예제 #1
0
 int cgeev_(char *jobvl, char *jobvr, int *n, complex *a, 
	int *lda, complex *w, complex *vl, int *ldvl, complex *vr, 
	int *ldvr, complex *work, int *lwork, float *rwork, int *
	info)
{
    /* System generated locals */
    int a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    float r__1, r__2;
    complex q__1, q__2;

    /* Builtin functions */
    double sqrt(double), r_imag(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    int i__, k, ihi;
    float scl;
    int ilo;
    float dum[1], eps;
    complex tmp;
    int ibal;
    char side[1];
    float anrm;
    int ierr, itau, iwrk, nout;
    extern  int cscal_(int *, complex *, complex *, 
	    int *);
    extern int lsame_(char *, char *);
    extern double scnrm2_(int *, complex *, int *);
    extern  int cgebak_(char *, char *, int *, int *, 
	    int *, float *, int *, complex *, int *, int *), cgebal_(char *, int *, complex *, int *, 
	    int *, int *, float *, int *), slabad_(float *, 
	    float *);
    int scalea;
    extern double clange_(char *, int *, int *, complex *, 
	    int *, float *);
    float cscale;
    extern  int cgehrd_(int *, int *, int *, 
	    complex *, int *, complex *, complex *, int *, int *),
	     clascl_(char *, int *, int *, float *, float *, int *, 
	    int *, complex *, int *, int *);
    extern double slamch_(char *);
    extern  int csscal_(int *, float *, complex *, int 
	    *), clacpy_(char *, int *, int *, complex *, int *, 
	    complex *, int *), xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    int select[1];
    float bignum;
    extern int isamax_(int *, float *, int *);
    extern  int chseqr_(char *, char *, int *, int *, 
	    int *, complex *, int *, complex *, complex *, int *, 
	    complex *, int *, int *), ctrevc_(char *, 
	    char *, int *, int *, complex *, int *, complex *, 
	    int *, complex *, int *, int *, int *, complex *, 
	    float *, int *), cunghr_(int *, int *, 
	    int *, complex *, int *, complex *, complex *, int *, 
	    int *);
    int minwrk, maxwrk;
    int wantvl;
    float smlnum;
    int hswork, irwork;
    int lquery, wantvr;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGEEV computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues and, optionally, the left and/or right eigenvectors. */

/*  The right eigenvector v(j) of A satisfies */
/*                   A * v(j) = lambda(j) * v(j) */
/*  where lambda(j) is its eigenvalue. */
/*  The left eigenvector u(j) of A satisfies */
/*                u(j)**H * A = lambda(j) * u(j)**H */
/*  where u(j)**H denotes the conjugate transpose of u(j). */

/*  The computed eigenvectors are normalized to have Euclidean norm */
/*  equal to 1 and largest component float. */

/*  Arguments */
/*  ========= */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N': left eigenvectors of A are not computed; */
/*          = 'V': left eigenvectors of are computed. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N': right eigenvectors of A are not computed; */
/*          = 'V': right eigenvectors of A are computed. */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= MAX(1,N). */

/*  W       (output) COMPLEX array, dimension (N) */
/*          W contains the computed eigenvalues. */

/*  VL      (output) COMPLEX array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/*          after another in the columns of VL, in the same order */
/*          as their eigenvalues. */
/*          If JOBVL = 'N', VL is not referenced. */
/*          u(j) = VL(:,j), the j-th column of VL. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL.  LDVL >= 1; if */
/*          JOBVL = 'V', LDVL >= N. */

/*  VR      (output) COMPLEX array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/*          after another in the columns of VR, in the same order */
/*          as their eigenvalues. */
/*          If JOBVR = 'N', VR is not referenced. */
/*          v(j) = VR(:,j), the j-th column of VR. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR.  LDVR >= 1; if */
/*          JOBVR = 'V', LDVR >= N. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= MAX(1,2*N). */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the QR algorithm failed to compute all the */
/*                eigenvalues, and no eigenvectors have been computed; */
/*                elements and i+1:N of W contain eigenvalues which have */
/*                converged. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    if (! wantvl && ! lsame_(jobvl, "N")) {
	*info = -1;
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < MAX(1,*n)) {
	*info = -5;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -8;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -10;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to float */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by CHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
		    c__0);
	    minwrk = *n << 1;
	    if (wantvl) {
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = MAX(i__1,i__2);
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
			vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = MAX(i__1,i__2);
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
			vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
			vr_offset], ldvr, &work[1], &c_n1, info);
	    }
	    hswork = work[1].r;
/* Computing MAX */
	    i__1 = MAX(maxwrk,hswork);
	    maxwrk = MAX(i__1,minwrk);
	}
	work[1].r = (float) maxwrk, work[1].i = 0.f;

	if (*lwork < minwrk && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEEV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = clange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE;
    if (anrm > 0.f && anrm < smlnum) {
	scalea = TRUE;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE;
	cscale = bignum;
    }
    if (scalea) {
	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix */
/*     (CWorkspace: none) */
/*     (RWorkspace: need N) */

    ibal = 1;
    cgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, 
	     &ierr);

    if (wantvl) {

/*        Want left eigenvectors */
/*        Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate unitary matrix in VL */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], 
		 &i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors */
/*           Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors */
/*        Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate unitary matrix in VR */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], 
		 &i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from CHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors */
/*        (CWorkspace: need 2*N) */
/*        (RWorkspace: need 2*N) */

	irwork = ibal + *n;
	ctrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, 
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[irwork], 
		&ierr);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

	cgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset], 
		ldvl, &ierr);

