예제 #1
0
CuDNNConvolutionLayer<Dtype>::~CuDNNConvolutionLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  for (int_tp i = 0; i < bottom_descs_.size(); i++) {
    cudnnDestroyTensorDescriptor(bottom_descs_[i]);
    cudnnDestroyTensorDescriptor(top_descs_[i]);
    cudnnDestroyConvolutionDescriptor(conv_descs_[i]);
  }
  if (this->bias_term_) {
    cudnnDestroyTensorDescriptor(bias_desc_);
  }
  cudnnDestroyFilterDescriptor(filter_desc_);

  for (int_tp g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++) {
    cudaStreamDestroy(stream_[g]);
    cudnnDestroy(handle_[g]);
  }

  cudaFree(workspaceData);
  delete [] stream_;
  delete [] handle_;
  delete [] fwd_algo_;
  delete [] bwd_filter_algo_;
  delete [] bwd_data_algo_;
  delete [] workspace_fwd_sizes_;
  delete [] workspace_bwd_data_sizes_;
  delete [] workspace_bwd_filter_sizes_;
}
예제 #2
0
CuDNNSoftmaxLayer<Dtype>::~CuDNNSoftmaxLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  cudnnDestroyTensorDescriptor(bottom_desc_);
  cudnnDestroyTensorDescriptor(top_desc_);
}
예제 #3
0
THFloatTensor *cudnn_SpatialMaxPooling_updateOutput(struct module *module, THFloatTensor *input)
{
	int kW = module->SpatialMaxPooling.kW;
	int kH = module->SpatialMaxPooling.kH;
	int dW = module->SpatialMaxPooling.dW;
	int dH = module->SpatialMaxPooling.dH;
	int padW = module->SpatialMaxPooling.padW;
	int padH = module->SpatialMaxPooling.padH;

	THFloatTensor *output = module->output;
	cudnnTensorDescriptor_t dinput, doutput;
	cudnnPoolingDescriptor_t dpool;
	float one = 1, zero = 0;
	int sizes[4];

	errcheck(THcudnn_TensorDescriptor(&dinput, input));
	errcheck(cudnnCreatePoolingDescriptor(&dpool));
	errcheck(cudnnSetPooling2dDescriptor(dpool, CUDNN_POOLING_MAX, kH, kW, padH, padW, dH, dW));
	errcheck(cudnnGetPoolingNdForwardOutputDim(dpool, dinput, 4, sizes));
	THCudaTensor_resize4d(output, sizes[0], sizes[1], sizes[2], sizes[3]);
	errcheck(THcudnn_TensorDescriptor(&doutput, output));

	errcheck(cudnnPoolingForward(THcudnn_getHandle(), dpool, &one, dinput, THFloatTensor_data(input), &zero,
		doutput, THFloatTensor_data(output)));

	cudnnDestroyTensorDescriptor(dinput);
	cudnnDestroyTensorDescriptor(doutput);
	cudnnDestroyPoolingDescriptor(dpool);
	return output;
}
예제 #4
0
CuDNNReLULayer<Dtype>::~CuDNNReLULayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  cudnnDestroyTensorDescriptor(this->bottom_desc_);
  cudnnDestroyTensorDescriptor(this->top_desc_);
  cudnnDestroy(this->handle_);
}
		sparse_1x1_layer_tester_cuda::~sparse_1x1_layer_tester_cuda()
		{
			cudnnDestroyTensorDescriptor(input_strided_data_desc);
			cudnnDestroyTensorDescriptor(input_converted_NHWC_data_desc);
			cudnnDestroyTensorDescriptor(input_converted_CNHW_data_desc);
			cudnnDestroyTensorDescriptor(output_data_desc);
			cudnnDestroyTensorDescriptor(bias_desc);
		}
예제 #6
0
CuDNNSigmoidLayer<Dtype>::~CuDNNSigmoidLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  cudnnDestroyActivationDescriptor(this->activ_desc_);
  cudnnDestroyTensorDescriptor(this->bottom_desc_);
  cudnnDestroyTensorDescriptor(this->top_desc_);
}
		convolution_layer_updater_cuda::~convolution_layer_updater_cuda()
		{
			cudnnDestroyTensorDescriptor(input_data_desc);
			cudnnDestroyTensorDescriptor(output_data_desc);
			cudnnDestroyFilterDescriptor(weights_desc);
			cudnnDestroyConvolutionDescriptor(convolution_desc);
			cudnnDestroyTensorDescriptor(bias_desc);
		}
예제 #8
0
CuDNNPoolingLayer<Dtype>::~CuDNNPoolingLayer() {
  // check that handles have been setup before destroying
  if (!handles_setup_) { return; }

