예제 #1
0
void Datagram::deserializeToDatagram(unsigned char *datagramChars,
		int datagramLength) {
	seqNumber = convertToInteger(datagramChars, 0);
	ackNumber = convertToInteger(datagramChars, 4);
	ackFlag = convertToBoolean(datagramChars, 8);
	finFlag = convertToBoolean(datagramChars, 9);
	length = convertToShort(datagramChars, 10);
	data = getPayload(datagramChars, length);
}
예제 #2
0
/** Expect lowest replica file name to be passed in. 'remdtraj' should have
  * already been parsed out of input arguments.
  */
int Trajin_Multi::SetupTrajRead(FileName const& tnameIn, ArgList& argIn, Topology *tparmIn)
{
    // Set file name and topology pointer.
    if (SetTraj().SetNameAndParm(tnameIn, tparmIn)) return 1;
    REMDtraj_.ClearIOarray();
    // Check for deprecated args
    if (argIn.hasKey("remdout")) {
        mprinterr("%s", TrajIOarray::DEPRECATED_remdout);
        return 1;
    }
    // Process REMD-specific arguments
    if (argIn.Contains("remdtrajidx")) {
        // Looking for specific indices
        ArgList indicesArg(argIn.GetStringKey("remdtrajidx"), ",");
        if (indicesArg.empty()) {
            mprinterr("Error: remdtrajidx expects comma-separated list of target indices in each\n"
                      "Error: dimension, '<dim1 idx>,<dim2 idx>,...,<dimN idx>'. Indices start\n"
                      "Error: from 1.\n");
            return 1;
        }
        for (ArgList::const_iterator arg = indicesArg.begin(); // TODO: validInteger?
                arg != indicesArg.end(); ++arg)
            remdtrajidx_.push_back( convertToInteger( *arg ) );
        targetType_ = ReplicaInfo::INDICES;
    } else if (argIn.Contains("remdtrajtemp")) {
        // Looking for target temperature
        remdtrajtemp_ = argIn.getKeyDouble("remdtrajtemp",0.0);
        targetType_ = ReplicaInfo::TEMP;
    }
    // Set up replica file names.
    if (REMDtraj_.SetupReplicaFilenames( tnameIn, argIn )) return 1;

    // Set up TrajectoryIO classes for all file names.
    if (REMDtraj_.SetupIOarray(argIn, SetTraj().Counter(), cInfo_, Traj().Parm())) return 1;

    // Check that replica dimension valid for desired indices.
    if (targetType_ == ReplicaInfo::INDICES &&
            cInfo_.ReplicaDimensions().Ndims() != (int)remdtrajidx_.size())
    {
        mprinterr("Error: Replica # of dim (%i) not equal to target # dim (%zu)\n",
                  cInfo_.ReplicaDimensions().Ndims(), remdtrajidx_.size());
        return 1;
    }

    // If target type is temperature make sure there is temperature info.
    if (targetType_ == ReplicaInfo::TEMP && !cInfo_.HasTemp()) {
        mprinterr("Error: Some or all replicas are missing temperature info.\n");
        return 1;
    }

    return 0;
}
예제 #3
0
// =============================================================================
// ----- RepName Class ---------------------------------------------------------
// RepName CONSTRUCTOR
File::RepName::RepName(FileName const& fname, int debugIn) :
  extChar_('.')
{
  if (debugIn > 1)
    mprintf("\tREMDTRAJ: FileName=[%s]\n", fname.full());
  if ( fname.Ext().empty() ) {
    mprinterr("Error: Traj %s has no numerical extension, required for automatic\n"
              "Error:   detection of replica trajectories. Expected filename format is\n"
              "Error:   <Prefix>.<#> (with optional compression extension), examples:\n"
              "Error:   Rep.traj.nc.000,  remd.x.01.gz etc.\n", fname.base());
    return;
  }
  // Split off everything before replica extension
  size_t found = fname.Full().rfind( fname.Ext() );
  Prefix_.assign( fname.Full().substr(0, found) );
  ReplicaExt_.assign( fname.Ext() ); // This should be the numeric extension
  // Remove leading '.'
  if (ReplicaExt_[0] == '.') ReplicaExt_.erase(0,1);
  CompressExt_.assign( fname.Compress() );
  if (debugIn > 1) {
    mprintf("\tREMDTRAJ: Prefix=[%s], #Ext=[%s], CompressExt=[%s]\n",
            Prefix_.c_str(), ReplicaExt_.c_str(), CompressExt_.c_str());
  }
  // CHARMM replica numbers are format <name>_<num>
  if ( !validInteger(ReplicaExt_) ) {
    size_t uscore = fname.Full().rfind('_');
    if (uscore != std::string::npos) {
      Prefix_.assign( fname.Full().substr(0, uscore) );
      ReplicaExt_.assign( fname.Full().substr(uscore+1) );
      extChar_ = '_';
      if (debugIn > 0)
        mprintf("\tREMDTRAJ: CHARMM style replica names detected, prefix='%s' ext='%s'\n",
                Prefix_.c_str(), ReplicaExt_.c_str());
    }
  }
  // Check that the numerical extension is valid.
  if ( !validInteger(ReplicaExt_) ) {
    mprinterr("Error: Replica extension [%s] is not an integer.\n", ReplicaExt_.c_str());
    Prefix_.clear(); // Empty Prefix_ indicates error.
    return;
  }
  ExtWidth_ = (int)ReplicaExt_.size();
  if (debugIn > 1)
    mprintf("\tREMDTRAJ: Numerical Extension width=%i\n", ExtWidth_);
  // Store lowest replica number
  lowestRepnum_ = convertToInteger( ReplicaExt_ );
  // TODO: Do not allow negative replica numbers?
  if (debugIn > 1)
    mprintf("\tREMDTRAJ: index of first replica = %i\n", lowestRepnum_);
}
예제 #4
0
Action::RetType Action_MultiDihedral::Init(ArgList& actionArgs, TopologyList* PFL, FrameList* FL,
                          DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  debug_ = debugIn;
  // Get keywords
  outfile_ = DFL->AddDataFile( actionArgs.GetStringKey("out"), actionArgs);
  range360_ = actionArgs.hasKey("range360");
  std::string resrange_arg = actionArgs.GetStringKey("resrange");
  if (!resrange_arg.empty())
    if (resRange_.SetRange( resrange_arg )) return Action::ERR;
  // Search for known dihedral keywords
  dihSearch_.SearchForArgs(actionArgs);
  // Get custom dihedral arguments: dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>]
  std::string dihtype_arg = actionArgs.GetStringKey("dihtype");
  while (!dihtype_arg.empty()) {
    ArgList dihtype(dihtype_arg, ":");
    if (dihtype.Nargs() < 5) {
      mprinterr("Error: Malformed dihtype arg.\n");
      return Action::ERR;
    }
    int offset = 0;
    if (dihtype.Nargs() == 6) offset = convertToInteger(dihtype[5]);
    dihSearch_.SearchForNewType(offset,dihtype[1],dihtype[2],dihtype[3],dihtype[4], dihtype[0]);
    dihtype_arg = actionArgs.GetStringKey("dihtype");
  }
  // If no dihedral types yet selected, this will select all.
  dihSearch_.SearchForAll();

  // Setup DataSet(s) name
  dsetname_ = actionArgs.GetStringNext();

  mprintf("    MULTIDIHEDRAL: Calculating");
  dihSearch_.PrintTypes();
  if (!resRange_.Empty())
    mprintf(" dihedrals for residues in range %s\n", resRange_.RangeArg());
  else
    mprintf(" dihedrals for all residues.\n");
  if (!dsetname_.empty())
    mprintf("\tDataSet name: %s\n", dsetname_.c_str());
  if (outfile_ != 0) mprintf("\tOutput to %s\n", outfile_->DataFilename().base());
  if (range360_) 
    mprintf("\tRange 0-360 deg.\n");
  else
    mprintf("\tRange -180-180 deg.\n");
  masterDSL_ = DSL;
  return Action::OK;
}
예제 #5
0
void TickFct_Display7Seg(void){
	static unsigned char init=1;
	if(init){	//initialization behavior
		OUTPUT=0x3F;		//displays "0" to 7-Segment Display
		display_value=1;	//increment
		init=0;
	}else if(keypad_counter){	//display Keypad Input
		int temp=display_value;
		display_value=convertToInteger(buffer&0x0F);
		if(display_value==10)
			display_value=temp;
		keypad_counter=0;
	}else{
		display();
		increment();
	}
}
예제 #6
0
static inline bool IsAtomLine(ArgList& lineIn) {
  for (int i = 0; i < lineIn.Nargs(); i++) {
    std::string item = lineIn.GetStringNext();
    if (i == 0 || i >= 5) {
      try {
        convertToInteger( item );
      }
      catch (std::runtime_error e) {
        return false;
      }
    } else if (i >= 2 && i < 5) {
      try {
        convertToDouble( item );
      }
      catch (std::runtime_error e) {
        return false;
      }
    }
  }
  return true;
}
예제 #7
0
// Parm_CIF::ReadParm()
int Parm_CIF::ReadParm(FileName const& fname, Topology &TopIn) {
  CIFfile infile;
  CIFfile::DataBlock::data_it line;

  if (infile.Read( fname, debug_ )) return 1;
  CIFfile::DataBlock const& block = infile.GetDataBlock("_atom_site");
  if (block.empty()) {
    mprinterr("Error: CIF data block '_atom_site' not found.\n");
    return 1;
  }
  // Does this CIF contain multiple models?
  int Nmodels = 0;
  int model_col = block.ColumnIndex("pdbx_PDB_model_num");
  if (model_col != -1) {
    line = block.end();
    --line;
    Nmodels = convertToInteger( (*line)[model_col] );
    if (Nmodels > 1)
      mprintf("Warning: CIF '%s' contains %i models. Using first model for topology.\n", 
              fname.full(), Nmodels);
  }
  // Get essential columns
  int COL[NENTRY];
  for (int i = 0; i < (int)NENTRY; i++) {
    COL[i] = block.ColumnIndex(Entries[i]);
    if (COL[i] == -1) {
      mprinterr("Error: In CIF file '%s' could not find entry '%s' in block '%s'\n",
                fname.full(), Entries[i], block.Header().c_str());
      return 1;
    }
    if (debug_>0) mprintf("DEBUG: '%s' column = %i\n", Entries[i], COL[i]);
  }
  // Get optional columns
  int occ_col = block.ColumnIndex("occupancy");
  int bfac_col = block.ColumnIndex("B_iso_or_equiv");
  int icode_col = block.ColumnIndex("pdbx_PDB_ins_code");
  int altloc_col = block.ColumnIndex("label_alt_id");
  std::vector<AtomExtra> extra;

