
    CHECK ("nexponents", nexps == 5);
    for (n = 0; n < 5; n++)
        CHECK ("exponents", exponents[n] == (float)n);
    for (n = 6; n < 8; n++)
        CHECK ("exponents", exponents[n] == (float)0.0);

    /* read full units/exponents as partial */

    if (cg_goto(cgfile, cgbase, "Zone_t", 1, "UserDefinedData_t", 1,
            "DataArray_t", 1, NULL) ||
        cg_nunits (&nunits) ||
        cg_units_read (&mass, &length, &time, &temp, &angle) ||
        cg_nexponents (&nexps) ||
        cg_exponents_read (exponents))
        cg_error_exit ();
    CHECK ("nunits", nunits == 8);
    CHECK ("massunits", mass == Kilogram);
    CHECK ("lengthunits", length == Meter);
    CHECK ("timeunits", time == Second);
    CHECK ("tempunits", temp == Kelvin);
    CHECK ("angleunits", angle == Radian);
    CHECK ("nexponents", nexps == 8);
    for (n = 0; n < 5; n++)
        CHECK ("exponents", exponents[n] == (float)n);

    puts ("closing file and reopening in modify mode");
    cg_close (cgfile);

    /* delete userdata node */

    if (cg_open (fname, CG_MODE_MODIFY, &cgfile))
        cg_error_exit ();

    puts ("deleting user defined data and checking");
    if (cg_goto (cgfile, 1, "Zone_t", 1,
            "UserDefinedData_t", 3,
            "UserDefinedData_t", 2,
            "UserDefinedData_t", 1, "end") ||
        cg_nuser_data (&nuser))
        cg_error_exit ();
    CHECK ("nuserdata", nuser == 2);
    if (cg_delete_node ("User3.2.1.1") ||
        cg_nuser_data (&nuser))
        cg_error_exit ();
    CHECK ("nuserdata", nuser == 1);

    /* don't compress file on close */

    cg_configure(CG_CONFIG_COMPRESS, (void *)0);

    puts ("closing file");
    cg_close (cgfile);

    return 0;
}
int main ()
{
    int n, nn, i, j, k, ni, nj, nk;
    int dims[3], grind[2], erind[2];

    num_coord = NUM_I * NUM_J * NUM_K;
    num_element = (NUM_I - 1) * (NUM_J - 1) * (NUM_K - 1);
    xcoord = (float *) malloc(4 * num_coord * sizeof(float));
    nmap = (int *) malloc((num_coord + 8 * num_element) * sizeof(int));
    if (NULL == xcoord || NULL == nmap) {
        fprintf(stderr, "malloc failed for data\n");
        exit(1);
    }
    ycoord = xcoord + num_coord;
    zcoord = ycoord + num_coord;
    solution = zcoord + num_coord;
    elements = nmap + num_coord;

    for (n = 0; n < num_coord; n++)
        solution[n] = (float)n;

    unlink("rind.cgns");
    if (cg_open("rind.cgns", CG_MODE_WRITE, &cgfile))
        cg_error_exit();

    /*--- structured grid with rind ---*/

    printf ("writing structured base with rind\n");
    fflush (stdout);

    for (n = 0, k = 0; k < NUM_K; k++) {
        for (j = 0; j < NUM_J; j++) {
            for (i = 0; i < NUM_I; i++) {
                compute_coord(n++, i, j, k);
            }
        }
    }

    if (cg_base_write(cgfile, "Structured", CellDim, PhyDim, &cgbase) ||
        cg_goto(cgfile, cgbase, "end") ||
        cg_dataclass_write(NormalizedByUnknownDimensional) ||
        cg_zone_write(cgfile, cgbase, "Zone", size, Structured, &cgzone))
        cg_error_exit();

    /* can't use cg_coord_write to write rind coordinates
       need to use cg_grid_write to create the node, cg_goto to set
       position at the node, then write rind and coordinates as an array */

    dims[0] = NUM_I;
    dims[1] = NUM_J;
    dims[2] = NUM_K;

    if (cg_grid_write(cgfile, cgbase, cgzone, "GridCoordinates", &cggrid) ||
        cg_goto(cgfile, cgbase, "Zone_t", cgzone,
            "GridCoordinates_t", cggrid, "end") ||
        cg_rind_write(rind) ||
        cg_array_write("CoordinateX", RealSingle, 3, dims, xcoord) ||
        cg_array_write("CoordinateY", RealSingle, 3, dims, ycoord) ||
        cg_array_write("CoordinateZ", RealSingle, 3, dims, zcoord))
        cg_error_exit();

