static coco_problem_t *f_weierstrass_allocate(const size_t number_of_variables) { f_weierstrass_data_t *data; size_t i; double *non_unique_best_value; coco_problem_t *problem = coco_problem_allocate_from_scalars("Weierstrass function", f_weierstrass_evaluate, NULL, number_of_variables, -5.0, 5.0, NAN); coco_problem_set_id(problem, "%s_d%02lu", "weierstrass", number_of_variables); data = coco_allocate_memory(sizeof(*data)); data->f0 = 0.0; for (i = 0; i < WEIERSTRASS_SUMMANDS; ++i) { data->ak[i] = pow(0.5, (double) i); data->bk[i] = pow(3., (double) i); data->f0 += data->ak[i] * cos(2 * coco_pi * data->bk[i] * 0.5); } problem->data = data; /* Compute best solution */ non_unique_best_value = coco_allocate_vector(number_of_variables); for (i = 0; i < number_of_variables; i++) non_unique_best_value[i] = 0.0; f_weierstrass_evaluate(problem, non_unique_best_value, problem->best_value); coco_free_memory(non_unique_best_value); return problem; }
/** * @brief Creates the BBOB Rastrigin problem. */ static coco_problem_t *f_rastrigin_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); problem = f_rastrigin_allocate(dimension); problem = transform_vars_conditioning(problem, 10.0); problem = transform_vars_asymmetric(problem, 0.2); problem = transform_vars_oscillate(problem); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; }
static coco_problem_t *f_weierstrass_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j, k; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; const double condition = 100.0; const double penalty_factor = 10.0 / (double) dimension; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { current_row[j] = 0.0; for (k = 0; k < dimension; ++k) { const double base = 1.0 / sqrt(condition); const double exponent = 1.0 * (int) k / ((double) (long) dimension - 1.0); current_row[j] += rot1[i][k] * pow(base, exponent) * rot2[k][j]; } } } problem = f_weierstrass_allocate(dimension); problem = f_transform_obj_shift(problem, fopt); problem = f_transform_vars_affine(problem, M, b, dimension); problem = f_transform_vars_oscillate(problem); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); problem = f_transform_vars_affine(problem, M, b, dimension); problem = f_transform_vars_shift(problem, xopt, 0); problem = f_transform_obj_penalize(problem, penalty_factor); bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; }
/** * @brief Allocates the basic Rastrigin problem. */ static coco_problem_t *f_rastrigin_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Rastrigin function", f_rastrigin_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "rastrigin", number_of_variables); /* Compute best solution */ f_rastrigin_evaluate(problem, problem->best_parameter, problem->best_value); return problem; }
/** * @brief Allocates the basic Griewank-Rosenbrock problem. */ static coco_problem_t *f_griewank_rosenbrock_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Griewank Rosenbrock function", f_griewank_rosenbrock_evaluate, NULL, number_of_variables, -5.0, 5.0, 1); coco_problem_set_id(problem, "%s_d%02lu", "griewank_rosenbrock", number_of_variables); /* Compute best solution */ f_griewank_rosenbrock_evaluate(problem, problem->best_parameter, problem->best_value); return problem; }
/** * @brief Creates the BBOB Lunacek bi-Rastrigin problem. * * @note There is no separate basic allocate function. */ static coco_problem_t *f_lunacek_bi_rastrigin_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { f_lunacek_bi_rastrigin_data_t *data; coco_problem_t *problem = coco_problem_allocate_from_scalars("Lunacek's bi-Rastrigin function", f_lunacek_bi_rastrigin_evaluate, f_lunacek_bi_rastrigin_free, dimension, -5.0, 5.0, 0.0); const double mu0 = 2.5; double fopt, *tmpvect; size_t i; data = (f_lunacek_bi_rastrigin_data_t *) coco_allocate_memory(sizeof(*data)); /* Allocate temporary storage and space for the rotation matrices */ data->x_hat = coco_allocate_vector(dimension); data->z = coco_allocate_vector(dimension); data->xopt = coco_allocate_vector(dimension); data->rot1 = bbob2009_allocate_matrix(dimension, dimension); data->rot2 = bbob2009_allocate_matrix(dimension, dimension); data->rseed = rseed; data->fopt = bbob2009_compute_fopt(24, instance); bbob2009_compute_xopt(data->xopt, rseed, dimension); bbob2009_compute_rotation(data->rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(data->rot2, rseed, dimension); problem->data = data; /* Compute best solution */ tmpvect = coco_allocate_vector(dimension); bbob2009_gauss(tmpvect, dimension, rseed); for (i = 0; i < dimension; ++i) { data->xopt[i] = 0.5 * mu0; if (tmpvect[i] < 0.0) { data->xopt[i] *= -1.0; } problem->best_parameter[i] = data->xopt[i]; } coco_free_memory(tmpvect); f_lunacek_bi_rastrigin_evaluate(problem, problem->best_parameter, problem->best_value); fopt = bbob2009_compute_fopt(function, instance); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); return problem; }
