/// Optimize - Perform link time optimizations. This will run the scalar /// optimizations, any loaded plugin-optimization modules, and then the /// inter-procedural optimizations if applicable. void Optimize(Module* M) { // Instantiate the pass manager to organize the passes. PassManager Passes; // If we're verifying, start off with a verification pass. if (VerifyEach) Passes.add(createVerifierPass()); // Add an appropriate TargetData instance for this module... #if LLVM_VERSION_CODE >= LLVM_VERSION(3, 1) addPass(Passes, new DataLayout(M)); #else addPass(Passes, new TargetData(M)); #endif // DWD - Run the opt standard pass list as well. AddStandardCompilePasses(Passes); if (!DisableOptimizations) { // Now that composite has been compiled, scan through the module, looking // for a main function. If main is defined, mark all other functions // internal. if (!DisableInternalize) #if LLVM_VERSION_CODE >= LLVM_VERSION(3, 2) addPass(Passes, createInternalizePass()); #else addPass(Passes, createInternalizePass(true)); #endif // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. addPass(Passes, createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! addPass(Passes, createGlobalOptimizerPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant... addPass(Passes, createConstantMergePass()); // Remove unused arguments from functions... addPass(Passes, createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. addPass(Passes, createInstructionCombiningPass()); if (!DisableInline) addPass(Passes, createFunctionInliningPass()); // Inline small functions addPass(Passes, createPruneEHPass()); // Remove dead EH info addPass(Passes, createGlobalOptimizerPass()); // Optimize globals again. addPass(Passes, createGlobalDCEPass()); // Remove dead functions // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. addPass(Passes, createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. addPass(Passes, createInstructionCombiningPass()); addPass(Passes, createJumpThreadingPass()); // Thread jumps. addPass(Passes, createScalarReplAggregatesPass()); // Break up allocas // Run a few AA driven optimizations here and now, to cleanup the code. addPass(Passes, createFunctionAttrsPass()); // Add nocapture addPass(Passes, createGlobalsModRefPass()); // IP alias analysis addPass(Passes, createLICMPass()); // Hoist loop invariants addPass(Passes, createGVNPass()); // Remove redundancies addPass(Passes, createMemCpyOptPass()); // Remove dead memcpy's addPass(Passes, createDeadStoreEliminationPass()); // Nuke dead stores // Cleanup and simplify the code after the scalar optimizations. addPass(Passes, createInstructionCombiningPass()); addPass(Passes, createJumpThreadingPass()); // Thread jumps. addPass(Passes, createPromoteMemoryToRegisterPass()); // Cleanup jumpthread. // Delete basic blocks, which optimization passes may have killed... addPass(Passes, createCFGSimplificationPass()); // Now that we have optimized the program, discard unreachable functions... addPass(Passes, createGlobalDCEPass()); } // If the -s or -S command line options were specified, strip the symbols out // of the resulting program to make it smaller. -s and -S are GNU ld options // that we are supporting; they alias -strip-all and -strip-debug. if (Strip || StripDebug) addPass(Passes, createStripSymbolsPass(StripDebug && !Strip)); #if 0 // Create a new optimization pass for each one specified on the command line std::auto_ptr<TargetMachine> target; for (unsigned i = 0; i < OptimizationList.size(); ++i) { const PassInfo *Opt = OptimizationList[i]; if (Opt->getNormalCtor()) addPass(Passes, Opt->getNormalCtor()()); else std::cerr << "llvm-ld: cannot create pass: "******"\n"; } #endif // The user's passes may leave cruft around. Clean up after them them but // only if we haven't got DisableOptimizations set if (!DisableOptimizations) { addPass(Passes, createInstructionCombiningPass()); addPass(Passes, createCFGSimplificationPass()); addPass(Passes, createAggressiveDCEPass()); addPass(Passes, createGlobalDCEPass()); } // Make sure everything is still good. if (!DontVerify) Passes.add(createVerifierPass()); // Run our queue of passes all at once now, efficiently. Passes.run(*M); }
