//----------------------------------------
        int FeatureFinderChessboard::find(cv::Mat& img) {
            bool found = false;
            for(int scale=1; scale<=settings.maxScale; scale++) {
                cv::Mat timg;
                if(scale==1) {
                    timg = img;
                } else {
                    cv::resize(img, timg, cv::Size(), scale, scale);
                }
                found = cv::findChessboardCorners(timg, _boardSize, _features.imagePoints, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE);
                
                if(found) {
                    if(scale > 1) {
                        cv::Mat cornersMat(_features.imagePoints);
                        cornersMat *= 1./scale;
                    }
                    break;
                }
            }

            if(found) {
                cv::cornerSubPix(img, _features.imagePoints, cvSize(11, 11), cvSize(-1, -1), cv::TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 30, 0.1 ));
            } else {
                ofLog(OF_LOG_VERBOSE, "MSA::Cv::FeatureFinderChessboard::find - no features found");
                return 0;
            }
            
            return _features.getNumPoints();
        }
void stereoCalibThread::stereoCalibration(const vector<string>& imagelist, int boardWidth, int boardHeight,float sqsize)
{
    Size boardSize;
    boardSize.width=boardWidth;
    boardSize.height=boardHeight;
    if( imagelist.size() % 2 != 0 )
    {
        cout << "Error: the image list contains odd (non-even) number of elements\n";
        return;
    }
    
    const int maxScale = 2;
    // ARRAY AND VECTOR STORAGE:
    
    std::vector<std::vector<Point2f> > imagePoints[2];
    std::vector<std::vector<Point3f> > objectPoints;
    Size imageSize;
    
    int i, j, k, nimages = (int)imagelist.size()/2;
    
    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    std::vector<string> goodImageList;
    
    for( i = j = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            const string& filename = imagelist[i*2+k];
            Mat img = cv::imread(filename, 0);
            if(img.empty())
                break;
            if( imageSize == Size() )
                imageSize = img.size();
            else if( img.size() != imageSize )
            {
                cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                break;
            }
            bool found = false;
            std::vector<Point2f>& corners = imagePoints[k][j];
            for( int scale = 1; scale <= maxScale; scale++ )
            {
                Mat timg;
                if( scale == 1 )
                    timg = img;
                else
                    resize(img, timg, Size(), scale, scale);

                if(boardType == "CIRCLES_GRID") {
                    found = findCirclesGridDefault(timg, boardSize, corners, CALIB_CB_SYMMETRIC_GRID  | CALIB_CB_CLUSTERING);
                } else if(boardType == "ASYMMETRIC_CIRCLES_GRID") {
                    found = findCirclesGridDefault(timg, boardSize, corners, CALIB_CB_ASYMMETRIC_GRID | CALIB_CB_CLUSTERING);
                } else {
                    found = findChessboardCorners(timg, boardSize, corners,
                                                  CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
                }

                if( found )
                {
                    if( scale > 1 )
                    {
                        Mat cornersMat(corners);
                        cornersMat *= 1./scale;
                    }
                    break;
                }
            }
            if( !found )
                break;
            }
        if( k == 2 )
        {
            goodImageList.push_back(imagelist[i*2]);
            goodImageList.push_back(imagelist[i*2+1]);
            j++;
        }
    }
    fprintf(stdout,"%i pairs have been successfully detected.\n",j);
    nimages = j;
    if( nimages < 2 )
    {
        fprintf(stdout,"Error: too few pairs detected \n");
        return;
    }
    
    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    objectPoints.resize(nimages);
    
    for( i = 0; i < nimages; i++ )
    {
        for( j = 0; j < boardSize.height; j++ )
            for( k = 0; k < boardSize.width; k++ )
                objectPoints[i].push_back(Point3f(j*squareSize, k*squareSize, 0));
    }
    
    fprintf(stdout,"Running stereo calibration ...\n");
    