  cudnnDestroyTensorDescriptor(bottom_desc_);
  cudnnDestroyTensorDescriptor(top_desc_);
  cudnnDestroyPoolingDescriptor(pooling_desc_);
  cudnnDestroy(handle_);
}
CuDNNTanHLayer<Ftype, Btype>::~CuDNNTanHLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  cudnnDestroyActivationDescriptor(this->activ_desc_);
  cudnnDestroyTensorDescriptor(fwd_bottom_desc_);
  cudnnDestroyTensorDescriptor(fwd_top_desc_);
  cudnnDestroyTensorDescriptor(bwd_bottom_desc_);
  cudnnDestroyTensorDescriptor(bwd_top_desc_);
}
예제 #10
0
CuDNNTanHLayer<Dtype>::~CuDNNTanHLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  cudnnDestroyTensorDescriptor(this->bottom_desc_);
  cudnnDestroyTensorDescriptor(this->top_desc_);
#if CUDNN_VERSION_MIN(5, 0, 0)
  cudnnDestroyActivationDescriptor(this->activation_desc_);
#endif
  cudnnDestroy(this->handle_);
}
예제 #11
0
CuDNNConvolutionLayer<Dtype>::~CuDNNConvolutionLayer() {
    for (int i = 0; i < bottom_descs_.size(); i++) {
        cudnnDestroyTensorDescriptor(bottom_descs_[i]);
        cudnnDestroyTensorDescriptor(top_descs_[i]);
        cudnnDestroyConvolutionDescriptor(conv_descs_[i]);
    }
    if (this->bias_term_) {
        cudnnDestroyTensorDescriptor(bias_desc_);
    }
    cudnnDestroyFilterDescriptor(filter_desc_);

    for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++) {
        cudaStreamDestroy(stream_[g]);
        cudnnDestroy(handle_[g]);
    }

    delete [] stream_;
    delete [] handle_;
}
예제 #12
0
THFloatTensor *cudnn_Threshold_updateOutput(struct module *module, THFloatTensor *input)
{
	THFloatTensor *output = module->output;
	cudnnTensorDescriptor_t dinput, doutput;
	int inplace = module->Threshold.inplace;
	float one = 1, zero = 0;

	errcheck(THcudnn_TensorDescriptor(&dinput, input));
	if(inplace)
		THFloatTensor_set(output, input);
	else THCudaTensor_resize4d(output, input->size[0], input->size[1], input->size[2], input->size[3]);
	errcheck(THcudnn_TensorDescriptor(&doutput, output));

	errcheck(cudnnActivationForward(THcudnn_getHandle(), CUDNN_ACTIVATION_RELU, &one, dinput, THFloatTensor_data(input), &zero,
		doutput, THFloatTensor_data(output)));

	cudnnDestroyTensorDescriptor(dinput);
	cudnnDestroyTensorDescriptor(doutput);
	return output;
}
예제 #13
0
CuDNNConvolutionLayer<Dtype>::~CuDNNConvolutionLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) { return; }

  for (int i = 0; i < bottom_descs_.size(); i++) {
    cudnnDestroyTensorDescriptor(bottom_descs_[i]);
    cudnnDestroyTensorDescriptor(top_descs_[i]);
    cudnnDestroyConvolutionDescriptor(conv_descs_[i]);
  }
  if (this->bias_term_) {
    cudnnDestroyTensorDescriptor(bias_desc_);
  }
  cudnnDestroyFilterDescriptor(filter_desc_);