/*        Normalize left eigenvectors and make largest component float */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vl_dim1;
/* Computing 2nd power */
		r__1 = vl[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vl[k + i__ * vl_dim1]);
		rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
/* L10: */
	    }
	    k = isamax_(n, &rwork[irwork], &c__1);
	    r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
	    r__1 = sqrt(rwork[irwork + k - 1]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = k + i__ * vl_dim1;
	    i__3 = k + i__ * vl_dim1;
	    r__1 = vl[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
/* L20: */
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

	cgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset], 
		ldvr, &ierr);

/*        Normalize right eigenvectors and make largest component float */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vr_dim1;
/* Computing 2nd power */
		r__1 = vr[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vr[k + i__ * vr_dim1]);
		rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
/* L30: */
	    }
	    k = isamax_(n, &rwork[irwork], &c__1);
	    r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
	    r__1 = sqrt(rwork[irwork + k - 1]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = k + i__ * vr_dim1;
	    i__3 = k + i__ * vr_dim1;
	    r__1 = vr[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
/* L40: */
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = MAX(i__3,1);
	clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
, &i__2, &ierr);
	if (*info > 0) {
	    i__1 = ilo - 1;
	    clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, 
		     &ierr);
	}
    }

    work[1].r = (float) maxwrk, work[1].i = 0.f;
    return 0;

/*     End of CGEEV */

} /* cgeev_ */
예제 #2
0
/* Subroutine */ int cgeesx_(char *jobvs, char *sort, L_fp select, char *
	sense, integer *n, complex *a, integer *lda, integer *sdim, complex *
	w, complex *vs, integer *ldvs, real *rconde, real *rcondv, complex *
	work, integer *lwork, real *rwork, logical *bwork, integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CGEESX computes for an N-by-N complex nonsymmetric matrix A, the   
    eigenvalues, the Schur form T, and, optionally, the matrix of Schur   
    vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).   

    Optionally, it also orders the eigenvalues on the diagonal of the   
    Schur form so that selected eigenvalues are at the top left;   
    computes a reciprocal condition number for the average of the   
    selected eigenvalues (RCONDE); and computes a reciprocal condition   
    number for the right invariant subspace corresponding to the   
    selected eigenvalues (RCONDV).  The leading columns of Z form an   
    orthonormal basis for this invariant subspace.   

    For further explanation of the reciprocal condition numbers RCONDE   
    and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where   
    these quantities are called s and sep respectively).   

    A complex matrix is in Schur form if it is upper triangular.   

    Arguments   
    =========   

    JOBVS   (input) CHARACTER*1   
            = 'N': Schur vectors are not computed;   
            = 'V': Schur vectors are computed.   

    SORT    (input) CHARACTER*1   
            Specifies whether or not to order the eigenvalues on the   
            diagonal of the Schur form.   
            = 'N': Eigenvalues are not ordered;   
            = 'S': Eigenvalues are ordered (see SELECT).   

    SELECT  (input) LOGICAL FUNCTION of one COMPLEX argument   
            SELECT must be declared EXTERNAL in the calling subroutine.   
            If SORT = 'S', SELECT is used to select eigenvalues to order 
  
            to the top left of the Schur form.   
            If SORT = 'N', SELECT is not referenced.   
            An eigenvalue W(j) is selected if SELECT(W(j)) is true.   

    SENSE   (input) CHARACTER*1   
            Determines which reciprocal condition numbers are computed.   
            = 'N': None are computed;   
            = 'E': Computed for average of selected eigenvalues only;   
            = 'V': Computed for selected right invariant subspace only;   
            = 'B': Computed for both.   
            If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA, N)   
            On entry, the N-by-N matrix A.   
            On exit, A is overwritten by its Schur form T.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    SDIM    (output) INTEGER   
            If SORT = 'N', SDIM = 0.   
            If SORT = 'S', SDIM = number of eigenvalues for which   
                           SELECT is true.   

    W       (output) COMPLEX array, dimension (N)   
            W contains the computed eigenvalues, in the same order   
            that they appear on the diagonal of the output Schur form T. 
  

    VS      (output) COMPLEX array, dimension (LDVS,N)   
            If JOBVS = 'V', VS contains the unitary matrix Z of Schur   
            vectors.   
            If JOBVS = 'N', VS is not referenced.   