    Mat cameraMatrix[2], distCoeffs[2];
    Mat E, F;
    
    if(this->Kleft.empty() || this->Kright.empty())
    {
        double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                        this->Kleft, this->DistL,
                        this->Kright, this->DistR,
                        imageSize, this->R, this->T, E, F,
                        TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
                        CV_CALIB_FIX_ASPECT_RATIO +
                        CV_CALIB_ZERO_TANGENT_DIST +
                        CV_CALIB_SAME_FOCAL_LENGTH +
                        CV_CALIB_FIX_K3);
        fprintf(stdout,"done with RMS error= %f\n",rms);
    } else
    {
        double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                this->Kleft, this->DistL,
                this->Kright, this->DistR,
                imageSize, this->R, this->T, E, F,
                TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),CV_CALIB_FIX_ASPECT_RATIO + CV_CALIB_FIX_INTRINSIC + CV_CALIB_FIX_K3);
        fprintf(stdout,"done with RMS error= %f\n",rms);
    }
// CALIBRATION QUALITY CHECK
    cameraMatrix[0] = this->Kleft;
    cameraMatrix[1] = this->Kright;
    distCoeffs[0]=this->DistL;
    distCoeffs[1]=this->DistR;
    Mat R, T;
    T=this->T;
    R=this->R;
    double err = 0;
    int npoints = 0;
    std::vector<Vec3f> lines[2];
    for( i = 0; i < nimages; i++ )
    {
        int npt = (int)imagePoints[0][i].size();
        Mat imgpt[2];
        for( k = 0; k < 2; k++ )
        {
            imgpt[k] = Mat(imagePoints[k][i]);
            undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
            computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
        }
        for( j = 0; j < npt; j++ )
        {
            double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                                imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                           fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                                imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
            err += errij;
        }
        npoints += npt;
    }
    fprintf(stdout,"average reprojection err = %f\n",err/npoints);
    cout.flush();
}
예제 #3
0
void CalibrationDialog::processImages(const cv::Mat & imageLeft, const cv::Mat & imageRight, const QString & cameraName)
{
	processingData_ = true;
	if(cameraName_.isEmpty())
	{
		cameraName_ = "0000";
		if(!cameraName.isEmpty())
		{
			cameraName_ = cameraName;
		}
	}
	if(ui_->label_serial->text().isEmpty())
	{
		ui_->label_serial->setText(cameraName_);

	}
	std::vector<cv::Mat> inputRawImages(2);
	if(ui_->checkBox_switchImages->isChecked())
	{
		inputRawImages[0] = imageRight;
		inputRawImages[1] = imageLeft;
	}
	else
	{
		inputRawImages[0] = imageLeft;
		inputRawImages[1] = imageRight;
	}

	std::vector<cv::Mat> images(2);
	images[0] = inputRawImages[0];
	images[1] = inputRawImages[1];
	imageSize_[0] = images[0].size();
	imageSize_[1] = images[1].size();

	bool boardFound[2] = {false};
	bool boardAccepted[2] = {false};
	bool readyToCalibrate[2] = {false};

	std::vector<std::vector<cv::Point2f> > pointBuf(2);

	bool depthDetected = false;
	for(int id=0; id<(stereo_?2:1); ++id)
	{
		cv::Mat viewGray;
		if(!images[id].empty())
		{
			if(images[id].type() == CV_16UC1)
			{
				depthDetected = true;
				//assume IR image: convert to gray scaled
				const float factor = 255.0f / float((maxIrs_[id] - minIrs_[id]));
				viewGray = cv::Mat(images[id].rows, images[id].cols, CV_8UC1);
				for(int i=0; i<images[id].rows; ++i)
				{
					for(int j=0; j<images[id].cols; ++j)
					{
						viewGray.at<unsigned char>(i, j) = (unsigned char)std::min(float(std::max(images[id].at<unsigned short>(i,j) - minIrs_[id], 0)) * factor, 255.0f);
					}
				}
				cvtColor(viewGray, images[id], cv::COLOR_GRAY2BGR); // convert to show detected points in color
			}
			else if(images[id].channels() == 3)
			{
				cvtColor(images[id], viewGray, cv::COLOR_BGR2GRAY);
			}
			else
			{
				viewGray = images[id];
				cvtColor(viewGray, images[id], cv::COLOR_GRAY2BGR); // convert to show detected points in color
			}
		}
		else
		{
			UERROR("Image %d is empty!! Should not!", id);
		}

		minIrs_[id] = 0;
		maxIrs_[id] = 0x7FFF;