  // Loop over all atom sites
  int current_res = 0;
  double XYZ[3];
  double occupancy = 1.0;
  double bfactor = 0.0;
  char altloc = ' ';
  char icode;
  icode = ' ';
  Frame Coords;
  for (line = block.begin(); line != block.end(); ++line) {
    // If more than 1 model check if we are done.
    if (Nmodels > 1) {
      if ( convertToInteger( (*line)[model_col] ) > 1 )
        break;
    }
    if (occ_col != -1) occupancy = convertToDouble( (*line)[ occ_col ] );
    if (bfac_col != -1) bfactor = convertToDouble( (*line)[ bfac_col ] );
    if (altloc_col != -1) altloc = (*line)[ altloc_col ][0];
    // '.' altloc means blank?
    if (altloc == '.') altloc = ' ';
    extra.push_back( AtomExtra(occupancy, bfactor, altloc) );
    if (icode_col != -1) {
      icode = (*line)[ icode_col ][0];
      // '?' icode means blank
      if (icode == '?') icode = ' ';
    }
    XYZ[0] = convertToDouble( (*line)[ COL[X] ] );
    XYZ[1] = convertToDouble( (*line)[ COL[Y] ] );
    XYZ[2] = convertToDouble( (*line)[ COL[Z] ] );
    NameType currentResName( (*line)[ COL[RNAME] ] );
    // It seems that in some CIF files, there doesnt have to be a residue
    // number. Check if residue name has changed.
    if ( (*line)[ COL[RNUM] ][0] == '.' ) {
      Topology::res_iterator lastResidue = TopIn.ResEnd();
      --lastResidue;
      if ( currentResName != (*lastResidue).Name() )
        current_res = TopIn.Nres() + 1;
    } else
      current_res = convertToInteger( (*line)[ COL[RNUM] ] );
    TopIn.AddTopAtom( Atom((*line)[ COL[ANAME] ], "  "),
                      Residue(currentResName, current_res, icode,
                              (*line)[ COL[CHAINID] ][0]) );
    Coords.AddXYZ( XYZ );
  }
  if (TopIn.SetExtraAtomInfo( 0, extra )) return 1;
  // Search for bonds // FIXME nobondsearch?
  BondSearch( TopIn, Coords, Offset_, debug_ );
  // Get title. 
  CIFfile::DataBlock const& entryblock = infile.GetDataBlock("_entry");
  std::string ciftitle;
  if (!entryblock.empty())
    ciftitle = entryblock.Data("id");
  TopIn.SetParmName( ciftitle, infile.CIFname() );
  // Get unit cell parameters if present.
  CIFfile::DataBlock const& cellblock = infile.GetDataBlock("_cell");
  if (!cellblock.empty()) {
    double cif_box[6];
    cif_box[0] = convertToDouble( cellblock.Data("length_a") );
    cif_box[1] = convertToDouble( cellblock.Data("length_b") );
    cif_box[2] = convertToDouble( cellblock.Data("length_c") );
    cif_box[3] = convertToDouble( cellblock.Data("angle_alpha") );
    cif_box[4] = convertToDouble( cellblock.Data("angle_beta" ) );
    cif_box[5] = convertToDouble( cellblock.Data("angle_gamma") );
    mprintf("\tRead cell info from CIF: a=%g b=%g c=%g alpha=%g beta=%g gamma=%g\n",
              cif_box[0], cif_box[1], cif_box[2], cif_box[3], cif_box[4], cif_box[5]);
    TopIn.SetParmBox( Box(cif_box) ); 
  }
  
  return 0;
}
예제 #8
0
int
TransportRegistry::load_transport_configuration(const OPENDDS_STRING& file_name,
                                                ACE_Configuration_Heap& cf)
{
  const ACE_Configuration_Section_Key &root = cf.root_section();

  // Create a vector to hold configuration information so we can populate
  // them after the transports instances are created.
  typedef std::pair<TransportConfig_rch, OPENDDS_VECTOR(OPENDDS_STRING) > ConfigInfo;
  OPENDDS_VECTOR(ConfigInfo) configInfoVec;

  // Record the transport instances created, so we can place them
  // in the implicit transport configuration for this file.
  OPENDDS_LIST(TransportInst_rch) instances;

  ACE_TString sect_name;

  for (int index = 0;
       cf.enumerate_sections(root, index, sect_name) == 0;
       ++index) {
    if (ACE_OS::strcmp(sect_name.c_str(), TRANSPORT_SECTION_NAME) == 0) {
      // found the [transport/*] section, now iterate through subsections...
      ACE_Configuration_Section_Key sect;
      if (cf.open_section(root, sect_name.c_str(), 0, sect) != 0) {
        ACE_ERROR_RETURN((LM_ERROR,
                          ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                          ACE_TEXT("failed to open section %s\n"),
                          sect_name.c_str()),
                         -1);
      } else {
        // Ensure there are no properties in this section
        ValueMap vm;
        if (pullValues(cf, sect, vm) > 0) {
          // There are values inside [transport]
          ACE_ERROR_RETURN((LM_ERROR,
                            ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                            ACE_TEXT("transport sections must have a section name\n"),
                            sect_name.c_str()),
                           -1);
        }
        // Process the subsections of this section (the individual transport
        // impls).
        KeyList keys;
        if (processSections( cf, sect, keys ) != 0) {
          ACE_ERROR_RETURN((LM_ERROR,
                            ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                            ACE_TEXT("too many nesting layers in [%s] section.\n"),
                            sect_name.c_str()),
                           -1);
        }
        for (KeyList::const_iterator it=keys.begin(); it != keys.end(); ++it) {
          OPENDDS_STRING transport_id = (*it).first;
          ACE_Configuration_Section_Key inst_sect = (*it).second;

          ValueMap values;
          if (pullValues( cf, (*it).second, values ) != 0) {
            // Get the factory_id for the transport.
            OPENDDS_STRING transport_type;
            ValueMap::const_iterator vm_it = values.find("transport_type");
            if (vm_it != values.end()) {
              transport_type = (*vm_it).second;
            } else {
              ACE_ERROR_RETURN((LM_ERROR,
                                ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                                ACE_TEXT("missing transport_type in [transport/%C] section.\n"),
                                transport_id.c_str()),
                               -1);
            }
            // Create the TransportInst object and load the transport
            // configuration in ACE_Configuration_Heap to the TransportInst
            // object.
            TransportInst_rch inst = this->create_inst(transport_id,
                                                       transport_type);
            if (inst == 0) {
              ACE_ERROR_RETURN((LM_ERROR,
                                ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                                ACE_TEXT("Unable to create transport instance in [transport/%C] section.\n"),
                                transport_id.c_str()),
                               -1);
            }
            instances.push_back(inst);
            inst->load(cf, inst_sect);
          } else {
            ACE_ERROR_RETURN((LM_ERROR,
                              ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                              ACE_TEXT("missing transport_type in [transport/%C] section.\n"),
                              transport_id.c_str()),
                             -1);
          }
        }
      }
    } else if (ACE_OS::strcmp(sect_name.c_str(), CONFIG_SECTION_NAME) == 0) {
      // found the [config/*] section, now iterate through subsections...
      ACE_Configuration_Section_Key sect;
      if (cf.open_section(root, sect_name.c_str(), 0, sect) != 0) {
        ACE_ERROR_RETURN((LM_ERROR,
                          ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                          ACE_TEXT("failed to open section [%s]\n"),
                          sect_name.c_str()),
                         -1);
      } else {
        // Ensure there are no properties in this section
        ValueMap vm;
        if (pullValues(cf, sect, vm) > 0) {
          // There are values inside [config]
          ACE_ERROR_RETURN((LM_ERROR,
                            ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                            ACE_TEXT("config sections must have a section name\n"),
                            sect_name.c_str()),
                           -1);
        }
        // Process the subsections of this section (the individual config
        // impls).
        KeyList keys;
        if (processSections( cf, sect, keys ) != 0) {
          // Don't allow multiple layers of nesting ([config/x/y]).
          ACE_ERROR_RETURN((LM_ERROR,
                            ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                            ACE_TEXT("too many nesting layers in [%s] section.\n"),
                            sect_name.c_str()),
                           -1);
        }
        for (KeyList::const_iterator it=keys.begin(); it != keys.end(); ++it) {
          OPENDDS_STRING config_id = (*it).first;

          // Create a TransportConfig object.
          TransportConfig_rch config = this->create_config(config_id);
          if (config == 0) {
            ACE_ERROR_RETURN((LM_ERROR,
                              ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                              ACE_TEXT("Unable to create transport config in [config/%C] section.\n"),
                              config_id.c_str()),
                             -1);
          }

          ValueMap values;
          pullValues( cf, (*it).second, values );

          ConfigInfo configInfo;
          configInfo.first = config;
          for (ValueMap::const_iterator it=values.begin();
               it != values.end(); ++it) {
            OPENDDS_STRING name = (*it).first;
            if (name == "transports") {
              OPENDDS_STRING value = (*it).second;

              char delim = ',';
              size_t pos = 0;
              OPENDDS_STRING token;
              while ((pos = value.find(delim)) != OPENDDS_STRING::npos) {
                token = value.substr(0, pos);
                configInfo.second.push_back(token);
                value.erase(0, pos + 1);
              }
              configInfo.second.push_back(value);

              configInfoVec.push_back(configInfo);
            } else if (name == "swap_bytes") {
              OPENDDS_STRING value = (*it).second;
              if ((value == "1") || (value == "true")) {
                config->swap_bytes_ = true;
              } else if ((value != "0") && (value != "false")) {
                ACE_ERROR_RETURN((LM_ERROR,
                                  ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                                  ACE_TEXT("Illegal value for swap_bytes (%C) in [config/%C] section.\n"),
                                  value.c_str(), config_id.c_str()),
                                 -1);
              }
            } else if (name == "passive_connect_duration") {
              OPENDDS_STRING value = (*it).second;
              if (!convertToInteger(value,
                                    config->passive_connect_duration_)) {
                ACE_ERROR_RETURN((LM_ERROR,
                                  ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                                  ACE_TEXT("Illegal integer value for passive_connect_duration (%s) in [config/%C] section.\n"),
                                  value.c_str(), config_id.c_str()),
                                 -1);
              }
            } else {
              ACE_ERROR_RETURN((LM_ERROR,
                                ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                                ACE_TEXT("Unexpected entry (%C) in [config/%C] section.\n"),
                                name.c_str(), config_id.c_str()),
                               -1);
            }
          }
          if (configInfo.second.size() == 0) {
            ACE_ERROR_RETURN((LM_ERROR,
                              ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                              ACE_TEXT("No transport instances listed in [config/%C] section.\n"),
                              config_id.c_str()),
                             -1);
          }
        }
      }
    } else if (ACE_OS::strncmp(sect_name.c_str(), OLD_TRANSPORT_PREFIX.c_str(),
                               OLD_TRANSPORT_PREFIX.length()) == 0) {
      ACE_ERROR_RETURN((LM_ERROR,
                        ACE_TEXT("(%P|%t) ERROR: ")
                        ACE_TEXT("Obsolete transport configuration found (%s).\n"),
                        sect_name.c_str()),
                       -1);
    }
  }

