예제 #1
0
파일: chcond.c 프로젝트: MichDC/ChibiOS-RT
/**
 * @brief   Waits on the condition variable releasing the mutex lock.
 * @details Releases the currently owned mutex, waits on the condition
 *          variable, and finally acquires the mutex again. All the sequence
 *          is performed atomically.
 * @pre     The invoking thread <b>must</b> have at least one owned mutex.
 * @pre     The configuration option @p CH_CFG_USE_CONDVARS_TIMEOUT must be enabled
 *          in order to use this function.
 * @post    Exiting the function because a timeout does not re-acquire the
 *          mutex, the mutex ownership is lost.
 *
 * @param[in] cp        pointer to the @p condition_variable_t structure
 * @param[in] time      the number of ticks before the operation timeouts, the
 *                      special values are handled as follow:
 *                      - @a TIME_INFINITE no timeout.
 *                      - @a TIME_IMMEDIATE this value is not allowed.
 *                      .
 * @return              A message specifying how the invoking thread has been
 *                      released from the condition variable.
 * @retval MSG_OK       if the condition variable has been signaled using
 *                      @p chCondSignal().
 * @retval MSG_RESET    if the condition variable has been signaled using
 *                      @p chCondBroadcast().
 * @retval MSG_TIMEOUT  if the condition variable has not been signaled within
 *                      the specified timeout.
 *
 * @sclass
 */
msg_t chCondWaitTimeoutS(condition_variable_t *cp, systime_t time) {
  mutex_t *mp;
  msg_t msg;

  chDbgCheckClassS();
  chDbgCheck((cp != NULL) && (time != TIME_IMMEDIATE));
  chDbgAssert(currp->p_mtxlist != NULL, "not owning a mutex");

  mp = chMtxGetNextMutexS();
  chMtxUnlockS(mp);
  currp->p_u.wtobjp = cp;
  queue_prio_insert(currp, &cp->c_queue);
  msg = chSchGoSleepTimeoutS(CH_STATE_WTCOND, time);
  if (msg != MSG_TIMEOUT)
    chMtxLockS(mp);
  return msg;
}
예제 #2
0
파일: chcond.c 프로젝트: MichDC/ChibiOS-RT
/**
 * @brief   Waits on the condition variable releasing the mutex lock.
 * @details Releases the currently owned mutex, waits on the condition
 *          variable, and finally acquires the mutex again. All the sequence
 *          is performed atomically.
 * @pre     The invoking thread <b>must</b> have at least one owned mutex.
 *
 * @param[in] cp        pointer to the @p condition_variable_t structure
 * @return              A message specifying how the invoking thread has been
 *                      released from the condition variable.
 * @retval MSG_OK       if the condition variable has been signaled using
 *                      @p chCondSignal().
 * @retval MSG_RESET    if the condition variable has been signaled using
 *                      @p chCondBroadcast().
 *
 * @sclass
 */
msg_t chCondWaitS(condition_variable_t *cp) {
  thread_t *ctp = currp;
  mutex_t *mp;
  msg_t msg;

  chDbgCheckClassS();
  chDbgCheck(cp != NULL);
  chDbgAssert(ctp->p_mtxlist != NULL, "not owning a mutex");

  mp = chMtxGetNextMutexS();
  chMtxUnlockS(mp);
  ctp->p_u.wtobjp = cp;
  queue_prio_insert(ctp, &cp->c_queue);
  chSchGoSleepS(CH_STATE_WTCOND);
  msg = ctp->p_u.rdymsg;
  chMtxLockS(mp);
  return msg;
}
예제 #3
0
/**
 * @brief   Waits on the condition variable releasing the mutex lock.
 * @details Releases the currently owned mutex, waits on the condition
 *          variable, and finally acquires the mutex again. All the sequence
 *          is performed atomically.
 * @pre     The invoking thread <b>must</b> have at least one owned mutex.
 * @pre     The configuration option @p CH_CFG_USE_CONDVARS_TIMEOUT must be enabled
 *          in order to use this function.
 * @post    Exiting the function because a timeout does not re-acquire the
 *          mutex, the mutex ownership is lost.
 *
 * @param[in] cp        pointer to the @p condition_variable_t structure
 * @param[in] time      the number of ticks before the operation timeouts, the
 *                      special values are handled as follow:
 *                      - @a TIME_INFINITE no timeout.
 *                      - @a TIME_IMMEDIATE this value is not allowed.
 *                      .
 * @return              A message specifying how the invoking thread has been
 *                      released from the condition variable.
 * @retval MSG_OK       if the condition variable has been signaled using
 *                      @p chCondSignal().
 * @retval MSG_RESET    if the condition variable has been signaled using
 *                      @p chCondBroadcast().
 * @retval MSG_TIMEOUT  if the condition variable has not been signaled within
 *                      the specified timeout.
 *
 * @sclass
 */
msg_t chCondWaitTimeoutS(condition_variable_t *cp, systime_t time) {
  mutex_t *mp;
  msg_t msg;

  chDbgCheckClassS();
  chDbgCheck((cp != NULL) && (time != TIME_IMMEDIATE));
  chDbgAssert(currp->p_mtxlist != NULL, "not owning a mutex");

  /* Getting "current" mutex and releasing it.*/
  mp = chMtxGetNextMutexS();
  chMtxUnlockS(mp);

  /* Start waiting on the condition variable, on exit the mutex is taken
     again.*/
  currp->p_u.wtobjp = cp;
  queue_prio_insert(currp, &cp->c_queue);
  msg = chSchGoSleepTimeoutS(CH_STATE_WTCOND, time);
  if (msg != MSG_TIMEOUT) {
    chMtxLockS(mp);
  }

  return msg;
}
예제 #4
0
/**
 * @brief   Waits on the condition variable releasing the mutex lock.
 * @details Releases the currently owned mutex, waits on the condition
 *          variable, and finally acquires the mutex again. All the sequence
 *          is performed atomically.
 * @pre     The invoking thread <b>must</b> have at least one owned mutex.
 *
 * @param[in] cp        pointer to the @p condition_variable_t structure
 * @return              A message specifying how the invoking thread has been
 *                      released from the condition variable.
 * @retval MSG_OK       if the condition variable has been signaled using
 *                      @p chCondSignal().
 * @retval MSG_RESET    if the condition variable has been signaled using
 *                      @p chCondBroadcast().
 *
 * @sclass
 */
msg_t chCondWaitS(condition_variable_t *cp) {
  thread_t *ctp = currp;
  mutex_t *mp;
  msg_t msg;

  chDbgCheckClassS();
  chDbgCheck(cp != NULL);
  chDbgAssert(ctp->p_mtxlist != NULL, "not owning a mutex");

  /* Getting "current" mutex and releasing it.*/
  mp = chMtxGetNextMutexS();
  chMtxUnlockS(mp);

  /* Start waiting on the condition variable, on exit the mutex is taken
     again.*/
  ctp->p_u.wtobjp = cp;
  queue_prio_insert(ctp, &cp->c_queue);
  chSchGoSleepS(CH_STATE_WTCOND);
  msg = ctp->p_u.rdymsg;
  chMtxLockS(mp);

  return msg;
}