		//Dot it only if not yet calibrated
		if(!ui_->pushButton_save->isEnabled())
		{
			cv::Size boardSize(ui_->spinBox_boardWidth->value(), ui_->spinBox_boardHeight->value());
			if(!viewGray.empty())
			{
				int flags = CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE;

				if(!viewGray.empty())
				{
					int maxScale = viewGray.cols < 640?2:1;
					for( int scale = 1; scale <= maxScale; scale++ )
					{
						cv::Mat timg;
						if( scale == 1 )
							timg = viewGray;
						else
							cv::resize(viewGray, timg, cv::Size(), scale, scale, CV_INTER_CUBIC);
						boardFound[id] = cv::findChessboardCorners(timg, boardSize, pointBuf[id], flags);
						if(boardFound[id])
						{
							if( scale > 1 )
							{
								cv::Mat cornersMat(pointBuf[id]);
								cornersMat *= 1./scale;
							}
							break;
						}
					}
				}
			}

			if(boardFound[id]) // If done with success,
			{
				// improve the found corners' coordinate accuracy for chessboard
				float minSquareDistance = -1.0f;
				for(unsigned int i=0; i<pointBuf[id].size()-1; ++i)
				{
					float d = cv::norm(pointBuf[id][i] - pointBuf[id][i+1]);
					if(minSquareDistance == -1.0f || minSquareDistance > d)
					{
						minSquareDistance = d;
					}
				}
				float radius = minSquareDistance/2.0f +0.5f;
				cv::cornerSubPix( viewGray, pointBuf[id], cv::Size(radius, radius), cv::Size(-1,-1),
						cv::TermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1 ));

				// Draw the corners.
				cv::drawChessboardCorners(images[id], boardSize, cv::Mat(pointBuf[id]), boardFound[id]);

				std::vector<float> params(4,0);
				getParams(pointBuf[id], boardSize, imageSize_[id], params[0], params[1], params[2], params[3]);

				bool addSample = true;
				for(unsigned int i=0; i<imageParams_[id].size(); ++i)
				{
					if(fabs(params[0] - imageParams_[id][i].at(0)) < 0.1 && // x
						fabs(params[1] - imageParams_[id][i].at(1)) < 0.1 && // y
						fabs(params[2] - imageParams_[id][i].at(2)) < 0.05 && // size
						fabs(params[3] - imageParams_[id][i].at(3)) < 0.1) // skew
					{
						addSample = false;
					}
				}
				if(addSample)
				{
					boardAccepted[id] = true;

					imagePoints_[id].push_back(pointBuf[id]);
					imageParams_[id].push_back(params);

					UINFO("[%d] Added board, total=%d. (x=%f, y=%f, size=%f, skew=%f)", id, (int)imagePoints_[id].size(), params[0], params[1], params[2], params[3]);
				}

				// update statistics
				std::vector<float> xRange(2, imageParams_[id][0].at(0));
				std::vector<float> yRange(2, imageParams_[id][0].at(1));
				std::vector<float> sizeRange(2, imageParams_[id][0].at(2));
				std::vector<float> skewRange(2, imageParams_[id][0].at(3));
				for(unsigned int i=1; i<imageParams_[id].size(); ++i)
				{
					xRange[0] = imageParams_[id][i].at(0) < xRange[0] ? imageParams_[id][i].at(0) : xRange[0];
					xRange[1] = imageParams_[id][i].at(0) > xRange[1] ? imageParams_[id][i].at(0) : xRange[1];
					yRange[0] = imageParams_[id][i].at(1) < yRange[0] ? imageParams_[id][i].at(1) : yRange[0];
					yRange[1] = imageParams_[id][i].at(1) > yRange[1] ? imageParams_[id][i].at(1) : yRange[1];
					sizeRange[0] = imageParams_[id][i].at(2) < sizeRange[0] ? imageParams_[id][i].at(2) : sizeRange[0];
					sizeRange[1] = imageParams_[id][i].at(2) > sizeRange[1] ? imageParams_[id][i].at(2) : sizeRange[1];
					skewRange[0] = imageParams_[id][i].at(3) < skewRange[0] ? imageParams_[id][i].at(3) : skewRange[0];
					skewRange[1] = imageParams_[id][i].at(3) > skewRange[1] ? imageParams_[id][i].at(3) : skewRange[1];
				}
				//UINFO("Stats [%d]:", id);
				//UINFO("  Count = %d", (int)imagePoints_[id].size());
				//UINFO("  x =    [%f -> %f]", xRange[0], xRange[1]);
				//UINFO("  y =    [%f -> %f]", yRange[0], yRange[1]);
				//UINFO("  size = [%f -> %f]", sizeRange[0], sizeRange[1]);
				//UINFO("  skew = [%f -> %f]", skewRange[0], skewRange[1]);