  // Populate the configurations with instances
  for (unsigned int i = 0; i < configInfoVec.size(); ++i) {
    TransportConfig_rch config = configInfoVec[i].first;
    OPENDDS_VECTOR(OPENDDS_STRING)& insts = configInfoVec[i].second;
    for (unsigned int j = 0; j < insts.size(); ++j) {
      TransportInst_rch inst = this->get_inst(insts[j]);
      if (inst == 0) {
        ACE_ERROR_RETURN((LM_ERROR,
                          ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                          ACE_TEXT("The inst (%C) in [config/%C] section is undefined.\n"),
                          insts[j].c_str(), config->name().c_str()),
                         -1);
      }
      config->instances_.push_back(inst);
    }
  }

  // Create and populate the default configuration for this
  // file with all the instances from this file.
  if (!instances.empty()) {
    TransportConfig_rch config = this->create_config(file_name);
    if (config == 0) {
      ACE_ERROR_RETURN((LM_ERROR,
                        ACE_TEXT("(%P|%t) TransportRegistry::load_transport_configuration: ")
                        ACE_TEXT("Unable to create default transport config.\n"),
                        file_name.c_str()),
                       -1);
    }
    instances.sort(predicate);
    for (OPENDDS_LIST(TransportInst_rch)::const_iterator it = instances.begin();
         it != instances.end(); ++it) {
      config->instances_.push_back(*it);
    }
  }

  return 0;
}
예제 #9
0
int
InfoRepoDiscovery::Config::discovery_config(ACE_Configuration_Heap& cf)
{
  const ACE_Configuration_Section_Key& root = cf.root_section();
  ACE_Configuration_Section_Key repo_sect;

  if (cf.open_section(root, REPO_SECTION_NAME, 0, repo_sect) != 0) {
    if (DCPS_debug_level > 0) {
      // This is not an error if the configuration file does not have
      // any repository (sub)section. The code default configuration will be used.
      ACE_DEBUG((LM_NOTICE,
                 ACE_TEXT("(%P|%t) NOTICE: InfoRepoDiscovery::Config::discovery_config ")
                 ACE_TEXT("failed to open [%s] section.\n"),
                 REPO_SECTION_NAME));
    }

    return 0;

  } else {
    // Ensure there are no properties in this section
    ValueMap vm;
    if (pullValues(cf, repo_sect, vm) > 0) {
      // There are values inside [repo]
      ACE_ERROR_RETURN((LM_ERROR,
                        ACE_TEXT("(%P|%t) InfoRepoDiscovery::Config::discovery_config ")
                        ACE_TEXT("repo sections must have a subsection name\n")),
                       -1);
    }
    // Process the subsections of this section (the individual repos)
    KeyList keys;
    if (processSections( cf, repo_sect, keys ) != 0) {
      ACE_ERROR_RETURN((LM_ERROR,
                        ACE_TEXT("(%P|%t) InfoRepoDiscovery::Config::discovery_config ")
                        ACE_TEXT("too many nesting layers in the [repo] section.\n")),
                       -1);
    }

    // Loop through the [repo/*] sections
    for (KeyList::const_iterator it=keys.begin(); it != keys.end(); ++it) {
      std::string repo_name = (*it).first;

      ValueMap values;
      pullValues( cf, (*it).second, values );
      Discovery::RepoKey repoKey = Discovery::DEFAULT_REPO;
      bool repoKeySpecified = false, bitIpSpecified = false,
        bitPortSpecified = false;
      std::string repoIor;
      int bitPort = 0;
      std::string bitIp;
      for (ValueMap::const_iterator it=values.begin(); it != values.end(); ++it) {
        std::string name = (*it).first;
        if (name == "RepositoryKey") {
          repoKey = (*it).second;
          repoKeySpecified = true;
          if (DCPS_debug_level > 0) {
            ACE_DEBUG((LM_DEBUG,
                       ACE_TEXT("(%P|%t) [repository/%C]: RepositoryKey == %C\n"),
                       repo_name.c_str(), repoKey.c_str()));
          }

        } else if (name == "RepositoryIor") {
          repoIor = (*it).second;

          if (DCPS_debug_level > 0) {
            ACE_DEBUG((LM_DEBUG,
                       ACE_TEXT("(%P|%t) [repository/%C]: RepositoryIor == %C\n"),
                       repo_name.c_str(), repoIor.c_str()));
          }
        } else if (name == "DCPSBitTransportIPAddress") {
          bitIp = (*it).second;
          bitIpSpecified = true;
          if (DCPS_debug_level > 0) {
            ACE_DEBUG((LM_DEBUG,
                       ACE_TEXT("(%P|%t) [repository/%C]: DCPSBitTransportIPAddress == %C\n"),
                       repo_name.c_str(), bitIp.c_str()));
          }
        } else if (name == "DCPSBitTransportPort") {
          std::string value = (*it).second;
          bitPort = ACE_OS::atoi(value.c_str());
          bitPortSpecified = true;
          if (convertToInteger(value, bitPort)) {
          } else {
            ACE_ERROR_RETURN((LM_ERROR,
                              ACE_TEXT("(%P|%t) InfoRepoDiscovery::Config::discovery_config ")
                              ACE_TEXT("Illegal integer value for DCPSBitTransportPort (%C) in [repository/%C] section.\n"),
                              value.c_str(), repo_name.c_str()),
                             -1);
          }
          if (DCPS_debug_level > 0) {
            ACE_DEBUG((LM_DEBUG,
                       ACE_TEXT("(%P|%t) [repository/%C]: DCPSBitTransportPort == %d\n"),
                       repo_name.c_str(), bitPort));
          }
        } else {
          ACE_ERROR_RETURN((LM_ERROR,
                            ACE_TEXT("(%P|%t) InfoRepoDiscovery::Config::discovery_config ")
                            ACE_TEXT("Unexpected entry (%C) in [repository/%C] section.\n"),
                            name.c_str(), repo_name.c_str()),
                           -1);
        }
      }

      if (values.find("RepositoryIor") == values.end()) {
        ACE_ERROR_RETURN((LM_ERROR,
                          ACE_TEXT("(%P|%t) InfoRepoDiscovery::Config::discovery_config ")
                          ACE_TEXT("Repository section [repository/%C] section is missing RepositoryIor value.\n"),
                          repo_name.c_str()),
                         -1);
      }

      if (!repoKeySpecified) {
        // If the RepositoryKey option was not specified, use the section
        // name as the repo key
        repoKey = repo_name;
      }
      InfoRepoDiscovery_rch discovery =
        new InfoRepoDiscovery(repoKey, repoIor.c_str());
      if (bitPortSpecified) discovery->bit_transport_port(bitPort);
      if (bitIpSpecified) discovery->bit_transport_ip(bitIp);
      TheServiceParticipant->add_discovery(
        DCPS::static_rchandle_cast<Discovery>(discovery));
    }
  }

  return 0;
}
예제 #10
0
Analysis::RetType Analysis_CurveFit::Internal_setup(std::string const& suffixIn, ArgList& analyzeArgs, DataSetList* datasetlist, DataFileList* DFLin, int debugIn)
{
  if (dset_->Ndim() != 1) {
    mprinterr("Error: Curve fitting can only be done with 1D data sets.\n");
    return Analysis::ERR;
  }
  std::string dsoutName;
  n_expected_params_ = 0;
  // Determine if special equation is being used.
  nexp_ = analyzeArgs.getKeyInt("nexp", -1);
  bool useGauss = analyzeArgs.hasKey("gauss");
  if ( useGauss || nexp_ > 0 ) {
    // Multi-exponential/Gaussian specialized equation form.
    dsoutName = analyzeArgs.GetStringKey("name");
    if (dsoutName.empty()) {
      mprinterr("Error: 'name <OutputSetName>' must be used with 'nexp <n>' or 'gauss'\n");
      return Analysis::ERR;
    }
    equation_ = dsoutName + " = ";
    if (nexp_ > 0) {
      // Determine form
      eqForm_ = MEXP;
      std::string formStr = analyzeArgs.GetStringKey("form");
      if (!formStr.empty()) {
        if (formStr == "mexp") eqForm_ = MEXP;
        else if (formStr == "mexpk") eqForm_ = MEXP_K;
        else if (formStr == "mexpk_penalty") eqForm_ = MEXP_K_PENALTY;
        else {
          mprinterr("Error: Multi-exponential form '%s' not recognized.\n", formStr.c_str());
          return Analysis::ERR;
        }
      }
      // Set up equation
      int nparam = 0;
      if (eqForm_ != MEXP) {
        equation_.append("A0 +");
        nparam = 1;
      }
      for (int ie = 0; ie != nexp_; ie++, nparam += 2) {
        if (ie > 0)
          equation_.append(" + ");
        equation_.append("(A" + integerToString(nparam) + " * exp(X * A" + 
                               integerToString(nparam+1) + "))");
      }
      n_expected_params_ = nparam;
    } else {
      eqForm_ = GAUSS;
      n_expected_params_ = 3;
      equation_.append("A0 * exp( -((X - A1)^2) / (2 * A2^2) )");
    }
  } else {
    // Any equation form, solve with RPNcalc.
    eqForm_ = GENERAL;
    // Second argument should be the equation to fit DataSet to.
    equation_ = analyzeArgs.GetStringNext();
    if (equation_.empty()) {
      mprinterr("Error: Must specify an equation if 'nexp <n>' not specified.\n");
      return Analysis::ERR;
    }
    Calc_.SetDebug(debugIn);
    if (Calc_.ProcessExpression( equation_ )) return Analysis::ERR;
    // Equation must have an assignment.
    if ( Calc_.AssignStatus() != RPNcalc::YES_ASSIGN ) {
      mprinterr("Error: No assignment '=' in equation '%s'.\n", equation_.c_str());
      return Analysis::ERR;
    }
    dsoutName = Calc_.FirstTokenName();
    if (dsoutName.empty()) {
      mprinterr("Error: Invalid assignment in equation '%s'.\n", equation_.c_str());
      return Analysis::ERR;
    } 
    n_expected_params_ = Calc_.Nparams();
  }
  // Get keywords
  Results_ = DFLin->AddCpptrajFile( analyzeArgs.GetStringKey("resultsout"), "Curve Fit Results",
                                    DataFileList::TEXT, true );
  DataFile* outfile = DFLin->AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
  tolerance_ = analyzeArgs.getKeyDouble("tol", 0.0001);
  if (tolerance_ < 0.0) {
    mprinterr("Error: Tolerance must be greater than or equal to 0.0\n");
    return Analysis::ERR;
  }
  maxIt_ = analyzeArgs.getKeyInt("maxit", 50);
  if (maxIt_ < 1) {
    mprinterr("Error: Max iterations must be greater than or equal to 1.\n");
    return Analysis::ERR;
  }
  outXbins_ = analyzeArgs.getKeyInt("outxbins", -1);
  outXmin_ = analyzeArgs.getKeyDouble("outxmin", 0.0);
  outXmax_ = analyzeArgs.getKeyDouble("outxmax", 0.0);
  if (outXbins_ > 0) {
    mprintf("%g %g\n", outXmin_, outXmax_);
    if (outXmin_ >= outXmax_) {
      mprinterr("Error: outxmin must be less than outxmax.\n");
      return Analysis::ERR;
    }
  }
  // Now get all parameters
  if (n_expected_params_ < 0) return Analysis::ERR;
  Params_.resize( n_expected_params_, 0.0 );
  n_specified_params_ = 0;
  for (int p = 0; p != n_expected_params_; p++, n_specified_params_++) {
    std::string parameterArg = analyzeArgs.GetStringNext();
    if (parameterArg.empty())
      break;
    ArgList parameter(parameterArg, " =");
    if (parameter.Nargs() != 2) {
      mprinterr("Error: Invalid parameter argument. Expected 'A<n>=<value>'\n");
      return Analysis::ERR;
    }
    std::string parameterName = parameter.GetStringNext();
    if (parameterName[0] != 'A') {
      mprinterr("Error: Invalid parameter name (expected A<n>): %s\n", parameterName.c_str());
      return Analysis::ERR;
    }
    int pnum = convertToInteger(parameterName.substr(1));
    Params_[pnum] = parameter.getNextDouble(0.0);
  }
  // Check if all params specified.
  if (n_specified_params_ != n_expected_params_)
    mprintf("Warning: # specified params (%i) less than # expected params (%i)\n",
            n_specified_params_, n_expected_params_);
  // Set up output data set.
  if (!suffixIn.empty()) dsoutName.append(suffixIn);
  finalY_ = datasetlist->AddSet(DataSet::XYMESH, dsoutName, "FIT");
  if (finalY_ == 0) return Analysis::ERR;
  if (outfile != 0) outfile->AddDataSet( finalY_ );