    LDVS    (input) INTEGER   
            The leading dimension of the array VS.  LDVS >= 1, and if   
            JOBVS = 'V', LDVS >= N.   

    RCONDE  (output) REAL   
            If SENSE = 'E' or 'B', RCONDE contains the reciprocal   
            condition number for the average of the selected eigenvalues. 
  
            Not referenced if SENSE = 'N' or 'V'.   

    RCONDV  (output) REAL   
            If SENSE = 'V' or 'B', RCONDV contains the reciprocal   
            condition number for the selected right invariant subspace.   
            Not referenced if SENSE = 'N' or 'E'.   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,2*N).   
            Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), 
  
            where SDIM is the number of selected eigenvalues computed by 
  
            this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2.   
            For good performance, LWORK must generally be larger.   

    RWORK   (workspace) REAL array, dimension (N)   

    BWORK   (workspace) LOGICAL array, dimension (N)   
            Not referenced if SORT = 'N'.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value.   
            > 0: if INFO = i, and i is   
               <= N: the QR algorithm failed to compute all the   
                     eigenvalues; elements 1:ILO-1 and i+1:N of W   
                     contain those eigenvalues which have converged; if   
                     JOBVS = 'V', VS contains the transformation which   
                     reduces A to its partially converged Schur form.   
               = N+1: the eigenvalues could not be reordered because some 
  
                     eigenvalues were too close to separate (the problem 
  
                     is very ill-conditioned);   
               = N+2: after reordering, roundoff changed values of some   
                     complex eigenvalues so that leading eigenvalues in   
                     the Schur form no longer satisfy SELECT=.TRUE.  This 
  
                     could also be caused by underflow due to scaling.   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__0 = 0;
    static integer c__8 = 8;
    static integer c_n1 = -1;
    static integer c__4 = 4;
    
    /* System generated locals */
    integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3, i__4;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer ibal, maxb;
    static real anrm;
    static integer ierr, itau, iwrk, i, k, icond, ieval;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), cgebak_(char *, char *, integer *, integer 
	    *, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *, 
	    integer *, integer *, real *, integer *), slabad_(real *, 
	    real *);
    static logical scalea;
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *);
    static real cscale;
    extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *),
	     clascl_(char *, integer *, integer *, real *, real *, integer *, 
	    integer *, complex *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), xerbla_(char *, 
	    integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static real bignum;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), chseqr_(char *, char *, integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, complex *, 
	    integer *, integer *), cunghr_(integer *, integer 
	    *, integer *, complex *, integer *, complex *, complex *, integer 
	    *, integer *);
    static logical wantsb;
    extern /* Subroutine */ int ctrsen_(char *, char *, logical *, integer *, 
	    complex *, integer *, complex *, integer *, complex *, integer *, 
	    real *, real *, complex *, integer *, integer *);
    static logical wantse;
    static integer minwrk, maxwrk;
    static logical wantsn;
    static real smlnum;
    static integer hswork;
    static logical wantst, wantsv, wantvs;
    static integer ihi, ilo;
    static real dum[1], eps;



#define W(I) w[(I)-1]
#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]
#define BWORK(I) bwork[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define VS(I,J) vs[(I)-1 + ((J)-1)* ( *ldvs)]

    *info = 0;
    wantvs = lsame_(jobvs, "V");
    wantst = lsame_(sort, "S");
    wantsn = lsame_(sense, "N");
    wantse = lsame_(sense, "E");
    wantsv = lsame_(sense, "V");
    wantsb = lsame_(sense, "B");
    if (! wantvs && ! lsame_(jobvs, "N")) {
	*info = -1;
    } else if (! wantst && ! lsame_(sort, "N")) {
	*info = -2;
    } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! 
	    wantsn) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
	*info = -11;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of real workspace needed at that point in the   
         code, as well as the preferred amount for good performance.   
         CWorkspace refers to complex workspace, and RWorkspace to real   
         workspace. NB refers to the optimal block size for the   
         immediately following subroutine, as returned by ILAENV.   
         HSWORK refers to the workspace preferred by CHSEQR, as   
         calculated below. HSWORK is computed assuming ILO=1 and IHI=N,   
         the worst case.   
         If SENSE = 'E', 'V' or 'B', then the amount of workspace needed 
  
         depends on SDIM, which is computed by the routine CTRSEN later   
         in the code.) */