				float xGood = xRange[1] - xRange[0];
				float yGood = yRange[1] - yRange[0];
				float sizeGood = sizeRange[1] - sizeRange[0];
				float skewGood = skewRange[1] - skewRange[0];

				if(id == 0)
				{
					ui_->progressBar_x->setValue(xGood*100);
					ui_->progressBar_y->setValue(yGood*100);
					ui_->progressBar_size->setValue(sizeGood*100);
					ui_->progressBar_skew->setValue(skewGood*100);
					if((int)imagePoints_[id].size() > ui_->progressBar_count->maximum())
					{
						ui_->progressBar_count->setMaximum((int)imagePoints_[id].size());
					}
					ui_->progressBar_count->setValue((int)imagePoints_[id].size());
				}
				else
				{
					ui_->progressBar_x_2->setValue(xGood*100);
					ui_->progressBar_y_2->setValue(yGood*100);
					ui_->progressBar_size_2->setValue(sizeGood*100);
					ui_->progressBar_skew_2->setValue(skewGood*100);

					if((int)imagePoints_[id].size() > ui_->progressBar_count_2->maximum())
					{
						ui_->progressBar_count_2->setMaximum((int)imagePoints_[id].size());
					}
					ui_->progressBar_count_2->setValue((int)imagePoints_[id].size());
				}

				if(imagePoints_[id].size() >= COUNT_MIN && xGood > 0.5 && yGood > 0.5 && sizeGood > 0.4 && skewGood > 0.5)
				{
					readyToCalibrate[id] = true;
				}

				//update IR values
				if(inputRawImages[id].type() == CV_16UC1)
				{
					//update min max IR if the chessboard was found
					minIrs_[id] = 0xFFFF;
					maxIrs_[id] = 0;
					for(size_t i = 0; i < pointBuf[id].size(); ++i)
					{
						const cv::Point2f &p = pointBuf[id][i];
						cv::Rect roi(std::max(0, (int)p.x - 3), std::max(0, (int)p.y - 3), 6, 6);

						roi.width = std::min(roi.width, inputRawImages[id].cols - roi.x);
						roi.height = std::min(roi.height, inputRawImages[id].rows - roi.y);

						//find minMax in the roi
						double min, max;
						cv::minMaxLoc(inputRawImages[id](roi), &min, &max);
						if(min < minIrs_[id])
						{
							minIrs_[id] = min;
						}
						if(max > maxIrs_[id])
						{
							maxIrs_[id] = max;
						}
					}
				}
			}
		}
	}
	ui_->label_baseline->setVisible(!depthDetected);
	ui_->label_baseline_name->setVisible(!depthDetected);

	if(stereo_ && ((boardAccepted[0] && boardFound[1]) || (boardAccepted[1] && boardFound[0])))
	{
		stereoImagePoints_[0].push_back(pointBuf[0]);
		stereoImagePoints_[1].push_back(pointBuf[1]);
		UINFO("Add stereo image points (size=%d)", (int)stereoImagePoints_[0].size());
	}

	if(!stereo_ && readyToCalibrate[0])
	{
		ui_->pushButton_calibrate->setEnabled(true);
	}
	else if(stereo_ && readyToCalibrate[0] && readyToCalibrate[1] && stereoImagePoints_[0].size())
	{
		ui_->pushButton_calibrate->setEnabled(true);
	}