  mprintf("    CURVEFIT: Fitting set '%s' to equation '%s'\n",
          dset_->legend(), equation_.c_str());
  if (nexp_ > 0) {
    mprintf("\tMulti-exponential form with %i exponentials.\n", nexp_);
    if (eqForm_ == MEXP_K_PENALTY)
      mprintf("\tMulti-exponential equation constraints: sum of prefactors = 1.0,"
              " exponent parameters < 0.0\n");
  } else if (eqForm_ == GAUSS)
    mprintf("\tGaussian form.\n");
  mprintf("\tFinal Y values will be saved in set '%s'\n", finalY_->legend());
  if (outXbins_ > 0)
    mprintf("\tFinal X range: %g to %g, %i points.\n", outXmin_, outXmax_, outXbins_);
  mprintf("\tTolerance= %g, maximum iterations= %i\n", tolerance_, maxIt_);
  mprintf("\tFinal parameters and statistics for fit will be writtent to %s\n",
          Results_->Filename().full());
  if (n_specified_params_ > 0) {
    mprintf("\tInitial parameters:\n");
    for (Darray::const_iterator ip = Params_.begin(); ip != Params_.end(); ++ip)
      mprintf("\t  A%u = %g\n", ip - Params_.begin(), *ip);
  }

  return Analysis::OK;
}
예제 #11
0
int moProperty::asInteger() {
	return convertToInteger(this->type, this->val);
}
예제 #12
0
int Parm_CharmmPsf::WriteParm(FileName const& fname, Topology const& parm) {
  // TODO: CMAP etc info
  CpptrajFile outfile;
  if (outfile.OpenWrite(fname)) return 1;
  // Write PSF
  outfile.Printf("PSF\n\n");
  // Write title
  std::string titleOut = parm.ParmName();
  titleOut.resize(78);
  outfile.Printf("%8i !NTITLE\n* %-78s\n\n", 1, titleOut.c_str());
  // Write NATOM section
  outfile.Printf("%8i !NATOM\n", parm.Natom());
  unsigned int idx = 1;
  // Make fake segment ids for now.
  char segid[2];
  segid[0] = 'A';
  segid[1] = '\0';
  mprintf("Warning: Assigning single letter segment IDs.\n");
  int currentMol = 0;
  bool inSolvent = false;
  for (Topology::atom_iterator atom = parm.begin(); atom != parm.end(); ++atom, ++idx) {
    int resnum = atom->ResNum();
    if (atom->MolNum() != currentMol) {
      if (!inSolvent) {
        inSolvent = parm.Mol(atom->MolNum()).IsSolvent();
        currentMol = atom->MolNum();
        segid[0]++;
      } else
        inSolvent = parm.Mol(atom->MolNum()).IsSolvent();
    }
    // TODO: Print type name for xplor-like PSF
    int typeindex = atom->TypeIndex() + 1;
    // If type begins with digit, assume charmm numbers were read as
    // type. Currently Amber types all begin with letters.
    if (isdigit(atom->Type()[0]))
      typeindex = convertToInteger( *(atom->Type()) );
    // ATOM# SEGID RES# RES ATNAME ATTYPE CHRG MASS (REST OF COLUMNS ARE LIKELY FOR CMAP AND CHEQ)
    outfile.Printf("%8i %-4s %-4i %-4s %-4s %4i %14.6G %9g  %10i\n", idx, segid,
                   parm.Res(resnum).OriginalResNum(), parm.Res(resnum).c_str(),
                   atom->c_str(), typeindex, atom->Charge(),
                   atom->Mass(), 0);
  }
  outfile.Printf("\n");
  // Write NBOND section
  outfile.Printf("%8u !NBOND: bonds\n", parm.Bonds().size() + parm.BondsH().size());
  idx = 1;
  for (BondArray::const_iterator bond = parm.BondsH().begin();
                                 bond != parm.BondsH().end(); ++bond, ++idx)
  {
    outfile.Printf("%8i%8i", bond->A1()+1, bond->A2()+1);
    if ((idx % 4)==0) outfile.Printf("\n"); 
  }
  for (BondArray::const_iterator bond = parm.Bonds().begin();
                                 bond != parm.Bonds().end(); ++bond, ++idx)
  {
    outfile.Printf("%8i%8i", bond->A1()+1, bond->A2()+1);
    if ((idx % 4)==0) outfile.Printf("\n"); 
  }
  if ((idx % 4)!=0) outfile.Printf("\n");
  outfile.Printf("\n");
  // Write NTHETA section
  outfile.Printf("%8u !NTHETA: angles\n", parm.Angles().size() + parm.AnglesH().size());
  idx = 1;
  for (AngleArray::const_iterator ang = parm.AnglesH().begin();
                                  ang != parm.AnglesH().end(); ++ang, ++idx)
  {
    outfile.Printf("%8i%8i%8i", ang->A1()+1, ang->A2()+1, ang->A3()+1);
    if ((idx % 3)==0) outfile.Printf("\n");
  }
  for (AngleArray::const_iterator ang = parm.Angles().begin();
                                  ang != parm.Angles().end(); ++ang, ++idx)
  {
    outfile.Printf("%8i%8i%8i", ang->A1()+1, ang->A2()+1, ang->A3()+1);
    if ((idx % 3)==0) outfile.Printf("\n");
  }
  if ((idx % 3)==0) outfile.Printf("\n");
  outfile.Printf("\n");
  // Write out NPHI section
  outfile.Printf("%8u !NPHI: dihedrals\n", parm.Dihedrals().size() + parm.DihedralsH().size());
  idx = 1;
  for (DihedralArray::const_iterator dih = parm.DihedralsH().begin();
                                     dih != parm.DihedralsH().end(); ++dih, ++idx)
  {
    outfile.Printf("%8i%8i%8i%8i", dih->A1()+1, dih->A2()+1, dih->A3()+1, dih->A4()+1);
    if ((idx % 2)==0) outfile.Printf("\n");
  }
  for (DihedralArray::const_iterator dih = parm.Dihedrals().begin();
                                     dih != parm.Dihedrals().end(); ++dih, ++idx)
  {
    outfile.Printf("%8i%8i%8i%8i", dih->A1()+1, dih->A2()+1, dih->A3()+1, dih->A4()+1);
    if ((idx % 2)==0) outfile.Printf("\n");
  }
  if ((idx % 2)==0) outfile.Printf("\n");
  outfile.Printf("\n");