    minwrk = 1;
    if (*info == 0 && *lwork >= 1) {
	maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &c__0, 
		6L, 1L);
/* Computing MAX */
	i__1 = 1, i__2 = *n << 1;
	minwrk = max(i__1,i__2);
	if (! wantvs) {
/* Computing MAX */
	    i__1 = ilaenv_(&c__8, "CHSEQR", "SN", n, &c__1, n, &c_n1, 6L, 2L);
	    maxb = max(i__1,2);
/* Computing MIN   
   Computing MAX */
	    i__3 = 2, i__4 = ilaenv_(&c__4, "CHSEQR", "SN", n, &c__1, n, &
		    c_n1, 6L, 2L);
	    i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
	    k = min(i__1,i__2);
/* Computing MAX */
	    i__1 = k * (k + 2), i__2 = *n << 1;
	    hswork = max(i__1,i__2);
/* Computing MAX */
	    i__1 = max(maxwrk,hswork);
	    maxwrk = max(i__1,1);
	} else {
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
		    " ", n, &c__1, n, &c_n1, 6L, 1L);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = ilaenv_(&c__8, "CHSEQR", "SV", n, &c__1, n, &c_n1, 6L, 2L);
	    maxb = max(i__1,2);
/* Computing MIN   
   Computing MAX */
	    i__3 = 2, i__4 = ilaenv_(&c__4, "CHSEQR", "SV", n, &c__1, n, &
		    c_n1, 6L, 2L);
	    i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
	    k = min(i__1,i__2);
/* Computing MAX */
	    i__1 = k * (k + 2), i__2 = *n << 1;
	    hswork = max(i__1,i__2);
/* Computing MAX */
	    i__1 = max(maxwrk,hswork);
	    maxwrk = max(i__1,1);
	}
	WORK(1).r = (real) maxwrk, WORK(1).i = 0.f;
    }
    if (*lwork < minwrk) {
	*info = -15;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEESX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*sdim = 0;
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = clange_("M", n, n, &A(1,1), lda, dum);
    scalea = FALSE_;
    if (anrm > 0.f && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &A(1,1), lda, &
		ierr);
    }


/*     Permute the matrix to make it more nearly triangular   
       (CWorkspace: none)   
       (RWorkspace: need N) */

    ibal = 1;
    cgebal_("P", n, &A(1,1), lda, &ilo, &ihi, &RWORK(ibal), &ierr);

/*     Reduce to upper Hessenberg form   
       (CWorkspace: need 2*N, prefer N+N*NB)   
       (RWorkspace: none) */

    itau = 1;
    iwrk = *n + itau;
    i__1 = *lwork - iwrk + 1;
    cgehrd_(n, &ilo, &ihi, &A(1,1), lda, &WORK(itau), &WORK(iwrk), &i__1,
	     &ierr);

    if (wantvs) {

/*        Copy Householder vectors to VS */

	clacpy_("L", n, n, &A(1,1), lda, &VS(1,1), ldvs);

/*        Generate unitary matrix in VS   
          (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)   
          (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, &ilo, &ihi, &VS(1,1), ldvs, &WORK(itau), &WORK(iwrk),
		 &i__1, &ierr);
    }

    *sdim = 0;

/*     Perform QR iteration, accumulating Schur vectors in VS if desired 
  
       (CWorkspace: need 1, prefer HSWORK (see comments) )   
       (RWorkspace: none) */

    iwrk = itau;
    i__1 = *lwork - iwrk + 1;
    chseqr_("S", jobvs, n, &ilo, &ihi, &A(1,1), lda, &W(1), &VS(1,1), ldvs, &WORK(iwrk), &i__1, &ieval);
    if (ieval > 0) {
	*info = ieval;
    }

/*     Sort eigenvalues if desired */

    if (wantst && *info == 0) {
	if (scalea) {
	    clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &W(1), n, &
		    ierr);
	}
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    BWORK(i) = (*select)(&W(i));
/* L10: */
	}

/*        Reorder eigenvalues, transform Schur vectors, and compute   
          reciprocal condition numbers   
          (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)   
                       otherwise, need none )   
          (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	ctrsen_(sense, jobvs, &BWORK(1), n, &A(1,1), lda, &VS(1,1),
		 ldvs, &W(1), sdim, rconde, rcondv, &WORK(iwrk), &i__1, &
		icond);
	if (! wantsn) {
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
	    maxwrk = max(i__1,i__2);
	}
	if (icond == -14) {

/*           Not enough complex workspace */

	    *info = -15;
	}
    }

    if (wantvs) {

/*        Undo balancing   
          (CWorkspace: none)   
          (RWorkspace: need N) */

	cgebak_("P", "R", n, &ilo, &ihi, &RWORK(ibal), n, &VS(1,1), 
		ldvs, &ierr);
    }

    if (scalea) {

/*        Undo scaling for the Schur form of A */

	clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &A(1,1), lda, &
		ierr);
	i__1 = *lda + 1;
	ccopy_(n, &A(1,1), &i__1, &W(1), &c__1);
	if ((wantsv || wantsb) && *info == 0) {
	    dum[0] = *rcondv;
	    slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
		    c__1, &ierr);
	    *rcondv = dum[0];
	}
    }

    WORK(1).r = (real) maxwrk, WORK(1).i = 0.f;
    return 0;

/*     End of CGEESX */

} /* cgeesx_ */
예제 #3
0
/* Subroutine */ int cgeevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, complex *a, integer *lda, complex *w, complex *vl, 
	integer *ldvl, complex *vr, integer *ldvr, integer *ilo, integer *ihi, 
	 real *scale, real *abnrm, real *rconde, real *rcondv, complex *work, 
	integer *lwork, real *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    real r__1, r__2;
    complex q__1, q__2;