    /* a similiar technique is used for the solution with rind,
       but we use cg_field_write instead of cg_array_write
       and the solution dimensions come from the zone sizes */

    if (cg_sol_write(cgfile, cgbase, cgzone, "VertexSolution",
            Vertex, &cgsol) ||
        cg_goto(cgfile, cgbase, "Zone_t", cgzone,
            "FlowSolution_t", cgsol, "end") ||
        cg_rind_write(rind) ||
        cg_field_write(cgfile, cgbase, cgzone, cgsol, RealSingle,
            "Density", solution, &cgfld))
        cg_error_exit();

    /*--- unstructured with rind ---*/

    printf ("writing unstructured base with rind\n");
    fflush (stdout);

    /* rind here has dimension rind[2], so need to put all the
       rind coordinates at the beginning and/or end of the array.
       Just for grins, I'll put some at both ends, although
       it's probably best to put the rind coordinates at the end.
       I'll use the nmap array for building elements */

    ni = size[0] + rind[0];
    nj = size[1] + rind[2];
    nk = size[2] + rind[4];

    for (n = 0, i = 0; i < rind[0]; i++) {
        for (k = 0; k < NUM_K; k++) {
            for (j = 0; j < NUM_J; j++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }
    for (j = 0; j < rind[2]; j++) {
        for (k = 0; k < NUM_K; k++) {
            for (i = rind[0]; i < ni; i++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }
    for (k = 0; k < rind[4]; k++) {
        for (j = rind[2]; j < nj; j++) {
            for (i = rind[0]; i < ni; i++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }
    grind[0] = n;

    for (k = rind[4]; k < nk; k++) {
        for (j = rind[2]; j < nj; j++) {
            for (i = rind[0]; i < ni; i++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }
    grind[1] = num_coord - n;

    for (i = ni; i < NUM_I; i++) {
        for (k = 0; k < NUM_K; k++) {
            for (j = 0; j < NUM_J; j++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }
    for (j = nj; j < NUM_J; j++) {
        for (k = 0; k < NUM_K; k++) {
            for (i = rind[0]; i < ni; i++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }
    for (k = nk; k < NUM_K; k++) {
        for (j = rind[2]; j < nj; j++) {
            for (i = rind[0]; i < ni; i++) {
                compute_coord (n, i, j, k);
                nn = INDEX(i, j, k);
                nmap[nn] = ++n;
            }
        }
    }

    /* rind elements are like the coordinates, they need to go
       at the beginning and/or end of the element array, although
       at the end is probably best */

    for (n = 0, i = 0; i < rind[0]; i++) {
        for (k = 0; k < NUM_K - 1; k++) {
            for (j = 0; j < NUM_J - 1; j++) {
                compute_element(n++, i, j, k);
            }
        }
    }
    for (j = 0; j < rind[2]; j++) {
        for (k = 0; k < NUM_K - 1; k++) {
            for (i = rind[0]; i < ni - 1; i++) {
                compute_element(n++, i, j, k);
            }
        }
    }
    for (k = 0; k < rind[4]; k++) {
        for (j = rind[2]; j < nj - 1; j++) {
            for (i = rind[0]; i < ni - 1; i++) {
                compute_element(n++, i, j, k);
            }
        }
    }
    erind[0] = n;

    for (k = rind[4]; k < nk - 1; k++) {
        for (j = rind[2]; j < nj - 1; j++) {
            for (i = rind[0]; i < ni - 1; i++) {
                compute_element(n++, i, j, k);
            }
        }
    }
    erind[1] = num_element - n;

    for (i = ni - 1; i < NUM_I - 1; i++) {
        for (k = 0; k < NUM_K - 1; k++) {
            for (j = 0; j < NUM_J - 1; j++) {
                compute_element(n++, i, j, k);
            }
        }
    }
    for (j = nj - 1; j < NUM_J - 1; j++) {
        for (k = 0; k < NUM_K - 1; k++) {
            for (i = rind[0]; i < ni - 1; i++) {
                compute_element(n++, i, j, k);
            }
        }
    }
    for (k = nk - 1; k < NUM_K - 1; k++) {
        for (j = rind[2]; j < nj - 1; j++) {
            for (i = rind[0]; i < ni - 1; i++) {
                compute_element(n++, i, j, k);
            }
        }
    }