  outfile.CloseFile();
  return 0;
}
예제 #13
0
/** Set up each mask/integer loop. */
int ControlBlock_For::SetupBlock(CpptrajState& State, ArgList& argIn) {
  mprintf("    Setting up 'for' loop.\n");
  Vars_.clear();
  Topology* currentTop = 0;
  static const char* TypeStr[] = { "ATOMS ", "RESIDUES ", "MOLECULES ",
                                   "MOL_FIRST_RES ", "MOL_LAST_RES " };
  static const char* OpStr[] = {"+=", "-=", "<", ">"};
  description_.assign("for (");
  int MaxIterations = -1;
  int iarg = 0;
  while (iarg < argIn.Nargs())
  {
    // Advance to next unmarked argument.
    while (iarg < argIn.Nargs() && argIn.Marked(iarg)) iarg++;
    if (iarg == argIn.Nargs()) break;
    // Determine 'for' type
    ForType ftype = UNKNOWN;
    bool isMaskFor = true;
    int argToMark = iarg;
    if      ( argIn[iarg] == "atoms"       ) ftype = ATOMS;
    else if ( argIn[iarg] == "residues"    ) ftype = RESIDUES;
    else if ( argIn[iarg] == "molecules"   ) ftype = MOLECULES;
    else if ( argIn[iarg] == "molfirstres" ) ftype = MOLFIRSTRES;
    else if ( argIn[iarg] == "mollastres"  ) ftype = MOLLASTRES;
    else if ( argIn[iarg].find(";") != std::string::npos ) {
      isMaskFor = false;
      ftype = INTEGER;
    }
    // If type is still unknown, check for list.
    if (ftype == UNKNOWN) {
      if (iarg+1 < argIn.Nargs() && argIn[iarg+1] == "in") {
        ftype = LIST;
        isMaskFor = false;
        argToMark = iarg+1;
      }
    }
    // Exit if type could not be determined.
    if (ftype == UNKNOWN) {
      mprinterr("Error: for loop type not specfied.\n");
      return 1;
    }
    argIn.MarkArg(argToMark);
    Vars_.push_back( LoopVar() );
    LoopVar& MH = Vars_.back();
    int Niterations = -1;
    // Set up for specific type
    if (description_ != "for (") description_.append(", ");
    // -------------------------------------------
    if (isMaskFor)
    {
      // {atoms|residues|molecules} <var> inmask <mask> [TOP KEYWORDS]
      if (argIn[iarg+2] != "inmask") {
        mprinterr("Error: Expected 'inmask', got %s\n", argIn[iarg+2].c_str());
        return 1;
      }
      AtomMask currentMask;
      if (currentMask.SetMaskString( argIn.GetStringKey("inmask") )) return 1;
      MH.varType_ = ftype;
      Topology* top = State.DSL().GetTopByIndex( argIn );
      if (top != 0) currentTop = top;
      if (currentTop == 0) return 1;
      MH.varname_ = argIn.GetStringNext();
      if (MH.varname_.empty()) {
        mprinterr("Error: 'for inmask': missing variable name.\n");
        return 1;
      }
      MH.varname_ = "$" + MH.varname_;
      // Set up mask
      if (currentTop->SetupIntegerMask( currentMask )) return 1;
      currentMask.MaskInfo();
      if (currentMask.None()) return 1;
      // Set up indices
      if (MH.varType_ == ATOMS)
        MH.Idxs_ = currentMask.Selected();
      else if (MH.varType_ == RESIDUES) {
        int curRes = -1;
        for (AtomMask::const_iterator at = currentMask.begin(); at != currentMask.end(); ++at) {
          int res = (*currentTop)[*at].ResNum();
          if (res != curRes) {
            MH.Idxs_.push_back( res );
            curRes = res;
          }
        }
      } else if (MH.varType_ == MOLECULES ||
                 MH.varType_ == MOLFIRSTRES ||
                 MH.varType_ == MOLLASTRES)
      {
        int curMol = -1;
        for (AtomMask::const_iterator at = currentMask.begin(); at != currentMask.end(); ++at) {
          int mol = (*currentTop)[*at].MolNum();
          if (mol != curMol) {
            if (MH.varType_ == MOLECULES)
              MH.Idxs_.push_back( mol );
            else {
              int res;
              if (MH.varType_ == MOLFIRSTRES)
                res = (*currentTop)[ currentTop->Mol( mol ).BeginAtom() ].ResNum();
              else // MOLLASTRES
                res = (*currentTop)[ currentTop->Mol( mol ).EndAtom()-1 ].ResNum();
              MH.Idxs_.push_back( res );
            }
            curMol = mol;
          }
        }
      }
      Niterations = (int)MH.Idxs_.size();
      description_.append(std::string(TypeStr[MH.varType_]) +
                        MH.varname_ + " inmask " + currentMask.MaskExpression());
    // -------------------------------------------
    } else if (ftype == INTEGER) {
      // [<var>=<start>;[<var><OP><end>;]<var><OP>[<value>]]
      MH.varType_ = ftype;
      ArgList varArg( argIn[iarg], ";" );
      if (varArg.Nargs() < 2 || varArg.Nargs() > 3) {
        mprinterr("Error: Malformed 'for' loop variable.\n"
                  "Error: Expected '[<var>=<start>;[<var><OP><end>;]<var><OP>[<value>]]'\n"
                  "Error: Got '%s'\n", argIn[iarg].c_str());
        return 1;
      }
      // First argument: <var>=<start>
      ArgList startArg( varArg[0], "=" );
      if (startArg.Nargs() != 2) {
        mprinterr("Error: Malformed 'start' argument.\n"
                  "Error: Expected <var>=<start>, got '%s'\n", varArg[0].c_str());
        return 1;
      }
      MH.varname_ = startArg[0];
      if (!validInteger(startArg[1])) {
        // TODO allow variables
        mprinterr("Error: Start argument must be an integer.\n");
        return 1;
      } else
        MH.start_ = convertToInteger(startArg[1]);
      // Second argument: <var><OP><end>
      size_t pos0 = MH.varname_.size();
      size_t pos1 = pos0 + 1;
      MH.endOp_ = NO_OP;
      int iargIdx = 1;
      if (varArg.Nargs() == 3) {
        iargIdx = 2;
        if ( varArg[1][pos0] == '<' )
          MH.endOp_ = LESS_THAN;
        else if (varArg[1][pos0] == '>')
          MH.endOp_ = GREATER_THAN;
        if (MH.endOp_ == NO_OP) {
          mprinterr("Error: Unrecognized end op: '%s'\n",
                    varArg[1].substr(pos0, pos1-pos0).c_str());
          return 1;
        }
        std::string endStr = varArg[1].substr(pos1);
        if (!validInteger(endStr)) {
          // TODO allow variables
          mprinterr("Error: End argument must be an integer.\n");
          return 1;
        } else
          MH.end_ = convertToInteger(endStr);
      }
      // Third argument: <var><OP>[<value>]
      pos1 = pos0 + 2;
      MH.incOp_ = NO_OP;
      bool needValue = false;
      if ( varArg[iargIdx][pos0] == '+' ) {
        if (varArg[iargIdx][pos0+1] == '+') {
          MH.incOp_ = INCREMENT;
          MH.inc_ = 1;
        } else if (varArg[iargIdx][pos0+1] == '=') {
          MH.incOp_ = INCREMENT;
          needValue = true;
        }
      } else if ( varArg[iargIdx][pos0] == '-' ) {
        if (varArg[iargIdx][pos0+1] == '-' ) {
          MH.incOp_ = DECREMENT;
          MH.inc_ = 1;
        } else if (varArg[iargIdx][pos0+1] == '=') {
          MH.incOp_ = DECREMENT;
          needValue = true;
        }
      }
      if (MH.incOp_ == NO_OP) {
        mprinterr("Error: Unrecognized increment op: '%s'\n",
                  varArg[iargIdx].substr(pos0, pos1-pos0).c_str());
        return 1;
      }
      if (needValue) {
        std::string incStr = varArg[iargIdx].substr(pos1);
        if (!validInteger(incStr)) {
          mprinterr("Error: increment value is not a valid integer.\n");
          return 1;
        }
        MH.inc_ = convertToInteger(incStr);
        if (MH.inc_ < 1) {
          mprinterr("Error: Extra '-' detected in increment.\n");
          return 1;
        }
      }
      // Description
      MH.varname_ = "$" + MH.varname_;
      std::string sval = integerToString(MH.start_);
      description_.append("(" + MH.varname_ + "=" + sval + "; ");
      std::string eval;
      if (iargIdx == 2) {
        // End argument present
        eval = integerToString(MH.end_);
        description_.append(MH.varname_ + std::string(OpStr[MH.endOp_]) + eval + "; ");
        // Check end > start for increment, start > end for decrement
        int maxval, minval;
        if (MH.incOp_ == INCREMENT) {
          if (MH.start_ >= MH.end_) {
            mprinterr("Error: start must be less than end for increment.\n");
            return 1;
          }
          minval = MH.start_;
          maxval = MH.end_;
        } else {
          if (MH.end_ >= MH.start_) {
            mprinterr("Error: end must be less than start for decrement.\n");
            return 1;
          }
          minval = MH.end_;
          maxval = MH.start_;
        }
        // Figure out number of iterations
        Niterations = (maxval - minval) / MH.inc_;
        if (((maxval-minval) % MH.inc_) > 0) Niterations++;
      }
      description_.append( MH.varname_ + std::string(OpStr[MH.incOp_]) +
                           integerToString(MH.inc_) + ")" );
      // If decrementing just negate value
      if (MH.incOp_ == DECREMENT)
        MH.inc_ = -MH.inc_;
      // DEBUG
      //mprintf("DEBUG: start=%i endOp=%i end=%i incOp=%i val=%i startArg=%s endArg=%s\n",
      //        MH.start_, (int)MH.endOp_, MH.end_, (int)MH.incOp_, MH.inc_,
      //        MH.startArg_.c_str(), MH.endArg_.c_str());
    // -------------------------------------------
    } else if (ftype == LIST) {
      // <var> in <string0>[,<string1>...]
      MH.varType_ = ftype;
      // Variable name
      MH.varname_ = argIn.GetStringNext();
      if (MH.varname_.empty()) {
        mprinterr("Error: 'for in': missing variable name.\n");
        return 1;
      }
      MH.varname_ = "$" + MH.varname_;
      // Comma-separated list of strings
      std::string listArg = argIn.GetStringNext();
      if (listArg.empty()) {
        mprinterr("Error: 'for in': missing comma-separated list of strings.\n");
        return 1;
      }
      ArgList list(listArg, ",");
      if (list.Nargs() < 1) {
        mprinterr("Error: Could not parse '%s' for 'for in'\n", listArg.c_str());
        return 1;
      }
      for (int il = 0; il != list.Nargs(); il++) {
        // Check if file name expansion should occur
        if (list[il].find_first_of("*?") != std::string::npos) {
          File::NameArray files = File::ExpandToFilenames( list[il] );
          for (File::NameArray::const_iterator fn = files.begin(); fn != files.end(); ++fn)
            MH.List_.push_back( fn->Full() );
        } else
          MH.List_.push_back( list[il] );
      }
      Niterations = (int)MH.List_.size();
      // Description
      description_.append( MH.varname_ + " in " + listArg );

    }
    // Check number of values
    if (MaxIterations == -1)
      MaxIterations = Niterations;
    else if (Niterations != -1 && Niterations != MaxIterations) {
      mprintf("Warning: # iterations %i != previous # iterations %i\n",
              Niterations, MaxIterations);
      MaxIterations = std::min(Niterations, MaxIterations);
    }
  }
  mprintf("\tLoop will execute for %i iterations.\n", MaxIterations);
  if (MaxIterations < 1) {
    mprinterr("Error: Loop has less than 1 iteration.\n");
    return 1; 
  }
  description_.append(") do");