    /* Local variables */
    integer i__, k;
    char job[1];
    real scl, dum[1], eps;
    complex tmp;
    char side[1];
    real anrm;
    integer ierr, itau, iwrk, nout;
    integer icond;
    logical scalea;
    real cscale;
    logical select[1];
    real bignum;
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    real smlnum;
    logical lquery, wantvr, wntsnn, wntsnv;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues and, optionally, the left and/or right eigenvectors. */

/*  Optionally also, it computes a balancing transformation to improve */
/*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
/*  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
/*  (RCONDE), and reciprocal condition numbers for the right */
/*  eigenvectors (RCONDV). */

/*  The right eigenvector v(j) of A satisfies */
/*                   A * v(j) = lambda(j) * v(j) */
/*  where lambda(j) is its eigenvalue. */
/*  The left eigenvector u(j) of A satisfies */
/*                u(j)**H * A = lambda(j) * u(j)**H */
/*  where u(j)**H denotes the conjugate transpose of u(j). */

/*  The computed eigenvectors are normalized to have Euclidean norm */
/*  equal to 1 and largest component real. */

/*  Balancing a matrix means permuting the rows and columns to make it */
/*  more nearly upper triangular, and applying a diagonal similarity */
/*  transformation D * A * D**(-1), where D is a diagonal matrix, to */
/*  make its rows and columns closer in norm and the condition numbers */
/*  of its eigenvalues and eigenvectors smaller.  The computed */
/*  reciprocal condition numbers correspond to the balanced matrix. */
/*  Permuting rows and columns will not change the condition numbers */
/*  (in exact arithmetic) but diagonal scaling will.  For further */
/*  explanation of balancing, see section 4.10.2 of the LAPACK */
/*  Users' Guide. */

/*  Arguments */
/*  ========= */

/*  BALANC  (input) CHARACTER*1 */
/*          Indicates how the input matrix should be diagonally scaled */
/*          and/or permuted to improve the conditioning of its */
/*          eigenvalues. */
/*          = 'N': Do not diagonally scale or permute; */
/*          = 'P': Perform permutations to make the matrix more nearly */
/*                 upper triangular. Do not diagonally scale; */
/*          = 'S': Diagonally scale the matrix, ie. replace A by */
/*                 D*A*D**(-1), where D is a diagonal matrix chosen */
/*                 to make the rows and columns of A more equal in */
/*                 norm. Do not permute; */
/*          = 'B': Both diagonally scale and permute A. */

/*          Computed reciprocal condition numbers will be for the matrix */
/*          after balancing and/or permuting. Permuting does not change */
/*          condition numbers (in exact arithmetic), but balancing does. */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N': left eigenvectors of A are not computed; */
/*          = 'V': left eigenvectors of A are computed. */
/*          If SENSE = 'E' or 'B', JOBVL must = 'V'. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N': right eigenvectors of A are not computed; */
/*          = 'V': right eigenvectors of A are computed. */
/*          If SENSE = 'E' or 'B', JOBVR must = 'V'. */

/*  SENSE   (input) CHARACTER*1 */
/*          Determines which reciprocal condition numbers are computed. */
/*          = 'N': None are computed; */
/*          = 'E': Computed for eigenvalues only; */
/*          = 'V': Computed for right eigenvectors only; */
/*          = 'B': Computed for eigenvalues and right eigenvectors. */

/*          If SENSE = 'E' or 'B', both left and right eigenvectors */
/*          must also be computed (JOBVL = 'V' and JOBVR = 'V'). */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten.  If JOBVL = 'V' or */
/*          JOBVR = 'V', A contains the Schur form of the balanced */
/*          version of the matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  W       (output) COMPLEX array, dimension (N) */
/*          W contains the computed eigenvalues. */

/*  VL      (output) COMPLEX array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/*          after another in the columns of VL, in the same order */
/*          as their eigenvalues. */
/*          If JOBVL = 'N', VL is not referenced. */
/*          u(j) = VL(:,j), the j-th column of VL. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the array VL.  LDVL >= 1; if */
/*          JOBVL = 'V', LDVL >= N. */

/*  VR      (output) COMPLEX array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/*          after another in the columns of VR, in the same order */
/*          as their eigenvalues. */
/*          If JOBVR = 'N', VR is not referenced. */
/*          v(j) = VR(:,j), the j-th column of VR. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the array VR.  LDVR >= 1; if */
/*          JOBVR = 'V', LDVR >= N. */

/*  ILO     (output) INTEGER */
/*  IHI     (output) INTEGER */
/*          ILO and IHI are integer values determined when A was */
/*          balanced.  The balanced A(i,j) = 0 if I > J and */