	if(ui_->radioButton_rectified->isChecked())
	{
		if(models_[0].isValid())
		{
			images[0] = models_[0].rectifyImage(images[0]);
		}
		if(models_[1].isValid())
		{
			images[1] = models_[1].rectifyImage(images[1]);
		}
	}
	else if(ui_->radioButton_stereoRectified->isChecked() &&
			(stereoModel_.left().isValid() &&
			stereoModel_.right().isValid()&&
			(!ui_->label_baseline->isVisible() || stereoModel_.baseline() > 0.0)))
	{
		images[0] = stereoModel_.left().rectifyImage(images[0]);
		images[1] = stereoModel_.right().rectifyImage(images[1]);
	}

	if(ui_->checkBox_showHorizontalLines->isChecked())
	{
		for(int id=0; id<(stereo_?2:1); ++id)
		{
			int step = imageSize_[id].height/16;
			for(int i=step; i<imageSize_[id].height; i+=step)
			{
				cv::line(images[id], cv::Point(0, i), cv::Point(imageSize_[id].width, i), CV_RGB(0,255,0));
			}
		}
	}

	ui_->label_left->setText(tr("%1x%2").arg(images[0].cols).arg(images[0].rows));

	//show frame
	ui_->image_view->setImage(uCvMat2QImage(images[0]).mirrored(ui_->checkBox_mirror->isChecked(), false));
	if(stereo_)
	{
		ui_->label_right->setText(tr("%1x%2").arg(images[1].cols).arg(images[1].rows));
		ui_->image_view_2->setImage(uCvMat2QImage(images[1]).mirrored(ui_->checkBox_mirror->isChecked(), false));
	}
	processingData_ = false;
}
예제 #4
0
파일: calib.cpp 프로젝트: mvernacc/RT
void StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true)
{
    if( imagelist.size() % 2 != 0 )
    {
        cout << "Error: the image list contains odd (non-even) number of elements\n";
        return;
    }
    printf("board size: %d x %d", boardSize.width, boardSize.height);
    bool displayCorners = true;
    const int maxScale = 2;
    const float squareSize = 1.f;  // Set this to your actual square size
    // ARRAY AND VECTOR STORAGE:

    vector<vector<Point2f> > imagePoints[2];
    vector<vector<Point3f> > objectPoints;
    Size imageSize;

    int i, j, k, nimages = (int)imagelist.size()/2;

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    vector<string> goodImageList;

    for( i = j = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            const string& filename = imagelist[i*2+k];
            Mat img = imread(filename, 0);
            if(img.empty())
                break;
            if( imageSize == Size() )
                imageSize = img.size();
            else if( img.size() != imageSize )
            {
                cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";
                break;
            }
            bool found = false;
            vector<Point2f>& corners = imagePoints[k][j];
            for( int scale = 1; scale <= maxScale; scale++ )
            {
                Mat timg;
                if( scale == 1 )
                    timg = img;
                else
                    resize(img, timg, Size(), scale, scale);
                found = findChessboardCorners(timg, boardSize, corners,
                    CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
                if( found )
                {
                    if( scale > 1 )
                    {
                        Mat cornersMat(corners);
                        cornersMat *= 1./scale;
                    }
                    break;
                }
            }
            if( displayCorners )
            {
                cout << filename << endl;
                Mat cimg, cimg1;
                cvtColor(img, cimg, CV_GRAY2BGR);
                drawChessboardCorners(cimg, boardSize, corners, found);
                double sf = 640./MAX(img.rows, img.cols);
                resize(cimg, cimg1, Size(), sf, sf);
                imshow("corners", cimg1);
                char c = (char)waitKey(500);
                if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit
                    exit(-1);
            }
            else
                putchar('.');
            if( !found )
                break;
            cornerSubPix(img, corners, Size(11,11), Size(-1,-1),
                         TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
                                      30, 0.01));
        }
        if( k == 2 )
        {
            goodImageList.push_back(imagelist[i*2]);
            goodImageList.push_back(imagelist[i*2+1]);
            j++;
        }
    }
    cout << j << " pairs have been successfully detected.\n";
    nimages = j;
    if( nimages < 2 )
    {
        cout << "Error: too little pairs to run the calibration\n";
        return;
    }

    imagePoints[0].resize(nimages);
    imagePoints[1].resize(nimages);
    objectPoints.resize(nimages);

    for( i = 0; i < nimages; i++ )
    {
        for( j = 0; j < boardSize.height; j++ )
            for( k = 0; k < boardSize.width; k++ )
                objectPoints[i].push_back(Point3f(j*squareSize, k*squareSize, 0));
    }

    cout << "Running stereo calibration ...\n";