  return 0;
}
예제 #14
0
파일: AmbPDB.cpp 프로젝트: rmcgibbo/cpptraj
// ----- M A I N ---------------------------------------------------------------
int main(int argc, char** argv) {
  SetWorldSilent(true); // No STDOUT output from cpptraj routines.
  std::string topname, crdname, title, bres, pqr, sybyltype, writeconect;
  std::string aatm(" pdbatom"), ter_opt(" terbyres"), box(" sg \"P 1\"");
  TrajectoryFile::TrajFormatType fmt = TrajectoryFile::PDBFILE;
  bool ctr_origin = false;
  bool useExtendedInfo = false;
  int res_offset = 0;
  int debug = 0;
  int numSoloArgs = 0;
  for (int i = 1; i < argc; ++i) {
    std::string arg( argv[i] );
    if (arg == "-p" && i+1 != argc && topname.empty()) // Topology
      topname = std::string( argv[++i] );
    else if (arg == "-c" && i+1 != argc && crdname.empty()) // Coords
      crdname = std::string( argv[++i] );
    else if (arg == "-tit" && i+1 != argc && title.empty()) // Title
      title = " title " + std::string( argv[++i] );
    else if (arg == "-offset" && i+1 != argc) // Residue # offset
      res_offset = convertToInteger( argv[++i] );
    else if ((arg == "-d" || arg == "--debug") && i+1 != argc) // Debug level
      debug = convertToInteger( argv[++i] );
    else if (arg == "-h" || arg == "--help") { // Help
      Help(argv[0], true);
      return 0;
    } else if (arg == "-v" || arg == "--version") { // Version info
      WriteVersion();
      return 0;
    } else if (arg == "-aatm") // Amber atom names, include extra pts
      aatm.assign(" include_ep");
    else if (arg == "-sybyl") // Amber atom types to SYBYL
      sybyltype.assign(" sybyltype");
    else if (arg == "-conect") // Write CONECT records from bond info
      writeconect.assign(" conect");
    else if (arg == "-ep") // PDB atom names, include extra pts
      aatm.append(" include_ep");
    else if (arg == "-bres") // PDB residue names
      bres.assign(" pdbres");
    else if (arg == "-ext") // Use extended PDB info from Topology
      useExtendedInfo = true;
    else if (arg == "-ctr")  // Center on origin
      ctr_origin = true;
    else if (arg == "-noter") // No TER cards
      ter_opt.assign(" noter");
    else if (arg == "-nobox") // No CRYST1 record
      box.assign(" nobox");
    else if (arg == "-pqr") { // Charge/Radii in occ/bfactor cols
      pqr.assign(" dumpq");
      ++numSoloArgs;
    } else if (arg == "-mol2") { // output as mol2
      fmt = TrajectoryFile::MOL2FILE;
      ++numSoloArgs;
    } else if (Unsupported(arg)) {
      mprinterr("Error: Option '%s' is not yet supported.\n\n", arg.c_str());
      return 1;
    } else {
      mprinterr("Error: Unrecognized option '%s'\n", arg.c_str());
      Help(argv[0], false);
      return 1;
    }
  }
  if (debug > 0) WriteVersion();
  // Check command line for errors.
  if (topname.empty()) topname.assign("prmtop");
  if (debug > 0 && crdname.empty())
    mprinterr("| Reading Amber restart from STDIN\n");
  if (numSoloArgs > 1) {
    mprinterr("Error: Only one alternate output format option may be specified (found %i)\n",
              numSoloArgs);
    Help(argv[0], true);
    return 1;
  }
  if (!sybyltype.empty() && fmt != TrajectoryFile::MOL2FILE) {
    mprinterr("Warning: -sybyl is only valid for MOL2 file output.\n");
    sybyltype.clear();
  }
  if (debug > 0) {
    mprinterr("Warning: debug is %i; debug info will be written to STDOUT.\n", debug);
    SetWorldSilent(false);
  }
  // Topology
  ParmFile pfile;
  Topology parm;
  if (pfile.ReadTopology(parm, topname, debug)) {
    if (topname == "prmtop") Help(argv[0], false);
    return 1;
  }
  if (!useExtendedInfo)
    parm.ResetPDBinfo();
  if (res_offset != 0)
    for (int r = 0; r < parm.Nres(); r++)
      parm.SetRes(r).SetOriginalNum( parm.Res(r).OriginalResNum() + res_offset );
  ArgList trajArgs;
  // Input coords
  Frame TrajFrame;
  CoordinateInfo cInfo;
  if (!crdname.empty()) {
    Trajin_Single trajin;
    if (trajin.SetupTrajRead(crdname, trajArgs, &parm)) return 1;
    cInfo = trajin.TrajCoordInfo();
    TrajFrame.SetupFrameV(parm.Atoms(), cInfo);
    trajin.BeginTraj();
    if (trajin.ReadTrajFrame(0, TrajFrame)) return 1;
    trajin.EndTraj();
  } else {
    // Assume Amber restart from STDIN
    // Check that input is from a redirect.
    if ( isatty(fileno(stdin)) ) {
      mprinterr("Error: No coordinates specified with '-c' and no STDIN '<'.\n");
      return 1;
    }
    Traj_AmberRestart restartIn;
    restartIn.SetDebug( debug );
    //restartIn.processReadArgs( trajArgs );
    int total_frames = restartIn.setupTrajin("", &parm);
    if (total_frames < 1) return 1;
    cInfo = restartIn.CoordInfo();
    TrajFrame.SetupFrameV(parm.Atoms(), cInfo);
    if (restartIn.openTrajin()) return 1;
    if (restartIn.readFrame(0, TrajFrame)) return 1;
    restartIn.closeTraj();
  }
  if (ctr_origin) 
    TrajFrame.CenterOnOrigin(false);
  // Output coords
  Trajout_Single trajout;
  trajArgs.SetList( aatm + bres + pqr + title + ter_opt + box + sybyltype + writeconect, " " );
  if ( trajout.PrepareStdoutTrajWrite(trajArgs, &parm, cInfo, 1, fmt) ) return 1;
  trajout.WriteSingle(0, TrajFrame);
  trajout.EndTraj();
  return 0;
}
예제 #15
0
// Exec_DataSetCmd::Remove()
Exec::RetType Exec_DataSetCmd::Remove(CpptrajState& State, ArgList& argIn) {
  std::string status;
  // Get criterion type
  CriterionType criterion = UNKNOWN_C;
  for (int i = 1; i < (int)N_C; i++)
    if (argIn.hasKey( CriterionKeys[i] )) {
      criterion = (CriterionType)i;
      status.assign( CriterionKeys[i] );
      break;
    }
  if (criterion == UNKNOWN_C) {
    mprinterr("Error: No criterion specified for 'remove'.\n");
    return CpptrajState::ERR;
  }
  // Get select type
  SelectType select = UNKNOWN_S;
  std::string val1, val2;
  for (const SelectPairType* ptr = SelectKeys; ptr->key_ != 0; ptr++)
    if (argIn.Contains( ptr->key_ )) {
      select = ptr->type_;
      val1 = argIn.GetStringKey( ptr->key_ );
      status.append( " " + std::string(ptr->key_) + " " + val1 );
      // Get 'and' value for between/outside. TODO put nargs in SelectPairType?
      if (select == BETWEEN || select == OUTSIDE) {
        val2 = argIn.GetStringKey("and");
        if (val2.empty()) {
          mprinterr("Error: Missing 'and' value for selection '%s'\n", ptr->key_);
          return CpptrajState::ERR;
        }
        status.append(" and " + val2);
      }
      break;
    }
  if (select == UNKNOWN_S || val1.empty()) {
    mprinterr("Error: No selection specified for 'remove'.\n");
    return CpptrajState::ERR;
  }
  if ( (criterion == SMODE || criterion == STYPE) &&
       (select != EQUAL && select != NOT_EQUAL) )
  {
    mprinterr("Error: Specified select not valid for criterion '%s'\n", CriterionKeys[criterion]);
    return CpptrajState::ERR;
  }
  mprintf("\tRemoving data sets");
  std::string setSelectArg = argIn.GetStringNext();
  if (setSelectArg.empty())
    setSelectArg.assign("*");
  else
    mprintf(" within selection '%s'", setSelectArg.c_str());
  mprintf(" %s\n", status.c_str());
  DataSetList tempDSL = State.DSL().GetMultipleSets( setSelectArg );
  if (tempDSL.empty()) {
    mprinterr("Error: No data sets selected.\n");
    return CpptrajState::ERR;
  }
  // Remove sets
  unsigned int Nremoved = 0;
  if ( criterion == AVERAGE ) {
    if (!validDouble( val1 )) {
      mprinterr("Error: '%s' is not a valid number\n", val1.c_str());
      return CpptrajState::ERR;
    }
    double d_val1 = convertToDouble( val1 );
    double d_val2  = d_val1;
    if (!val2.empty()) {
      if (!validDouble( val2 )) {
        mprinterr("Error: '%s' is not a valid number\n", val2.c_str());
        return CpptrajState::ERR;
      }
      d_val2 = convertToDouble( val2 );
    }
    for (DataSetList::const_iterator ds = tempDSL.begin(); ds != tempDSL.end(); ++ds)
    {
      if ( (*ds)->Group() != DataSet::SCALAR_1D )
        mprintf("Warning: '%s' is not a valid data set for 'average' criterion.\n", (*ds)->legend());
      else {
        DataSet_1D const& ds1 = static_cast<DataSet_1D const&>( *(*ds) );
        double avg = ds1.Avg();
        bool remove = false;
        switch (select) {
          case EQUAL        : remove = (avg == d_val1); break;
          case NOT_EQUAL    : remove = (avg != d_val1); break;
          case LESS_THAN    : remove = (avg < d_val1); break;
          case GREATER_THAN : remove = (avg > d_val1); break;
          case BETWEEN      : remove = (avg > d_val1 && avg < d_val2); break;
          case OUTSIDE      : remove = (avg < d_val1 || avg > d_val2); break;
          case UNKNOWN_S:
          case N_S      : return CpptrajState::ERR; // Sanity check
        }
        if (remove) {
          mprintf("\t  Removing set '%s' (avg is %g)\n", (*ds)->legend(), avg);
          State.RemoveDataSet( *ds );
          ++Nremoved;
        }
      }
    }
  } else if ( criterion == SIZE ) {
    if (!validInteger( val1 )) {
      mprinterr("Error: '%s' is not a valid number\n", val1.c_str());
      return CpptrajState::ERR;
    }
    unsigned int i_val1 = (unsigned int)convertToInteger( val1 );
    unsigned int i_val2 = i_val1;
    if (!val2.empty()) {
      if (!validInteger( val2 )) {
        mprinterr("Error: '%s' is not a valid number\n", val2.c_str());
        return CpptrajState::ERR;
      }
      i_val2 = convertToInteger( val2 );
    }
    for (DataSetList::const_iterator ds = tempDSL.begin(); ds != tempDSL.end(); ++ds)
    {
      unsigned int size = (*ds)->Size();
      bool remove = false;
      switch ( select ) {
        case EQUAL        : remove = (size == i_val1); break;
        case NOT_EQUAL    : remove = (size != i_val1); break;
        case LESS_THAN    : remove = (size < i_val1); break;
        case GREATER_THAN : remove = (size > i_val1); break;
        case BETWEEN      : remove = (size > i_val1 && size < i_val2); break;
        case OUTSIDE      : remove = (size < i_val1 || size > i_val2); break;
        case UNKNOWN_S:
        case N_S      : return CpptrajState::ERR; // Sanity check
      }
      if (remove) {
        mprintf("\t  Removing set '%s' (size is %u)\n", (*ds)->legend(), size);
        State.RemoveDataSet( *ds );
        ++Nremoved;
      }
    }
  } else if ( criterion == SMODE ) {
    MetaData::scalarMode mode_val = MetaData::ModeFromKeyword( val1 );