/*  SCALE   (output) REAL array, dimension (N) */
/*          Details of the permutations and scaling factors applied */
/*          when balancing A.  If P(j) is the index of the row and column */
/*          interchanged with row and column j, and D(j) is the scaling */
/*          factor applied to row and column j, then */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  ABNRM   (output) REAL */
/*          The one-norm of the balanced matrix (the maximum */
/*          of the sum of absolute values of elements of any column). */

/*  RCONDE  (output) REAL array, dimension (N) */
/*          RCONDE(j) is the reciprocal condition number of the j-th */
/*          eigenvalue. */

/*  RCONDV  (output) REAL array, dimension (N) */
/*          RCONDV(j) is the reciprocal condition number of the j-th */
/*          right eigenvector. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  If SENSE = 'N' or 'E', */
/*          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B', */
/*          LWORK >= N*N+2*N. */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the QR algorithm failed to compute all the */
/*                eigenvalues, and no eigenvectors or condition numbers */
/*                have been computed; elements 1:ILO-1 and i+1:N of W */
/*                contain eigenvalues which have converged. */

/*  ===================================================================== */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    wntsnn = lsame_(sense, "N");
    wntsne = lsame_(sense, "E");
    wntsnv = lsame_(sense, "V");
    wntsnb = lsame_(sense, "B");
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") 
	    || lsame_(balanc, "B"))) {
	*info = -1;
    } else if (! wantvl && ! lsame_(jobvl, "N")) {
	*info = -2;
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
	*info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
	    && ! (wantvl && wantvr)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -10;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -12;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to real */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by CHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
		    c__0);

	    if (wantvl) {
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
			vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
		chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
			vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		if (wntsnn) {
		    chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
			    vr[vr_offset], ldvr, &work[1], &c_n1, info);
		} else {
		    chseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
			    vr[vr_offset], ldvr, &work[1], &c_n1, info);
		}
	    }
	    hswork = work[1].r;

	    if (! wantvl && ! wantvr) {
		minwrk = *n << 1;
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
		    maxwrk = max(i__1,i__2);
		}
	    } else {
		minwrk = *n << 1;
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = max(i__1,i__2);
		if (! (wntsnn || wntsne)) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n << 1;
		maxwrk = max(i__1,i__2);
	    }
	    maxwrk = max(maxwrk,minwrk);
	}
	work[1].r = (real) maxwrk, work[1].i = 0.f;

	if (*lwork < minwrk && ! lquery) {
	    *info = -20;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = clange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0.f && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix and compute ABNRM */

    cgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = clange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
	dum[0] = *abnrm;
	slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
		ierr);
	*abnrm = dum[0];
    }

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    cgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
	    ierr);

    if (wantvl) {

/*        Want left eigenvectors */
/*        Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate unitary matrix in VL */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors */
/*           Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors */
/*        Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate unitary matrix in VR */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR */
/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only */
/*        If condition numbers desired, compute Schur form */

	if (wntsnn) {
	    *(unsigned char *)job = 'E';
	} else {
	    *(unsigned char *)job = 'S';
	}

/*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*        (RWorkspace: none) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	chseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from CHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors */
/*        (CWorkspace: need 2*N) */
/*        (RWorkspace: need N) */

	ctrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, 
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[1], &
		ierr);
    }

/*     Compute condition numbers if desired */
/*     (CWorkspace: need N*N+2*N unless SENSE = 'E') */
/*     (RWorkspace: need 2*N unless SENSE = 'E') */

    if (! wntsnn) {
	ctrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &rwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	cgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vl_dim1;
/* Computing 2nd power */
		r__1 = vl[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vl[k + i__ * vl_dim1]);
		rwork[k] = r__1 * r__1 + r__2 * r__2;
	    }
	    k = isamax_(n, &rwork[1], &c__1);
	    r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
	    r__1 = sqrt(rwork[k]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
	    i__2 = k + i__ * vl_dim1;
	    i__3 = k + i__ * vl_dim1;
	    r__1 = vl[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	cgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
	    csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		i__3 = k + i__ * vr_dim1;
/* Computing 2nd power */
		r__1 = vr[i__3].r;
/* Computing 2nd power */
		r__2 = r_imag(&vr[k + i__ * vr_dim1]);
		rwork[k] = r__1 * r__1 + r__2 * r__2;
	    }
	    k = isamax_(n, &rwork[1], &c__1);
	    r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
	    r__1 = sqrt(rwork[k]);
	    q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	    tmp.r = q__1.r, tmp.i = q__1.i;
	    cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
	    i__2 = k + i__ * vr_dim1;
	    i__3 = k + i__ * vr_dim1;
	    r__1 = vr[i__3].r;
	    q__1.r = r__1, q__1.i = 0.f;
	    vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
, &i__2, &ierr);
	if (*info == 0) {
	    if ((wntsnv || wntsnb) && icond == 0) {
		slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
			1], n, &ierr);
	    }
	} else {
	    i__1 = *ilo - 1;
	    clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, 
		     &ierr);
	}
    }

    work[1].r = (real) maxwrk, work[1].i = 0.f;
    return 0;