/** * @brief Creates the BBOB Griewank-Rosenbrock problem. */ static coco_problem_t *f_griewank_rosenbrock_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double fopt; coco_problem_t *problem = NULL; size_t i, j; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *shift = coco_allocate_vector(dimension); double scales, **rot1; fopt = bbob2009_compute_fopt(function, instance); for (i = 0; i < dimension; ++i) { shift[i] = -0.5; } rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed, dimension); scales = coco_double_max(1., sqrt((double) dimension) / 8.); for (i = 0; i < dimension; ++i) { for (j = 0; j < dimension; ++j) { rot1[i][j] *= scales; } } problem = f_griewank_rosenbrock_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_shift(problem, shift, 0); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); problem = transform_vars_affine(problem, M, b, dimension); bbob2009_free_matrix(rot1, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(shift); return problem; }
/** * @brief Returns the problem from the bbob-biobj suite that corresponds to the given parameters. * * Creates the bi-objective problem by constructing it from two single-objective problems from the bbob * suite. If the invoked instance number is not in suite_biobj_instances, the function uses the following * formula to construct a new appropriate instance: * * problem1_instance = 2 * biobj_instance + 1 * * problem2_instance = problem1_instance + 1 * * If needed, problem2_instance is increased (see also the explanation of suite_biobj_get_new_instance). * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_biobj_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { const size_t num_bbob_functions = 10; /* Functions from the bbob suite that are used to construct the bi-objective problem. */ const size_t bbob_functions[] = { 1, 2, 6, 8, 13, 14, 15, 17, 20, 21 }; coco_problem_t *problem1, *problem2, *problem = NULL; size_t function1_idx, function2_idx; size_t instance1 = 0, instance2 = 0; const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; suite_biobj_t *data = (suite_biobj_t *) suite->data; size_t i, j; const size_t num_existing_instances = sizeof(suite_biobj_instances) / sizeof(suite_biobj_instances[0]); int instance_found = 0; /* A "magic" formula to compute the BBOB function index from the bi-objective function index */ function1_idx = num_bbob_functions - coco_double_to_size_t( floor(-0.5 + sqrt(0.25 + 2.0 * (double) (suite->number_of_functions - function_idx - 1)))) - 1; function2_idx = function_idx - (function1_idx * num_bbob_functions) + (function1_idx * (function1_idx + 1)) / 2; /* First search for instance in suite_biobj_instances */ for (i = 0; i < num_existing_instances; i++) { if (suite_biobj_instances[i][0] == instance) { /* The instance has been found in suite_biobj_instances */ instance1 = suite_biobj_instances[i][1]; instance2 = suite_biobj_instances[i][2]; instance_found = 1; break; } } if ((!instance_found) && (data)) { /* Next, search for instance in new_instances */ for (i = 0; i < data->max_new_instances; i++) { if (data->new_instances[i][0] == 0) break; if (data->new_instances[i][0] == instance) { /* The instance has been found in new_instances */ instance1 = data->new_instances[i][1]; instance2 = data->new_instances[i][2]; instance_found = 1; break; } } } if (!instance_found) { /* Finally, if the instance is not found, create a new one */ if (!data) { /* Allocate space needed for saving new instances */ data = (suite_biobj_t *) coco_allocate_memory(sizeof(*data)); /* Most often the actual number of new instances will be lower than max_new_instances, because * some of them are already in suite_biobj_instances. However, in order to avoid iterating over * suite_biobj_instances, the allocation uses max_new_instances. */ data->max_new_instances = suite->number_of_instances; data->new_instances = (size_t **) coco_allocate_memory(data->max_new_instances * sizeof(size_t *)); for (i = 0; i < data->max_new_instances; i++) { data->new_instances[i] = (size_t *) malloc(3 * sizeof(size_t)); for (j = 0; j < 3; j++) { data->new_instances[i][j] = 0; } } suite->data_free_function = suite_biobj_free; suite->data = data; } /* A simple formula to set the first instance */ instance1 = 2 * instance + 1; instance2 = suite_biobj_get_new_instance(suite, instance, instance1, num_bbob_functions, bbob_functions); } problem1 = coco_get_bbob_problem(bbob_functions[function1_idx], dimension, instance1); problem2 = coco_get_bbob_problem(bbob_functions[function2_idx], dimension, instance2); problem = coco_problem_stacked_allocate(problem1, problem2); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); /* Use the standard stacked problem_id as problem_name and construct a new suite-specific problem_id */ coco_problem_set_name(problem, problem->problem_id); coco_problem_set_id(problem, "bbob-biobj_f%02d_i%02ld_d%02d", function, instance, dimension); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem1->problem_type, problem2->problem_type); return problem; }
static coco_problem_t *f_gallagher_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const size_t number_of_peaks, const char *problem_id_template, const char *problem_name_template) { f_gallagher_data_t *data; /* problem_name and best_parameter will be overwritten below */ coco_problem_t *problem = coco_problem_allocate_from_scalars("Gallagher function", f_gallagher_evaluate, f_gallagher_free, dimension, -5.0, 5.0, 0.0); const size_t peaks_21 = 21; const size_t peaks_101 = 101; double fopt; size_t i, j, k, *rperm; double maxcondition = 1000.; /* maxcondition1 satisfies the old code and the doc but seems wrong in that it is, with very high * probability, not the largest condition level!!! */ double maxcondition1 = 1000.; double *arrCondition; double fitvalues[2] = { 1.1, 9.1 }; /* Parameters for generating local optima. In the old code, they are different in f21 and f22 */ double b, c; data = coco_allocate_memory(sizeof(*data)); /* Allocate temporary storage and space for the rotation matrices */ data->number_of_peaks = number_of_peaks; data->xopt = coco_allocate_vector(dimension); data->rotation = bbob2009_allocate_matrix(dimension, dimension); data->x_local = bbob2009_allocate_matrix(dimension, number_of_peaks); data->arr_scales = bbob2009_allocate_matrix(number_of_peaks, dimension); if (number_of_peaks == peaks_101) { if (gallagher_peaks != NULL) coco_free_memory(gallagher_peaks); gallagher_peaks = coco_allocate_vector(peaks_101 * dimension); maxcondition1 = sqrt(maxcondition1); b = 10.; c = 5.; } else if (number_of_peaks == peaks_21) { if (gallagher_peaks != NULL) coco_free_memory(gallagher_peaks); gallagher_peaks = coco_allocate_vector(peaks_21 * dimension); b = 9.8; c = 4.9; } else { coco_error("f_gallagher(): '%lu' is a bad number of peaks", number_of_peaks); } data->rseed = rseed; bbob2009_compute_rotation(data->rotation, rseed, dimension); /* Initialize all the data of the inner problem */ bbob2009_unif(gallagher_peaks, number_of_peaks - 1, data->rseed); rperm = (size_t *) coco_allocate_memory((number_of_peaks - 1) * sizeof(size_t)); for (i = 0; i < number_of_peaks - 1; ++i) rperm[i] = i; qsort(rperm, number_of_peaks - 1, sizeof(size_t), f_gallagher_compare_doubles); /* Random permutation */ arrCondition = coco_allocate_vector(number_of_peaks); arrCondition[0] = maxcondition1; data->peak_values = coco_allocate_vector(number_of_peaks); data->peak_values[0] = 10; for (i = 1; i < number_of_peaks; ++i) { arrCondition[i] = pow(maxcondition, (double) (rperm[i - 1]) / ((double) (number_of_peaks - 2))); data->peak_values[i] = (double) (i - 1) / (double) (number_of_peaks - 2) * (fitvalues[1] - fitvalues[0]) + fitvalues[0]; } coco_free_memory(rperm); rperm = (size_t *) coco_allocate_memory(dimension * sizeof(size_t)); for (i = 0; i < number_of_peaks; ++i) { bbob2009_unif(gallagher_peaks, dimension, data->rseed + (long) (1000 * i)); for (j = 0; j < dimension; ++j) rperm[j] = j; qsort(rperm, dimension, sizeof(size_t), f_gallagher_compare_doubles); for (j = 0; j < dimension; ++j) { data->arr_scales[i][j] = pow(arrCondition[i], ((double) rperm[j]) / ((double) (dimension - 1)) - 0.5); } } coco_free_memory(rperm); bbob2009_unif(gallagher_peaks, dimension * number_of_peaks, data->rseed); for (i = 0; i < dimension; ++i) { data->xopt[i] = 0.8 * (b * gallagher_peaks[i] - c); problem->best_parameter[i] = 0.8 * (b * gallagher_peaks[i] - c); for (j = 0; j < number_of_peaks; ++j) { data->x_local[i][j] = 0.; for (k = 0; k < dimension; ++k) { data->x_local[i][j] += data->rotation[i][k] * (b * gallagher_peaks[j * dimension + k] - c); } if (j == 0) { data->x_local[i][j] *= 0.8; } } } coco_free_memory(arrCondition); problem->data = data; /* Compute best solution */ f_gallagher_evaluate(problem, problem->best_parameter, problem->best_value); fopt = bbob2009_compute_fopt(function, instance); problem = f_transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); return problem; }