  delete [] fwd_algo_;
  delete [] bwd_filter_algo_;
  delete [] bwd_data_algo_;
  delete [] workspace_fwd_sizes_;
  delete [] workspace_bwd_data_sizes_;
  delete [] workspace_bwd_filter_sizes_;
}
예제 #14
0
static int c_make_tensorNd(PyGpuArrayObject *var, cudnnTensorDescriptor_t *desc) {
  cudnnStatus_t err;
  err = cudnnCreateTensorDescriptor(desc);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not create tensor descriptor: %s",
                 cudnnGetErrorString(err));
    return -1;
  }
  if (c_set_tensorNd(var, *desc) != 0) {
    cudnnDestroyTensorDescriptor(*desc);
    return -1;
  }
  return 0;
}
예제 #15
0
CudnnNdConvolutionLayer<Dtype>::~CudnnNdConvolutionLayer() {
  // Check that handles have been setup before destroying.
  if (!handles_setup_) {
    return;
  }

  for (int i = 0; i < bottom_descs_.size(); i++) {
    cudnnDestroyTensorDescriptor(bottom_descs_[i]);
    cudnnDestroyTensorDescriptor(top_descs_[i]);
    cudnnDestroyConvolutionDescriptor(conv_descs_[i]);
  }
  if (this->bias_term_) {
    cudnnDestroyTensorDescriptor(bias_desc_);
  }
  cudnnDestroyFilterDescriptor(filter_desc_);

  for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++) {
    cudaStreamDestroy(stream_[g]);
    cudnnDestroy(handle_[g]);
  }

  delete [] stream_;
  delete [] handle_;
}
		activation_layer_cudnn_updater_cuda::~activation_layer_cudnn_updater_cuda()
		{
			cudnnDestroyTensorDescriptor(input_data_desc);
			cudnnDestroyActivationDescriptor(activation_desc);
		}
		softmax_layer_tester_cuda::~softmax_layer_tester_cuda()
		{
			cudnnDestroyTensorDescriptor(input_data_desc);
		}
예제 #18
0
파일: CuDnnRNN.cpp 프로젝트: AllanYiin/CNTK
 ~CuDnnTensorDescriptor()
 {
     cudnnDestroyTensorDescriptor(m_tensorDesc);
 }
예제 #19
0
int dnn_rnn_fwd(cudnnRNNDescriptor_t desc,
                PyGpuArrayObject *w, PyGpuArrayObject *x,
                PyGpuArrayObject *hx, PyGpuArrayObject *cx,
                gpudata **reserve, PyGpuArrayObject **y,
                PyGpuArrayObject **hy, PyGpuArrayObject **cy,
                cudnnHandle_t _handle) {
  PyGpuContextObject *c = x->context;
  cudnnTensorDescriptor_t xdesc = NULL;
  cudnnTensorDescriptor_t hxdesc = NULL;
  cudnnTensorDescriptor_t cxdesc = NULL;
  cudnnTensorDescriptor_t ydesc = NULL;
  cudnnTensorDescriptor_t hydesc = NULL;
  cudnnTensorDescriptor_t cydesc = NULL;
  cudnnFilterDescriptor_t wdesc = NULL;
  cudnnTensorDescriptor_t *xl = NULL;
  cudnnTensorDescriptor_t *yl = NULL;
  gpudata *workspace = NULL;
  size_t worksize, ressize;

  size_t seqLength = PyGpuArray_DIM(x, 0);
  size_t miniBatch = PyGpuArray_DIM(x, 1);
  size_t inputSize = PyGpuArray_DIM(x, 2);
  size_t hiddenSizeDir = PyGpuArray_DIM(hx, 2);
  size_t shape[3];
  int strs[3], dims[3];
  cudnnStatus_t err;
  cudnnDataType_t dt;

  int res = -1;

  switch (x->ga.typecode) {
  case GA_FLOAT:
    dt = CUDNN_DATA_FLOAT;
    break;
  case GA_DOUBLE:
    dt = CUDNN_DATA_DOUBLE;
    break;
  case GA_HALF:
    dt = CUDNN_DATA_HALF;
    break;
  default:
    PyErr_SetString(PyExc_TypeError, "Unsupported data type for x");
    return -1;
  }