/*     End of CGEEVX */

} /* cgeevx_ */
예제 #4
0
/* Subroutine */ int cgeesx_(char *jobvs, char *sort, L_fp select, char *
	sense, integer *n, complex *a, integer *lda, integer *sdim, complex *
	w, complex *vs, integer *ldvs, real *rconde, real *rcondv, complex *
	work, integer *lwork, real *rwork, logical *bwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, ihi, ilo;
    real dum[1], eps;
    integer ibal;
    real anrm;
    integer ierr, itau, iwrk, lwrk, icond, ieval;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), cgebak_(char *, char *, integer *, integer 
	    *, integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *, 
	    integer *, integer *, real *, integer *), slabad_(real *, 
	    real *);
    logical scalea;
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *);
    real cscale;
    extern /* Subroutine */ int cgehrd_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *),
	     clascl_(char *, integer *, integer *, real *, real *, integer *, 
	    integer *, complex *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), xerbla_(char *, 
	    integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    real bignum;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), chseqr_(char *, char *, integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, complex *, 
	    integer *, integer *), cunghr_(integer *, integer 
	    *, integer *, complex *, integer *, complex *, complex *, integer 
	    *, integer *);
    logical wantsb;
    extern /* Subroutine */ int ctrsen_(char *, char *, logical *, integer *, 
	    complex *, integer *, complex *, integer *, complex *, integer *, 
	    real *, real *, complex *, integer *, integer *);
    logical wantse;
    integer minwrk, maxwrk;
    logical wantsn;
    real smlnum;
    integer hswork;
    logical wantst, wantsv, wantvs;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */
/*     .. Function Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGEESX computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
/*  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H). */

/*  Optionally, it also orders the eigenvalues on the diagonal of the */
/*  Schur form so that selected eigenvalues are at the top left; */
/*  computes a reciprocal condition number for the average of the */
/*  selected eigenvalues (RCONDE); and computes a reciprocal condition */
/*  number for the right invariant subspace corresponding to the */
/*  selected eigenvalues (RCONDV).  The leading columns of Z form an */
/*  orthonormal basis for this invariant subspace. */

/*  For further explanation of the reciprocal condition numbers RCONDE */
/*  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */
/*  these quantities are called s and sep respectively). */

/*  A complex matrix is in Schur form if it is upper triangular. */

/*  Arguments */
/*  ========= */

/*  JOBVS   (input) CHARACTER*1 */
/*          = 'N': Schur vectors are not computed; */
/*          = 'V': Schur vectors are computed. */

/*  SORT    (input) CHARACTER*1 */
/*          Specifies whether or not to order the eigenvalues on the */
/*          diagonal of the Schur form. */
/*          = 'N': Eigenvalues are not ordered; */
/*          = 'S': Eigenvalues are ordered (see SELECT). */

/*  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX argument */
/*          SELECT must be declared EXTERNAL in the calling subroutine. */
/*          If SORT = 'S', SELECT is used to select eigenvalues to order */
/*          to the top left of the Schur form. */
/*          If SORT = 'N', SELECT is not referenced. */
/*          An eigenvalue W(j) is selected if SELECT(W(j)) is true. */

/*  SENSE   (input) CHARACTER*1 */
/*          Determines which reciprocal condition numbers are computed. */
/*          = 'N': None are computed; */
/*          = 'E': Computed for average of selected eigenvalues only; */
/*          = 'V': Computed for selected right invariant subspace only; */
/*          = 'B': Computed for both. */
/*          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A is overwritten by its Schur form T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  SDIM    (output) INTEGER */
/*          If SORT = 'N', SDIM = 0. */
/*          If SORT = 'S', SDIM = number of eigenvalues for which */
/*                         SELECT is true. */

/*  W       (output) COMPLEX array, dimension (N) */
/*          W contains the computed eigenvalues, in the same order */
/*          that they appear on the diagonal of the output Schur form T. */

/*  VS      (output) COMPLEX array, dimension (LDVS,N) */
/*          If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
/*          vectors. */
/*          If JOBVS = 'N', VS is not referenced. */

/*  LDVS    (input) INTEGER */
/*          The leading dimension of the array VS.  LDVS >= 1, and if */
/*          JOBVS = 'V', LDVS >= N. */

/*  RCONDE  (output) REAL */
/*          If SENSE = 'E' or 'B', RCONDE contains the reciprocal */
/*          condition number for the average of the selected eigenvalues. */
/*          Not referenced if SENSE = 'N' or 'V'. */