    if (mode_val == MetaData::UNKNOWN_MODE) {
      mprinterr("Error: '%s' is not a valid mode.\n", val1.c_str());
      return CpptrajState::ERR;
    }
    for (DataSetList::const_iterator ds = tempDSL.begin(); ds != tempDSL.end(); ++ds)
    {
      bool remove = false;
      MetaData::scalarMode mode = (*ds)->Meta().ScalarMode();
      if      (select == EQUAL    ) remove = ( mode == mode_val );
      else if (select == NOT_EQUAL) remove = ( mode != mode_val );
      else return CpptrajState::ERR; // Sanity check
      if (remove) {
        mprintf("\t  Removing set '%s' (mode is '%s')\n", (*ds)->legend(), MetaData::ModeString(mode));
        State.RemoveDataSet( *ds );
        ++Nremoved;
      }
    }
  } else if ( criterion == STYPE ) {
    MetaData::scalarType type_val = MetaData::TypeFromKeyword( val1, MetaData::UNKNOWN_MODE );
    if (type_val == MetaData::UNDEFINED) {
      mprinterr("Error: '%s' is not a valid type.\n", val1.c_str());
      return CpptrajState::ERR;
    }
    for (DataSetList::const_iterator ds = tempDSL.begin(); ds != tempDSL.end(); ++ds)
    {
      bool remove = false;
      MetaData::scalarType type = (*ds)->Meta().ScalarType();
      if      (select == EQUAL    ) remove = ( type == type_val );
      else if (select == NOT_EQUAL) remove = ( type != type_val );
      else return CpptrajState::ERR; // Sanity check
      if (remove) {
        mprintf("\t  Removing set '%s' (typeis '%s')\n", (*ds)->legend(), MetaData::TypeString(type));
        State.RemoveDataSet( *ds );
        ++Nremoved;
      }
    }
  } else {
    mprinterr("Internal Error: Criterion not yet implemented.\n");
    return CpptrajState::ERR;
  }
  mprintf("\tRemoved %u of %zu sets.\n", Nremoved, tempDSL.size());
  return CpptrajState::OK;
}
예제 #16
0
// DataIO_Mdout::ReadData()
int DataIO_Mdout::ReadData(FileName const& fname,
                            DataSetList& datasetlist, std::string const& dsname)
{
  mprintf("\tReading from mdout file: %s\n", fname.full());
  BufferedLine buffer;
  if (buffer.OpenFileRead( fname )) return 1;
  const char* ptr = buffer.Line();
  if (ptr == 0) {
    mprinterr("Error: Nothing in MDOUT file: %s\n", fname.full());
    return 1;
  }
  // ----- PARSE THE INPUT SECTION ----- 
  int imin = -1;           // imin for this file
  const char* Trigger = 0; // Trigger for storing energies, must be 8 chars long.
  int frame = 0;           // Frame counter for this file
  double dt = 1.0;         // Timestep for this file (MD)
  double t0 = 0.0;         // Initial time for this file (MD)
  int ntpr = 1;            // Value of ntpr
  int irest = 0;           // Value of irest
  while ( ptr != 0 && strncmp(ptr, "   2.  CONTROL  DATA", 20) != 0 )
    ptr = buffer.Line();
  if (ptr == 0) return EOF_ERROR();
  // Determine whether this is dynamics or minimization, get dt
  ptr = buffer.Line(); // Dashes 
  ptr = buffer.Line(); // Blank 
  ptr = buffer.Line(); // title line
  while ( strncmp(ptr, "   3.  ATOMIC", 13) != 0 ) 
  {
    ArgList mdin_args( ptr, " ,=" ); // Remove commas, equal signs
    // Scan for stuff we want
    //mprintf("DEBUG:\tInput[%i] %s", mdin_args.Nargs(), mdin_args.ArgLine());
    for (int col=0; col < mdin_args.Nargs(); col += 2) {
      int col1 = col + 1;
      if (mdin_args[col] == "imin") {
        imin = convertToInteger( mdin_args[ col1 ] );
        if (debug_ > 0) mprintf("\t\tMDIN: imin is %i\n", imin);
        // Set a trigger for printing. For imin5 this is the word minimization.
        // For imin0 or imin1 this is NSTEP.
        if      (imin==0) Trigger = " NSTEP =";
        else if (imin==1) Trigger = "   NSTEP";
        else if (imin==5) Trigger = "minimiza";
        // Since imin0 and imin1 first trigger has no data, set frame 1 lower.
        if (imin==1 || imin==0) frame = -1;
      } else if (mdin_args[col] == "dt") {
        dt = convertToDouble( mdin_args[ col1 ] );
        if (debug_ > 0) mprintf("\t\tMDIN: dt is %f\n", dt);
      } else if (mdin_args[col] == "t") {
        t0 = convertToDouble( mdin_args[ col1 ] );
        if (debug_ > 0) mprintf("\t\tMDIN: t is %f\n", t0);
      } else if (mdin_args[col] == "ntpr") {
        ntpr = convertToInteger( mdin_args[ col1 ] );
        if (debug_ > 0) mprintf("\t\tMDIN: ntpr is %i\n", ntpr);
      } else if (mdin_args[col] == "irest") {
        irest = convertToInteger( mdin_args[ col1 ] );
        if (debug_ > 0) mprintf("\t\tMDIN: irest is %i\n", irest);
      }
    }
    ptr = buffer.Line();
    if (ptr == 0) return EOF_ERROR();
  }
  if (Trigger == 0) {
    mprinterr("Error: Could not determine whether MDOUT is md, min, or post-process.\n");
    return 1;
  }
  // ----- PARSE THE ATOMIC ... SECTION -----
  while ( ptr != 0 && strncmp(ptr, "   4.  RESULTS", 14) != 0 )
  {
    ptr = buffer.Line();
    // If run is a restart, set the initial time value.
    if (irest == 1) {
      if (strncmp(ptr, " begin time", 11) == 0) {
        sscanf(ptr, " begin time read from input coords = %lf", &t0);
        if (debug_ > 0) mprintf("\t\tMD restart initial time= %f\n", t0);
      }
    }
  }
  if (ptr == 0) return EOF_ERROR();
  // ----- PARSE THE RESULTS SECTION -----
  bool finalE = false;
  int nstep;
  int minStep = 0; // For imin=1 only
  if (irest == 0)
    nstep = 0;
  else
    nstep = ntpr;
  double Energy[N_FIELDTYPES];
  std::fill( Energy, Energy+N_FIELDTYPES, 0.0 );
  std::vector<bool> EnergyExists(N_FIELDTYPES, false);
  DataSetList::Darray TimeVals;
  DataSetList::DataListType inputSets(N_FIELDTYPES, 0);
  Sarray Name(2);
  double time = 0.0;
  while (ptr != 0) {
    // Check for end of imin 0 or 1 run; do not record Average and Stdevs
    if ( (imin == 1 && (strncmp(ptr, "                    FINAL", 25) == 0 ||
                        strncmp(ptr, "   5.  TIMINGS",            14) == 0   )) ||
         (imin == 0 && strncmp(ptr, "      A V", 9) == 0))
      finalE = true;
    // Check for '| TI region  2' to prevent reading duplicate energies
    if ( strncmp(ptr, "| TI region  2", 14) == 0 ) {
      while (ptr != 0 && !(ptr[0] == ' ' && ptr[1] == '-'))
        ptr = buffer.Line();
      if (ptr == 0) return EOF_ERROR();
    }
    // Record set for energy post-processing
    if (imin == 5 && strncmp(ptr, "minimizing", 10) == 0)
      nstep = atoi( ptr + 22 );
    // MAIN OUTPUT ROUTINE
    // If the trigger has been reached print output.
    // For imin0 and imin1 the first trigger will have no data.
    // If the end of the file has been reached print then exit.
    if ( strncmp(ptr, Trigger, 8) == 0 || finalE ) {
      if (frame > -1) {
        // Store all energies present.
        for (int i = 0; i < (int)N_FIELDTYPES; i++) {
          if (EnergyExists[i]) {
            if (inputSets[i] == 0) {
              MetaData md( dsname, Enames[i] );
              md.SetLegend( dsname + "_" + Enames[i] );
              inputSets[i] = new DataSet_double();
              inputSets[i]->SetMeta( md );
            }
            // Since energy terms can appear and vanish over the course of the
            // mdout file, resize if necessary.
            if (frame > (int)inputSets[i]->Size())
              ((DataSet_double*)inputSets[i])->Resize( frame );
            ((DataSet_double*)inputSets[i])->AddElement( Energy[i] );
          }
        }
        TimeVals.push_back( time );
        nstep += ntpr;
      }
      frame++;
      if (finalE) break;
    }
    // Check for NSTEP in minimization or post-processing. Values will be
    // on the next line. NOTE: NSTEP means something different for imin=5.
    if ((imin == 1 || imin == 5) && strncmp(ptr, "   NSTEP", 8) == 0) {
      ptr = buffer.Line(); // Get next line
      //sscanf(ptr, " %6lf    %13lE  %13lE  %13lE", Energy+NSTEP, Energy+EPtot, Energy+RMS, Energy+GMAX);
      sscanf(ptr, " %i %lE %lE %lE", &minStep, Energy+EPtot, Energy+RMS, Energy+GMAX);
      EnergyExists[EPtot] = true;
      EnergyExists[RMS] = true;
      EnergyExists[GMAX] = true;
      ptr = buffer.Line();
    }
    // Tokenize line, scan through until '=' is reached; value after is target.
    int ntokens = buffer.TokenizeLine(" ");
    if (ntokens > 0) {
      int nidx = 0;
      Name[0].clear();
      Name[1].clear();
      for (int tidx = 0; tidx < ntokens; tidx++) {
        const char* tkn = buffer.NextToken();
        if (tkn[0] == '=') {
          FieldType Eindex = getEindex(Name);
          tkn = buffer.NextToken();
          ++tidx;
          if (tkn == 0)
            mprintf("Warning: No numerical value, line %i column %i. Skipping.\n",
                    buffer.LineNumber(), tidx+1);
          else if (tkn[0] == '*' || tkn[0] == 'N') // Assume if number begins with N it is NaN
            mprintf("Warning: Numerical overflow detected, line %i column %i. Skipping.\n",
                     buffer.LineNumber(), tidx+1);
          else {
            if (Eindex != N_FIELDTYPES) {
              Energy[Eindex] = atof( tkn );
              EnergyExists[Eindex] = true;
            }
          }
          nidx = 0;
          Name[0].clear();
          Name[1].clear();
        } else {
          if (nidx > 1) break; // Two tokens, no '=' found. Not an E line.
          Name[nidx++].assign( tkn );
        }
      }
    }
    // Set time
    switch (imin) {
      case 5: time = (double)nstep + t0; break;
      case 1: time = (double)minStep + t0; break;
      case 0: time = ((double)nstep * dt) + t0; break;
    }
    // Read in next line
    ptr = buffer.Line();
  }
  mprintf("\t%i frames\n", frame);
  buffer.CloseFile();
  std::string Xlabel;
  if      (imin == 5) Xlabel.assign("Set");
  else if (imin == 1) Xlabel.assign("Nstep");
  else                Xlabel.assign("Time"); // imin == 0
  if (datasetlist.AddOrAppendSets( Xlabel, TimeVals, inputSets )) return 1;
  return 0;
}
예제 #17
0
/** Given an ArgList containing name,[min,max,step,bins,col,N], set up a 
  * coordinate with that name and parameters min, max, step, bins.
  * If '*' or not specified, a default value will be set.
  * \return 1 if error occurs, 0 otherwise.
  */
int Analysis_Hist::setupDimension(ArgList &arglist, DataSet_1D const& dset, size_t& offset) {
  bool minArg = false;
  bool maxArg = false;
  bool stepArg = false;
  bool binsArg = false; 