  // This is early to match the exit() in the fail label.
  cuda_enter(c->ctx);

  err = cudnnCreateTensorDescriptor(&xdesc);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not create xdesc: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  dims[0] = PyGpuArray_DIM(x, 1);
  dims[1] = PyGpuArray_DIM(x, 2);
  dims[2] = 1;

  strs[0] = dims[1] * dims[2];
  strs[1] = dims[2];
  strs[2] = 1;

  err = cudnnSetTensorNdDescriptor(xdesc, dt, 3, dims, strs);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not set xdesc: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  if (c_make_tensorNd(hx, &hxdesc) != 0)
    goto fail;

  if (cx != NULL)
    if (c_make_tensorNd(cx, &cxdesc) != 0)
      goto fail;

  if (c_make_filter(w, &wdesc) != 0)
    goto fail;

  shape[0] = seqLength;
  shape[1] = miniBatch;
  shape[2] = hiddenSizeDir;
  if (theano_prep_output(y, 3, shape, x->ga.typecode, GA_C_ORDER, c) != 0)
    goto fail;

  err = cudnnCreateTensorDescriptor(&ydesc);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not create ydesc: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  dims[0] = shape[1];
  dims[1] = shape[2];
  dims[2] = 1;

  strs[0] = dims[2] * dims[1];
  strs[1] = dims[2];
  strs[2] = 1;

  err = cudnnSetTensorNdDescriptor(ydesc, dt, 3, dims, strs);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not set ydesc: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  if (theano_prep_output(hy, 3, PyGpuArray_DIMS(hx),
                         hx->ga.typecode, GA_C_ORDER, c) != 0)
    goto fail;

  if (c_make_tensorNd(*hy, &hydesc) != 0)
    goto fail;

  if (cy != NULL) {
    if (theano_prep_output(cy, 3, PyGpuArray_DIMS(cx),
                           cx->ga.typecode, GA_C_ORDER, c) != 0)
      goto fail;

    if (c_make_tensorNd(*cy, &cydesc) != 0)
      goto fail;
  }

  xl = (cudnnTensorDescriptor_t *)calloc(sizeof(cudnnTensorDescriptor_t), seqLength);
  if (xl == NULL) {
    PyErr_NoMemory();
    goto fail;
  }

  for (size_t i = 0; i < seqLength; i++)
    xl[i] = xdesc;

  yl = (cudnnTensorDescriptor_t *)calloc(sizeof(cudnnTensorDescriptor_t), seqLength);
  if (yl == NULL) {
    PyErr_NoMemory();
    goto fail;
  }

  for (size_t i = 0; i < seqLength; i++)
    yl[i] = ydesc;

  err = cudnnGetRNNWorkspaceSize(_handle, desc, (int)seqLength,
                                 xl, &worksize);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not get worksize: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  workspace = gpudata_alloc(c->ctx, worksize, NULL, 0, NULL);
  if (workspace == NULL) {
    PyErr_Format(PyExc_RuntimeError, "Could not allocate workspace");
    goto fail;
  }

  err = cudnnGetRNNTrainingReserveSize(_handle, desc, (int)seqLength,
                                       xl, &ressize);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could not get reserve size: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  *reserve = gpudata_alloc(c->ctx, ressize, NULL, 0, NULL);
  if (*reserve == NULL) {
    PyErr_Format(PyExc_RuntimeError, "Could not allocate reserve");
    goto fail;
  }