static void AddStandardCompilePasses(PassManager &PM) { PM.add(createVerifierPass()); // Verify that input is correct #if LLVM_VERSION_CODE < LLVM_VERSION(3, 0) addPass(PM, createLowerSetJmpPass()); // Lower llvm.setjmp/.longjmp #endif // If the -strip-debug command line option was specified, do it. if (StripDebug) addPass(PM, createStripSymbolsPass(true)); if (DisableOptimizations) return; #if LLVM_VERSION_CODE < LLVM_VERSION(2, 7) addPass(PM, createRaiseAllocationsPass()); // call %malloc -> malloc inst #endif addPass(PM, createCFGSimplificationPass()); // Clean up disgusting code addPass(PM, createPromoteMemoryToRegisterPass());// Kill useless allocas addPass(PM, createGlobalOptimizerPass()); // Optimize out global vars addPass(PM, createGlobalDCEPass()); // Remove unused fns and globs addPass(PM, createIPConstantPropagationPass());// IP Constant Propagation addPass(PM, createDeadArgEliminationPass()); // Dead argument elimination addPass(PM, createInstructionCombiningPass()); // Clean up after IPCP & DAE addPass(PM, createCFGSimplificationPass()); // Clean up after IPCP & DAE addPass(PM, createPruneEHPass()); // Remove dead EH info addPass(PM, createFunctionAttrsPass()); // Deduce function attrs if (!DisableInline) addPass(PM, createFunctionInliningPass()); // Inline small functions addPass(PM, createArgumentPromotionPass()); // Scalarize uninlined fn args addPass(PM, createSimplifyLibCallsPass()); // Library Call Optimizations addPass(PM, createInstructionCombiningPass()); // Cleanup for scalarrepl. addPass(PM, createJumpThreadingPass()); // Thread jumps. addPass(PM, createCFGSimplificationPass()); // Merge & remove BBs addPass(PM, createScalarReplAggregatesPass()); // Break up aggregate allocas addPass(PM, createInstructionCombiningPass()); // Combine silly seq's #if LLVM_VERSION_CODE < LLVM_VERSION(2, 7) addPass(PM, createCondPropagationPass()); // Propagate conditionals #endif addPass(PM, createTailCallEliminationPass()); // Eliminate tail calls addPass(PM, createCFGSimplificationPass()); // Merge & remove BBs addPass(PM, createReassociatePass()); // Reassociate expressions addPass(PM, createLoopRotatePass()); addPass(PM, createLICMPass()); // Hoist loop invariants addPass(PM, createLoopUnswitchPass()); // Unswitch loops. #if LLVM_VERSION_CODE < LLVM_VERSION(2, 9) addPass(PM, createLoopIndexSplitPass()); // Index split loops. #endif // FIXME : Removing instcombine causes nestedloop regression. addPass(PM, createInstructionCombiningPass()); addPass(PM, createIndVarSimplifyPass()); // Canonicalize indvars addPass(PM, createLoopDeletionPass()); // Delete dead loops addPass(PM, createLoopUnrollPass()); // Unroll small loops addPass(PM, createInstructionCombiningPass()); // Clean up after the unroller addPass(PM, createGVNPass()); // Remove redundancies addPass(PM, createMemCpyOptPass()); // Remove memcpy / form memset addPass(PM, createSCCPPass()); // Constant prop with SCCP // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. addPass(PM, createInstructionCombiningPass()); #if LLVM_VERSION_CODE < LLVM_VERSION(2, 7) addPass(PM, createCondPropagationPass()); // Propagate conditionals #endif addPass(PM, createDeadStoreEliminationPass()); // Delete dead stores addPass(PM, createAggressiveDCEPass()); // Delete dead instructions addPass(PM, createCFGSimplificationPass()); // Merge & remove BBs addPass(PM, createStripDeadPrototypesPass()); // Get rid of dead prototypes #if LLVM_VERSION_CODE < LLVM_VERSION(3, 0) addPass(PM, createDeadTypeEliminationPass()); // Eliminate dead types #endif addPass(PM, createConstantMergePass()); // Merge dup global constants }
Function * futamurize( const Function * orig_func, DenseMap<const Value*, Value*> &argmap, std::set<const unsigned char *> &constant_addresses_set ) { LLVMContext &context = getGlobalContext(); // Make a copy of the function, removing constant arguments Function * specialized_func = CloneFunction( orig_func, argmap ); specialized_func->setName( orig_func->getNameStr() + "_1" ); // add it to our module LLVM_Module->getFunctionList().push_back( specialized_func ); printf("\nspecialized_func = %p <%s>\n", specialized_func, specialized_func->getName().data()); //~ specialized_func->dump(); // Optimize it FunctionPassManager PM( LLVM_Module ); createStandardFunctionPasses( &PM, 3 ); PM.add(createScalarReplAggregatesPass()); // Break up aggregate allocas PM.add(createInstructionCombiningPass()); // Cleanup for scalarrepl. PM.add(createJumpThreadingPass()); // Thread jumps. PM.add(createCFGSimplificationPass()); // Merge & remove BBs PM.add(createInstructionCombiningPass()); // Combine silly seq's PM.add(createTailCallEliminationPass()); // Eliminate tail calls PM.add(createCFGSimplificationPass()); // Merge & remove BBs PM.add(createReassociatePass()); // Reassociate expressions PM.add(createLoopRotatePass()); // Rotate Loop PM.add(createLICMPass()); // Hoist