/*  RCONDV  (output) REAL */
/*          If SENSE = 'V' or 'B', RCONDV contains the reciprocal */
/*          condition number for the selected right invariant subspace. */
/*          Not referenced if SENSE = 'N' or 'E'. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,2*N). */
/*          Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), */
/*          where SDIM is the number of selected eigenvalues computed by */
/*          this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also */
/*          that an error is only returned if LWORK < max(1,2*N), but if */
/*          SENSE = 'E' or 'V' or 'B' this may not be large enough. */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates upper bound on the optimal size of the */
/*          array WORK, returns this value as the first entry of the WORK */
/*          array, and no error message related to LWORK is issued by */
/*          XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  BWORK   (workspace) LOGICAL array, dimension (N) */
/*          Not referenced if SORT = 'N'. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value. */
/*          > 0: if INFO = i, and i is */
/*             <= N: the QR algorithm failed to compute all the */
/*                   eigenvalues; elements 1:ILO-1 and i+1:N of W */
/*                   contain those eigenvalues which have converged; if */
/*                   JOBVS = 'V', VS contains the transformation which */
/*                   reduces A to its partially converged Schur form. */
/*             = N+1: the eigenvalues could not be reordered because some */
/*                   eigenvalues were too close to separate (the problem */
/*                   is very ill-conditioned); */
/*             = N+2: after reordering, roundoff changed values of some */
/*                   complex eigenvalues so that leading eigenvalues in */
/*                   the Schur form no longer satisfy SELECT=.TRUE.  This */
/*                   could also be caused by underflow due to scaling. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1;
    vs -= vs_offset;
    --work;
    --rwork;
    --bwork;

    /* Function Body */
    *info = 0;
    wantvs = lsame_(jobvs, "V");
    wantst = lsame_(sort, "S");
    wantsn = lsame_(sense, "N");
    wantse = lsame_(sense, "E");
    wantsv = lsame_(sense, "V");
    wantsb = lsame_(sense, "B");
    if (! wantvs && ! lsame_(jobvs, "N")) {
	*info = -1;
    } else if (! wantst && ! lsame_(sort, "N")) {
	*info = -2;
    } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! 
	    wantsn) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
	*info = -11;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of real workspace needed at that point in the */
/*       code, as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to real */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by CHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case. */
/*       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */
/*       depends on SDIM, which is computed by the routine CTRSEN later */
/*       in the code.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    lwrk = 1;
	} else {
	    maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
		    c__0);
	    minwrk = *n << 1;

	    chseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[
		    vs_offset], ldvs, &work[1], &c_n1, &ieval);
	    hswork = work[1].r;

	    if (! wantvs) {
		maxwrk = max(maxwrk,hswork);
	    } else {
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR", 
			 " ", n, &c__1, n, &c_n1);
		maxwrk = max(i__1,i__2);
		maxwrk = max(maxwrk,hswork);
	    }
	    lwrk = maxwrk;
	    if (! wantsn) {
/* Computing MAX */
		i__1 = lwrk, i__2 = *n * *n / 2;
		lwrk = max(i__1,i__2);
	    }
	}
	work[1].r = (real) lwrk, work[1].i = 0.f;

	if (*lwork < minwrk) {
	    *info = -15;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGEESX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*sdim = 0;
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = clange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0.f && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }


/*     Permute the matrix to make it more nearly triangular */
/*     (CWorkspace: none) */
/*     (RWorkspace: need N) */

    ibal = 1;
    cgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

    itau = 1;
    iwrk = *n + itau;
    i__1 = *lwork - iwrk + 1;
    cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, 
	     &ierr);

    if (wantvs) {

/*        Copy Householder vectors to VS */

	clacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
		;

/*        Generate unitary matrix in VS */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	cunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], 
		 &i__1, &ierr);
    }

    *sdim = 0;

/*     Perform QR iteration, accumulating Schur vectors in VS if desired */
/*     (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*     (RWorkspace: none) */

    iwrk = itau;
    i__1 = *lwork - iwrk + 1;
    chseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
	    vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
    if (ieval > 0) {
	*info = ieval;
    }

/*     Sort eigenvalues if desired */

    if (wantst && *info == 0) {
	if (scalea) {
	    clascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
		    ierr);
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    bwork[i__] = (*select)(&w[i__]);
/* L10: */
	}

/*        Reorder eigenvalues, transform Schur vectors, and compute */
/*        reciprocal condition numbers */
/*        (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) */
/*                     otherwise, need none ) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	ctrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], 
		 ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, &
		icond);
	if (! wantsn) {
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
	    maxwrk = max(i__1,i__2);
	}
	if (icond == -14) {

/*           Not enough complex workspace */

	    *info = -15;
	}
    }

    if (wantvs) {

/*        Undo balancing */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

	cgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset], 
		ldvs, &ierr);
    }

    if (scalea) {

/*        Undo scaling for the Schur form of A */

	clascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
		ierr);
	i__1 = *lda + 1;
	ccopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
	if ((wantsv || wantsb) && *info == 0) {
	    dum[0] = *rcondv;
	    slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
		    c__1, &ierr);
	    *rcondv = dum[0];
	}
    }

    work[1].r = (real) maxwrk, work[1].i = 0.f;
    return 0;

/*     End of CGEESX */

} /* cgeesx_ */