  err = cudnnRNNForwardTraining(_handle, desc, (int)seqLength,
                                xl, PyGpuArray_DEV_DATA(x),
                                hxdesc, PyGpuArray_DEV_DATA(hx),
                                cxdesc, cx ? PyGpuArray_DEV_DATA(cx) : NULL,
                                wdesc, PyGpuArray_DEV_DATA(w),
                                yl, PyGpuArray_DEV_DATA(*y),
                                hydesc, PyGpuArray_DEV_DATA(*hy),
                                cydesc, cy ? PyGpuArray_DEV_DATA(*cy) : NULL,
                                *(void **)workspace, worksize,
                                *(void **)(*reserve), ressize);
  if (err != CUDNN_STATUS_SUCCESS) {
    PyErr_Format(PyExc_RuntimeError,
                 "Could run RNN: %s",
                 cudnnGetErrorString(err));
    goto fail;
  }

  res = 0;
 fail:
  if (xdesc != NULL)
    cudnnDestroyTensorDescriptor(xdesc);
  if (hxdesc != NULL)
    cudnnDestroyTensorDescriptor(hxdesc);
  if (cxdesc != NULL)
    cudnnDestroyTensorDescriptor(cxdesc);
  if (wdesc != NULL)
    cudnnDestroyFilterDescriptor(wdesc);
  if (ydesc != NULL)
    cudnnDestroyTensorDescriptor(ydesc);
  if (hydesc != NULL)
    cudnnDestroyTensorDescriptor(hydesc);
  if (cydesc != NULL)
    cudnnDestroyTensorDescriptor(cydesc);
  free(xl);
  free(yl);
  if (workspace != NULL)
    gpudata_release(workspace);
  cuda_exit(c->ctx);
  return res;
}
예제 #20
0
ActivationDown::~ActivationDown() {
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(bottom_desc_));
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(top_desc_));
}
예제 #21
0
파일: softmax.cpp 프로젝트: caomw/purine2
SoftmaxDown::~SoftmaxDown() {
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(bottom_desc_));
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(top_desc_));
}
예제 #22
0
THFloatTensor *cudnn_SpatialConvolution_updateOutput(struct module *module, THFloatTensor *input)
{
	int kW = module->SpatialConvolution.kW;
	int kH = module->SpatialConvolution.kH;
	int dW = module->SpatialConvolution.dW;
	int dH = module->SpatialConvolution.dH;
	int padW = module->SpatialConvolution.padW;
	int padH = module->SpatialConvolution.padH;
	int nInputPlane  = module->SpatialConvolution.nInputPlane;
	int nOutputPlane = module->SpatialConvolution.nOutputPlane;

	THFloatTensor *weight = module->SpatialConvolution.weight;
	THFloatTensor *bias = module->SpatialConvolution.bias;
	THFloatTensor *output = module->output;

	int sizes[4];
	int pad[2], filterStride[2], upscale[2];
	cudnnTensorDescriptor_t dinput, dbias, doutput;
	cudnnConvolutionDescriptor_t dconv;
	cudnnFilterDescriptor_t dweight;
	float one = 1, zero = 0;
	size_t reqwssize;
	static void *ws;
	static size_t wssize;
	static const int alg = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;

	pad[0] = padH;
	pad[1] = padW;
	filterStride[0] = dH;
	filterStride[1] = dW;
	upscale[0] = 1;
	upscale[1] = 1;