    /* create base, zone and write coordinates.
       As for the structured case, the rind coordinates
       and elements are not included in the zone totals */

    dims[0] = num_coord - grind[0] - grind[1];
    dims[1] = num_element - erind[0] - erind[1];
    dims[2] = 0;

    if (cg_base_write(cgfile, "Unstructured", CellDim, PhyDim, &cgbase) ||
        cg_goto(cgfile, cgbase, "end") ||
        cg_dataclass_write(NormalizedByUnknownDimensional) ||
        cg_zone_write(cgfile, cgbase, "Zone", dims, Unstructured, &cgzone) ||
        cg_grid_write(cgfile, cgbase, cgzone, "GridCoordinates", &cggrid) ||
        cg_goto(cgfile, cgbase, "Zone_t", cgzone,
            "GridCoordinates_t", cggrid, "end") ||
        cg_rind_write(grind) ||
        cg_array_write("CoordinateX", RealSingle, 1, &num_coord, xcoord) ||
        cg_array_write("CoordinateY", RealSingle, 1, &num_coord, ycoord) ||
        cg_array_write("CoordinateZ", RealSingle, 1, &num_coord, zcoord))
        cg_error_exit();

    /* to write the elements with rind elements,
       write all the elements, then use goto to add rind */

    if (cg_section_write(cgfile, cgbase, cgzone, "Elements", HEXA_8,
            1, num_element, 0, elements, &cgsect) ||
        cg_goto(cgfile, cgbase, "Zone_t", cgzone,
            "Elements_t", cgsect, "end") ||
        cg_rind_write(erind))
        cg_error_exit();

    /* write solution a vertices with rind */

    if (cg_sol_write(cgfile, cgbase, cgzone, "VertexSolution",
            Vertex, &cgsol) ||
        cg_goto(cgfile, cgbase, "Zone_t", cgzone,
            "FlowSolution_t", cgsol, "end") ||
        cg_rind_write(grind) ||
        cg_field_write(cgfile, cgbase, cgzone, cgsol, RealSingle,
            "Density", solution, &cgfld))
        cg_error_exit();

    cg_close(cgfile);
    return 0;
}
예제 #3
0
static void write_reference (void)
{
    int n;
    cgsize_t cnt = 1;
    CGNS_ENUMT(DataType_t) datasize;
    float ref[4];
    void *mach, *alpha, *rey, *time;

    printf ("writing reference state...");
    fflush (stdout);
    if (cg_goto (cgnsfn, cgnsbase, "end") ||
        cg_state_write ("PLOT3D reference state"))
        FATAL ("write_reference", NULL);

    if (is_double) {
        datasize = CGNS_ENUMV(RealDouble);
        mach  = (void *)&reference[0];
        alpha = (void *)&reference[1];
        rey   = (void *)&reference[2];
        time  = (void *)&reference[3];
    }
    else {
        for (n = 0; n < 4; n++)
            ref[n] = (float)reference[n];
        datasize = CGNS_ENUMV(RealSingle);
        mach  = (void *)&ref[0];
        alpha = (void *)&ref[1];
        rey   = (void *)&ref[2];
        time  = (void *)&ref[3];
    }

    if (cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1, "end") ||
        cg_array_write ("Mach", datasize, 1, &cnt, mach) ||
        cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1,
            "DataArray_t", 1, "end") ||
        cg_dataclass_write (CGNS_ENUMV(NondimensionalParameter)))
        FATAL ("write_reference", NULL);

    if (cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1, "end") ||
        cg_array_write ("AngleofAttack", datasize, 1, &cnt, alpha) ||
        cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1,
            "DataArray_t", 2, "end") ||
        cg_dataclass_write (CGNS_ENUMV(Dimensional)) ||
        cg_units_write (CGNS_ENUMV(MassUnitsNull), CGNS_ENUMV(LengthUnitsNull), CGNS_ENUMV(TimeUnitsNull),
            CGNS_ENUMV(TemperatureUnitsNull), CGNS_ENUMV(Degree)))
        FATAL ("write_reference", NULL);

    if (cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1, "end") ||
        cg_array_write ("Reynolds", datasize, 1, &cnt, rey) ||
        cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1,
            "DataArray_t", 3, "end") ||
        cg_dataclass_write (CGNS_ENUMV(NondimensionalParameter)))
        FATAL ("write_reference", NULL);

    if (cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1, "end") ||
        cg_array_write ("TimeLatest", datasize, 1, &cnt, time) ||
        cg_goto (cgnsfn, cgnsbase, "ReferenceState_t", 1,
            "DataArray_t", 4, "end") ||
        cg_dataclass_write (CGNS_ENUMV(Dimensional)) ||
        cg_units_write (CGNS_ENUMV(MassUnitsNull), CGNS_ENUMV(LengthUnitsNull),
            CGNS_ENUMV(Second), CGNS_ENUMV(TemperatureUnitsNull), CGNS_ENUMV(AngleUnitsNull)))
        FATAL ("write_reference", NULL);

    puts (" done");
}