loop invariants PM.add(createLoopUnswitchPass( false )); PM.add(createInstructionCombiningPass()); PM.add(createIndVarSimplifyPass()); // Canonicalize indvars PM.add(createLoopDeletionPass()); // Delete dead loops PM.add(createLoopUnroll2Pass()); // Unroll small loops PM.add(createInstructionCombiningPass()); // Clean up after the unroller PM.add(createGVNPass()); // Remove redundancies PM.add(createMemCpyOptPass()); // Remove memcpy / form memset PM.add(createSCCPPass()); // Constant prop with SCCP PM.add(createPromoteMemoryToRegisterPass()); PM.add(createConstantPropagationPass()); PM.add(createDeadStoreEliminationPass()); PM.add(createAggressiveDCEPass()); PM.add(new MemoryDependenceAnalysis()); //~ PM.add(createAAEvalPass()); const PassInfo * pinfo = Pass::lookupPassInfo( "print-alias-sets" ); if( !pinfo ) { printf( "print-alias-sets not found\n" ); exit(-1); } PM.add( pinfo->createPass() ); FunctionPassManager PM_Inline( LLVM_Module ); PM_Inline.add(createSingleFunctionInliningPass()); bool Changed = false; int iterations = 2; int inline_iterations = 6; do { Changed = false; // first do some optimizations PM.doInitialization(); PM.run( *specialized_func ); PM.doFinalization(); // Load from Constant Memory detection const TargetData *TD = LLVM_EE->getTargetData(); for (inst_iterator I = inst_begin(specialized_func), E = inst_end(specialized_func); I != E; ++I) { Instruction * inst = (Instruction *) &*I; // get all Load instructions LoadInst * load = dyn_cast<LoadInst>( inst ); if( !load ) continue; if( load->isVolatile() ) continue; if (load->use_empty()) continue; // Don't muck with dead instructions... // get the address loaded by load instruction Value *ptr_value = load->getPointerOperand(); // we're only interested in constant addresses ConstantExpr * ptr_constant_expr = dyn_cast<ConstantExpr>( ptr_value ); if( !ptr_constant_expr ) continue; ptr_constant_expr->dump(); // compute real address of constant pointer expression Constant * ptr_constant = ConstantFoldConstantExpression( ptr_constant_expr, TD ); if( !ptr_constant ) continue; ptr_constant->dump(); // convert to int constant ConstantInt *int_constant = dyn_cast<ConstantInt>( ConstantExpr::getPtrToInt( ptr_constant, Type::getInt64Ty( context ))); if( !int_constant ) continue; int_constant->dump(); // get data size int data_length = TD->getTypeAllocSize( load->getType() ); ptr_value->getType()->dump(); // get real address (at last !) const unsigned char * c_ptr = (const unsigned char *) int_constant->getLimitedValue(); printf( "%ld %d %d\n", c_ptr, constant_addresses_set.count( c_ptr ), data_length ); // check what's in this address int isconst = 1; for( int offset=0; offset<data_length; offset++ ) isconst &= constant_addresses_set.count( c_ptr + offset ); if( !isconst ) continue; printf( "It is constant.\n" ); // make a LLVM const with the data Constant *new_constant = NULL; switch( data_length ) { case 1: new_constant = ConstantInt::get( Type::getInt8Ty( context ), *(uint8_t*)c_ptr, false /* signed */ ); break; case 2: new_constant = ConstantInt::get( Type::getInt16Ty( context ), *(uint16_t*)c_ptr, false /* signed */ ); break; case 4: new_constant = ConstantInt::get( Type::getInt32Ty( context ), *(uint32_t*)c_ptr, false /* signed */ ); break; case 8: new_constant = ConstantInt::get( Type::getInt64Ty( context ), *(uint64_t*)c_ptr, false /* signed */ ); break; default: { StringRef const_data ( (const char *) c_ptr, data_length ); new_constant = ConstantArray::get( context, const_data, false /* dont add terminating null */ ); } } if( !new_constant ) continue; new_constant->dump(); //~ // get the type that is loaded const Type *Ty = load->getType(); // do we need a cast ? if( load->getType() != new_constant->getType() ) { new_constant = ConstantExpr::getBitCast( new_constant, Ty ); new_constant->dump(); } // zap the load and replace with constant address load->replaceAllUsesWith( new_constant ); printf( "\nREPLACED :...\n" ); load->dump(); new_constant->dump(); Changed = true; } if( Changed ) continue; // re-optimize and do another pass of constant load elimination // if we can't do anything else, do an inlining pass if( inline_iterations > 0 ) { inline_iterations --; PM_Inline.doInitialization(); Changed |= PM_Inline.run( *specialized_func ); PM_Inline.doFinalization(); //~ for( int i=0; i<3; i++ ) { PM.doInitialization(); Changed |= PM.run( *specialized_func ); PM.doFinalization(); } } if( iterations>0 && !Changed ) iterations--; } while( Changed || iterations>0 ); return specialized_func; }