    Mat cameraMatrix[2], distCoeffs[2];
    cameraMatrix[0] = Mat::eye(3, 3, CV_64F);
    cameraMatrix[1] = Mat::eye(3, 3, CV_64F);
    Mat R, T, E, F;

    double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
                    cameraMatrix[0], distCoeffs[0],
                    cameraMatrix[1], distCoeffs[1],
                    imageSize, R, T, E, F,
                    TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
                    CV_CALIB_FIX_ASPECT_RATIO +
                    CV_CALIB_ZERO_TANGENT_DIST +
                    //CV_CALIB_SAME_FOCAL_LENGTH +
                    CV_CALIB_RATIONAL_MODEL +
                    CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5);
    cout << "done with RMS error=" << rms << endl;

// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
    double err = 0;
    int npoints = 0;
    vector<Vec3f> lines[2];
    for( i = 0; i < nimages; i++ )
    {
        int npt = (int)imagePoints[0][i].size();
        Mat imgpt[2];
        for( k = 0; k < 2; k++ )
        {
            imgpt[k] = Mat(imagePoints[k][i]);
            undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);
            computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);
        }
        for( j = 0; j < npt; j++ )
        {
            double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +
                                imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +
                           fabs(imagePoints[1][i][j].x*lines[0][j][0] +
                                imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);
            err += errij;
        }
        npoints += npt;
    }
    cout << "average reprojection err = " <<  err/npoints << endl;

    // save intrinsic parameters
    FileStorage fs("calib/intrinsics.yml", CV_STORAGE_WRITE);
    if( fs.isOpened() )
    {
        fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<
            "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    Mat R1, R2, P1, P2, Q;
    Rect validRoi[2];

    stereoRectify(cameraMatrix[0], distCoeffs[0],
                  cameraMatrix[1], distCoeffs[1],
                  imageSize, R, T, R1, R2, P1, P2, Q,
                  CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);

    fs.open("calib/extrinsics.yml", CV_STORAGE_WRITE);
    if( fs.isOpened() )
    {
        fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;
        fs.release();
    }
    else
        cout << "Error: can not save the intrinsic parameters\n";

    // OpenCV can handle left-right
    // or up-down camera arrangements
    bool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));

// COMPUTE AND DISPLAY RECTIFICATION
    if( !showRectified )
        return;

    Mat rmap[2][2];
// IF BY CALIBRATED (BOUGUET'S METHOD)
    if( useCalibrated )
    {
        // we already computed everything
    }
// OR ELSE HARTLEY'S METHOD
    else
 // use intrinsic parameters of each camera, but
 // compute the rectification transformation directly
 // from the fundamental matrix
    {
        vector<Point2f> allimgpt[2];
        for( k = 0; k < 2; k++ )
        {
            for( i = 0; i < nimages; i++ )
                std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));
        }
        F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);
        Mat H1, H2;
        stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);

        R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];
        R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];
        P1 = cameraMatrix[0];
        P2 = cameraMatrix[1];
    }

    //Precompute maps for cv::remap()
    initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);
    initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);

    Mat canvas;
    double sf;
    int w, h;
    if( !isVerticalStereo )
    {
        sf = 600./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h, w*2, CV_8UC3);
    }
    else
    {
        sf = 300./MAX(imageSize.width, imageSize.height);
        w = cvRound(imageSize.width*sf);
        h = cvRound(imageSize.height*sf);
        canvas.create(h*2, w, CV_8UC3);
    }

    for( i = 0; i < nimages; i++ )
    {
        for( k = 0; k < 2; k++ )
        {
            Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
            remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
            cvtColor(rimg, cimg, CV_GRAY2BGR);
            Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));
            resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);
            if( useCalibrated )
            {
                Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),
                          cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));
                rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);
            }
        }

        if( !isVerticalStereo )
            for( j = 0; j < canvas.rows; j += 16 )
                line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
        else
            for( j = 0; j < canvas.cols; j += 16 )
                line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);
        imshow("rectified", canvas);
        char c = (char)waitKey();
        if( c == 27 || c == 'q' || c == 'Q' )
            break;
    }
}