	if(input->nDimension <= 2)
	{
		// Here we use the SpatialConvolution module to perform a linear transformation
		errcheck(cudnnCreateTensorDescriptor(&dinput));
		if(input->nDimension == 1)
			errcheck(cudnnSetTensor4dDescriptor(dinput, CUDNN_TENSOR_NCHW, floattype, 1, input->size[0], 1, 1));
		else errcheck(cudnnSetTensor4dDescriptor(dinput, CUDNN_TENSOR_NCHW, floattype, input->size[0], input->size[1], 1, 1));
	} else errcheck(THcudnn_TensorDescriptor(&dinput, input));
	errcheck(cudnnCreateFilterDescriptor(&dweight));
	errcheck(cudnnSetFilter4dDescriptor(dweight, floattype, nOutputPlane, nInputPlane, kH, kW));
	errcheck(cudnnCreateTensorDescriptor(&dbias));
	errcheck(cudnnSetTensor4dDescriptor(dbias, CUDNN_TENSOR_NCHW, floattype, 1, bias->size[0], 1, 1));
	errcheck(cudnnCreateConvolutionDescriptor(&dconv));
	errcheck(cudnnSetConvolutionNdDescriptor(dconv, 2, pad, filterStride, upscale, CUDNN_CROSS_CORRELATION, floattype));
	errcheck(cudnnGetConvolutionNdForwardOutputDim(dconv, dinput, dweight, 4, sizes));
	THCudaTensor_resize4d(output, sizes[0], sizes[1], sizes[2], sizes[3]);
	errcheck(THcudnn_TensorDescriptor(&doutput, output));
	if(alg == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM || alg == CUDNN_CONVOLUTION_FWD_ALGO_GEMM ||
		alg == CUDNN_CONVOLUTION_FWD_ALGO_FFT || alg == CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING)
	{
		errcheck(cudnnGetConvolutionForwardWorkspaceSize(THcudnn_getHandle(), dinput, dweight, dconv, doutput, alg, &reqwssize));
		if(reqwssize > wssize)
		{
			wssize = reqwssize;
			errcheck(cudaMalloc(&ws, reqwssize));
		}			
	}
	errcheck(cudnnConvolutionForward(THcudnn_getHandle(), &one, dinput, THFloatTensor_data(input),
		dweight, THFloatTensor_data(weight), dconv, alg, ws, wssize, &zero,
		doutput, THFloatTensor_data(output)));
	errcheck(cudnnAddTensor_v3(THcudnn_getHandle(), &one, dbias, THFloatTensor_data(bias),
		&one, doutput, THFloatTensor_data(output)));
	cudnnDestroyTensorDescriptor(dinput);
	cudnnDestroyFilterDescriptor(dweight);
	cudnnDestroyTensorDescriptor(dbias);
	cudnnDestroyTensorDescriptor(doutput);
	cudnnDestroyConvolutionDescriptor(dconv);
	return output;
}
예제 #23
0
 virtual ~CuDNNPoolingLayer(void) {
   CUDA_CHECK(cudnnDestroyTensorDescriptor(in_desc_));
   CUDA_CHECK(cudnnDestroyTensorDescriptor(out_desc_));
   CUDA_CHECK(cudnnDestroyPoolingDescriptor(pooling_desc_));
   CUDA_CHECK(cudnnDestroy(handle_));
 }
		sparse_fully_connected_1x1_layer_tester_cuda::~sparse_fully_connected_1x1_layer_tester_cuda()
		{
			cudnnDestroyTensorDescriptor(output_data_desc);
			cudnnDestroyTensorDescriptor(bias_desc);
		}
예제 #25
0
파일: cudnn.cpp 프로젝트: bebee/cudarray
PoolBC01CuDNN<T>::~PoolBC01CuDNN() {
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(imgs_desc));
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(poolout_desc));
  CUDNN_CHECK(cudnnDestroyPoolingDescriptor(pool_desc));
}
예제 #26
0
파일: cudnn.cpp 프로젝트: bebee/cudarray
ConvBC01CuDNN<T>::~ConvBC01CuDNN() {
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(imgs_desc));
  CUDNN_CHECK(cudnnDestroyTensorDescriptor(convout_desc));
  CUDNN_CHECK(cudnnDestroyFilterDescriptor(filters_desc));
  CUDNN_CHECK(cudnnDestroyConvolutionDescriptor(conv_desc));
}
		fully_connected_layer_updater_cuda::~fully_connected_layer_updater_cuda()
		{
			cudnnDestroyTensorDescriptor(output_data_desc);
			cudnnDestroyTensorDescriptor(bias_desc);
		}
예제 #28
0
 virtual ~Add2CudaCudnn() {
   NBLA_CUDNN_CHECK(cudnnDestroyTensorDescriptor(input_desc_));
   NBLA_CUDNN_CHECK(cudnnDestroyTensorDescriptor(output_desc_));
 }
		convolution_1x1_layer_tester_cuda::~convolution_1x1_layer_tester_cuda()
		{
			cudnnDestroyTensorDescriptor(output_data_desc);
			cudnnDestroyTensorDescriptor(bias_desc);
		}