  if (debug_>1)
    arglist.PrintList();

  // Set up dimension name
  // NOTE: arglist[0] should be same as dset name from CheckDimension 
  std::string const& dLabel = arglist[0];

  // Cycle through coordinate arguments. Any argument left blank will be 
  // assigned a default value later.
  double dMin = 0.0;
  double dMax = 0.0;
  double dStep = 0.0;
  int dBins = -1;
  for (int i = 1; i < arglist.Nargs(); i++) {
    if (debug_>1) mprintf("DEBUG: setupCoord: Token %i (%s)\n", i, arglist[i].c_str());
    // '*' means default explicitly requested
    if (arglist[i] == "*") continue;
    switch (i) {
      case 1 : dMin  = convertToDouble( arglist[i]); minArg = true; break;
      case 2 : dMax  = convertToDouble( arglist[i]); maxArg = true; break;
      case 3 : dStep = convertToDouble( arglist[i]); stepArg = true; break;
      case 4 : dBins = convertToInteger(arglist[i]); binsArg = true; break;
    }
  }

  // If no min arg and no default min arg, get min from dataset
  if (!minArg) {
    if (!minArgSet_) 
      dMin = dset.Min();
    else
      dMin = default_min_;
  }
  // If no max arg and no default max arg, get max from dataset
  if (!maxArg) {
    if (!maxArgSet_)
      dMax = dset.Max();
    else
      dMax = default_max_;
  }
  // If bins/step not specified, use default
  if (!binsArg)
    dBins = default_bins_;
  if (!stepArg)
    dStep = default_step_;

  // Calculate dimension from given args.
  HistBin dim;
  if (dim.CalcBinsOrStep( dMin, dMax, dStep, dBins, dLabel )) {
    mprinterr("Error: Could not set up histogram dimension '%s'\n", dLabel.c_str());
    return 1;
  }
  dim.PrintHistBin();
  dimensions_.push_back( dim );

  // Recalculate offsets for all dimensions starting at farthest coord. This
  // follows row major ordering.
  size_t last_offset = 1UL; // For checking overflow.
  offset = 1UL;
  binOffsets_.resize( dimensions_.size() );
  OffType::iterator bOff = binOffsets_.begin();
  for (HdimType::const_iterator rd = dimensions_.begin();
                                rd != dimensions_.end(); ++rd, ++bOff)
  {
    if (debug_>0) mprintf("\tHistogram: %s offset is %zu\n", rd->label(), offset);
    *bOff = (long int)offset;
    offset *= rd->Bins();
    // Check for overflow.
    if ( offset < last_offset ) {
      mprinterr("Error: Too many bins for histogram. Try reducing the number of bins and/or\n"
                "Error:   the number of dimensions.\n");
      return 1;
    }
    last_offset = offset;
  }
  // offset should now be equal to the total number of bins across all dimensions
  if (debug_>0) mprintf("\tHistogram: Total Bins = %zu\n",offset);

  return 0;
}
// Action_MakeStructure::Init()
Action::RetType Action_MakeStructure::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  debug_ = debugIn;
  secstruct_.clear();
  // Get all arguments 
  std::string ss_expr = actionArgs.GetStringNext();
  while ( !ss_expr.empty() ) {
    ArgList ss_arg(ss_expr, ":");
    if (ss_arg.Nargs() < 2) {
      mprinterr("Error: Malformed SS arg.\n");
      Help();
      return Action::ERR;
    }
    // Type is 1st arg, range is 2nd arg.
    SecStructHolder ss_holder(ss_arg[1], FindSStype(ss_arg[0]));

    if (ss_arg.Nargs() == 2) {
    // Find SS type: <ss type>:<range>
      if (ss_holder.sstype_idx == SS_EMPTY) {
        mprinterr("Error: SS type %s not found.\n", ss_arg[0].c_str());
        return Action::ERR;
      } 
      ss_holder.dihSearch_.SearchFor(MetaData::PHI);
      ss_holder.dihSearch_.SearchFor(MetaData::PSI);
      secstruct_.push_back( ss_holder );

    } else if (ss_arg[0] == "ref") {
    // Use dihedrals from reference structure
      if (ss_arg.Nargs() < 3) {
        mprinterr("Error: Invalid 'ref' arg. Requires 'ref:<range>:<refname>[:<ref range>]'\n");
        return Action::ERR;
      }
      ss_arg.MarkArg(0);
      ss_arg.MarkArg(1);
      // Sanity check: Currently only unique args of this type are allowed
      if (ss_holder.sstype_idx != SS_EMPTY) {
        mprinterr("Error: Ref backbone types must be unique [%s]\n", ss_arg[0].c_str());
        return Action::ERR;
      }
      // Use backbone phi/psi from reference structure
      ss_holder.dihSearch_.SearchFor(MetaData::PHI);
      ss_holder.dihSearch_.SearchFor(MetaData::PSI);
      // Get reference structure
      DataSet_Coords_REF* REF = (DataSet_Coords_REF*)
                                DSL->FindSetOfType(ss_arg.GetStringNext(),
                                                   DataSet::REF_FRAME); // ss_arg[2]
      if (REF == 0) {
        mprinterr("Error: Could not get reference structure [%s]\n", ss_arg[2].c_str());
        return Action::ERR;
      }
      // Get reference residue range, or use resRange
      Range refRange(ss_arg.GetStringNext(), -1); // ss_arg[3]
      if (!refRange.Empty()) {
        if (ss_holder.resRange.Size() != refRange.Size()) {
          mprinterr("Error: Reference range [%s] must match residue range [%s]\n",
                    refRange.RangeArg(), ss_holder.resRange.RangeArg());
          return Action::ERR;
        }
      } else
        refRange = ss_holder.resRange;
      // Look for phi/psi only in reference
      DihedralSearch refSearch;
      refSearch.SearchFor(MetaData::PHI);
      refSearch.SearchFor(MetaData::PSI);
      if (refSearch.FindDihedrals( REF->Top(), refRange )) return Action::ERR;
      // For each found dihedral, set theta 
      for (DihedralSearch::mask_it dih = refSearch.begin(); dih != refSearch.end(); ++dih)
      {
        double torsion = Torsion( REF->RefFrame().XYZ(dih->A0()),
                                  REF->RefFrame().XYZ(dih->A1()),
                                  REF->RefFrame().XYZ(dih->A2()),
                                  REF->RefFrame().XYZ(dih->A3()) );
        ss_holder.thetas_.push_back( (float)torsion );
      }
      secstruct_.push_back( ss_holder );

    } else if (ss_arg.Nargs() == 4 && isalpha(ss_arg[2][0])) {
    // Single dihedral type: <name>:<range>:<dih type>:<angle>
      DihedralSearch::DihedralType dtype = DihedralSearch::GetType(ss_arg[2]);
      if (ss_holder.sstype_idx == SS_EMPTY) {
        // Type not yet defined. Create new type. 
        if (dtype == MetaData::UNDEFINED) {
          mprinterr("Error: Dihedral type %s not found.\n", ss_arg[2].c_str());
          return Action::ERR;
        }
        if (!validDouble(ss_arg[3])) {
          mprinterr("Error: 4th arg (angle) is not a valid number.\n");
          return Action::ERR;
        }
        SS.push_back( SS_TYPE(convertToDouble(ss_arg[3]), 0.0, 0.0, 0.0, 2, ss_arg[0]) );
        ss_holder.sstype_idx = (int)(SS.size() - 1);
      }
      ss_holder.dihSearch_.SearchFor( dtype ); 
      secstruct_.push_back( ss_holder );

    } else if (ss_arg.Nargs() == 7 || ss_arg.Nargs() == 8) {
    // Single custom dihedral type: <name>:<range>:<at0>:<at1>:<at2>:<at3>:<angle>[:<offset>]
      if (ss_holder.sstype_idx == SS_EMPTY) {
        // Type not yet defined. Create new type.
        if (!validDouble(ss_arg[6])) {
          mprinterr("Error: 7th arg (angle) is not a valid number.\n");
          return Action::ERR;
        }
        SS.push_back( SS_TYPE(convertToDouble(ss_arg[6]), 0.0, 0.0, 0.0, 2, ss_arg[0]) );
        ss_holder.sstype_idx = (int)(SS.size() - 1);
      }
      int offset = 0;
      if (ss_arg.Nargs() == 8) {
        if (!validInteger(ss_arg[7])) {
          mprinterr("Error: 8th arg (offset) is not a valid number.\n");
          return Action::ERR;
        }
        offset = convertToInteger(ss_arg[7]);
      }
      ss_holder.dihSearch_.SearchForNewType(offset,ss_arg[2],ss_arg[3],ss_arg[4],ss_arg[5],
                                            ss_arg[0]);
      secstruct_.push_back( ss_holder );

    } else if (ss_arg.Nargs() == 4 || ss_arg.Nargs() == 6) {
    // Custom SS/turn type: <name>:<range>:<phi1>:<psi1>[:<phi2>:<psi2>]
      if (ss_holder.sstype_idx == SS_EMPTY) {
        // Type not yet defined. Create new type.
        if (!validDouble(ss_arg[2]) || !validDouble(ss_arg[3])) {
          mprinterr("Error: 3rd or 4th arg (phi1/psi1) is not a valid number.\n");
          return Action::ERR;
        }
        double phi1 = convertToDouble(ss_arg[2]);
        double psi1 = convertToDouble(ss_arg[3]);
        int isTurn = 0;
        double phi2 = 0.0;
        double psi2 = 0.0;
        if (ss_arg.Nargs() == 6) {
          isTurn = 1;
          if (!validDouble(ss_arg[4]) || !validDouble(ss_arg[5])) {
            mprinterr("Error: 5th or 6th arg (phi2/psi2) is not a valid number.\n");
            return Action::ERR;
          }
          phi2 = convertToDouble(ss_arg[4]);
          psi2 = convertToDouble(ss_arg[5]);
        }
        SS.push_back(SS_TYPE(phi1, psi1, phi2, psi2, isTurn, ss_arg[0] ));
        ss_holder.sstype_idx = (int)(SS.size() - 1);
      }
      ss_holder.dihSearch_.SearchFor(MetaData::PHI);
      ss_holder.dihSearch_.SearchFor(MetaData::PSI);
      secstruct_.push_back( ss_holder );

    } else {
      mprinterr("Error: SS arg type [%s] not recognized.\n", ss_arg[0].c_str());
      return Action::ERR;
    }
    ss_expr = actionArgs.GetStringNext();
  } // End loop over args
  if (secstruct_.empty()) {
    mprinterr("Error: No SS types defined.\n");
    return Action::ERR;
  }
  mprintf("    MAKESTRUCTURE:\n");
  for (std::vector<SecStructHolder>::iterator ss = secstruct_.begin();
                                              ss != secstruct_.end(); ++ss)
  {
    if (ss->sstype_idx != SS_EMPTY) {
      const SS_TYPE& myType = SS[ss->sstype_idx];
      switch ( myType.isTurn ) {
        case 0:
          mprintf("\tSS type %s will be applied to residue(s) %s\n",
                 myType.type_arg.c_str(), ss->resRange.RangeArg());
          break;
        case 1:
          mprintf("\tTurn type %s will be applied to residue(s) %s\n",
                  myType.type_arg.c_str(), ss->resRange.RangeArg());
          break;
        case 2:
          mprintf("\tDihedral value of %.2f will be applied to %s dihedrals in residue(s) %s\n",
                  myType.phi, myType.type_arg.c_str(), ss->resRange.RangeArg());
      }
    } else 
      mprintf("\tBackbone angles from reference will be applied to residue(s) %s\n",
              ss->resRange.RangeArg());
  }
  return Action::OK;
}