int vslock( user_addr_t addr, user_size_t len) { kern_return_t kret; vm_map_t map; map = current_map(); kret = vm_map_wire(map, vm_map_trunc_page(addr, vm_map_page_mask(map)), vm_map_round_page(addr+len, vm_map_page_mask(map)), VM_PROT_READ | VM_PROT_WRITE, FALSE); switch (kret) { case KERN_SUCCESS: return (0); case KERN_INVALID_ADDRESS: case KERN_NO_SPACE: return (ENOMEM); case KERN_PROTECTION_FAILURE: return (EACCES); default: return (EINVAL); } }
int minherit(__unused proc_t p, struct minherit_args *uap, __unused register_t *retval) { mach_vm_offset_t addr; mach_vm_size_t size; register vm_inherit_t inherit; vm_map_t user_map; kern_return_t result; AUDIT_ARG(addr, uap->addr); AUDIT_ARG(len, uap->len); AUDIT_ARG(value, uap->inherit); addr = (mach_vm_offset_t)uap->addr; size = (mach_vm_size_t)uap->len; inherit = uap->inherit; user_map = current_map(); result = mach_vm_inherit(user_map, addr, size, inherit); switch (result) { case KERN_SUCCESS: return (0); case KERN_PROTECTION_FAILURE: return (EACCES); } return (EINVAL); }
int munmap(__unused proc_t p, struct munmap_args *uap, __unused register_t *retval) { mach_vm_offset_t user_addr; mach_vm_size_t user_size; kern_return_t result; user_addr = (mach_vm_offset_t) uap->addr; user_size = (mach_vm_size_t) uap->len; AUDIT_ARG(addr, user_addr); AUDIT_ARG(len, user_size); if (user_addr & PAGE_MASK_64) { /* UNIX SPEC: user address is not page-aligned, return EINVAL */ return EINVAL; } if (user_addr + user_size < user_addr) return(EINVAL); if (user_size == 0) { /* UNIX SPEC: size is 0, return EINVAL */ return EINVAL; } result = mach_vm_deallocate(current_map(), user_addr, user_size); if (result != KERN_SUCCESS) { return(EINVAL); } return(0); }
int useracc( user_addr_t addr, user_size_t len, int prot) { return (vm_map_check_protection( current_map(), vm_map_trunc_page(addr), vm_map_round_page(addr+len), prot == B_READ ? VM_PROT_READ : VM_PROT_WRITE)); }
bool ShortLoopOptimizer::process(BlockBegin* loop_header) { TRACE_VALUE_NUMBERING(tty->print_cr("** loop header block")); _too_complicated_loop = false; _loop_blocks.clear(); _loop_blocks.append(loop_header); for (int i = 0; i < _loop_blocks.length(); i++) { BlockBegin* block = _loop_blocks.at(i); TRACE_VALUE_NUMBERING(tty->print_cr("processing loop block B%d", block->block_id())); if (block->is_set(BlockBegin::exception_entry_flag)) { // this would be too complicated return false; } // add predecessors to worklist for (int j = block->number_of_preds() - 1; j >= 0; j--) { BlockBegin* pred = block->pred_at(j); if (pred->is_set(BlockBegin::osr_entry_flag)) { return false; } ValueMap* pred_map = value_map_of(pred); if (pred_map != NULL) { current_map()->kill_map(pred_map); } else if (!_loop_blocks.contains(pred)) { if (_loop_blocks.length() >= ValueMapMaxLoopSize) { return false; } _loop_blocks.append(pred); } } // use the instruction visitor for killing values for (Value instr = block->next(); instr != NULL; instr = instr->next()) { instr->visit(this); if (_too_complicated_loop) { return false; } } } bool optimistic = this->_gvn->compilation()->is_optimistic(); if (UseLoopInvariantCodeMotion && optimistic) { LoopInvariantCodeMotion code_motion(this, _gvn, loop_header, &_loop_blocks); } TRACE_VALUE_NUMBERING(tty->print_cr("** loop successfully optimized")); return true; }
void main() { unsigned int init_length, x, y, seed; unsigned long generation = 0; char gen_text[80]; long bios_time, start_bios_time; cellmap current_map(cellmap_height, cellmap_width); cellmap next_map(cellmap_height, cellmap_width); // Get the seed; seed randomly if 0 entered cout << "Seed (0 for random seed): "; cin >> seed; if (seed == 0) seed = (unsigned) time(NULL); // Randomly initialize the initial cell map cout << "Initializing..."; srand(seed); init_length = (cellmap_height * cellmap_width) / 2; do { x = random(cellmap_width); y = random(cellmap_height); next_map.set_cell(x, y); } while (--init_length); current_map.copy_cells(next_map); // put init map in current_map enter_display_mode(); // Keep recalculating and redisplaying generations until a key // is pressed show_text(0, MSG_LINE, "Generation: "); start_bios_time = _bios_timeofday(_TIME_GETCLOCK, &bios_time); do { generation++; sprintf(gen_text, "%10lu", generation); show_text(1, GENERATION_LINE, gen_text); // Recalculate and draw the next generation current_map.next_generation(next_map); // Make current_map current again current_map.copy_cells(next_map); #if LIMIT_18_HZ // Limit to a maximum of 18.2 frames per second, for visibility do { _bios_timeofday(_TIME_GETCLOCK, &bios_time); } while (start_bios_time == bios_time); start_bios_time = bios_time; #endif } while (!kbhit()); getch(); // clear keypress exit_display_mode(); cout << "Total generations: " << generation << "\nSeed: " << seed << "\n"; }
int vsunlock( user_addr_t addr, user_size_t len, __unused int dirtied) { #if FIXME /* [ */ pmap_t pmap; vm_page_t pg; vm_map_offset_t vaddr; ppnum_t paddr; #endif /* FIXME ] */ kern_return_t kret; vm_map_t map; map = current_map(); #if FIXME /* [ */ if (dirtied) { pmap = get_task_pmap(current_task()); for (vaddr = vm_map_trunc_page(addr, PAGE_MASK); vaddr < vm_map_round_page(addr+len, PAGE_MASK); vaddr += PAGE_SIZE) { paddr = pmap_extract(pmap, vaddr); pg = PHYS_TO_VM_PAGE(paddr); vm_page_set_modified(pg); } } #endif /* FIXME ] */ #ifdef lint dirtied++; #endif /* lint */ kret = vm_map_unwire(map, vm_map_trunc_page(addr, vm_map_page_mask(map)), vm_map_round_page(addr+len, vm_map_page_mask(map)), FALSE); switch (kret) { case KERN_SUCCESS: return (0); case KERN_INVALID_ADDRESS: case KERN_NO_SPACE: return (ENOMEM); case KERN_PROTECTION_FAILURE: return (EACCES); default: return (EINVAL); } }
int madvise(__unused proc_t p, struct madvise_args *uap, __unused register_t *retval) { vm_map_t user_map; mach_vm_offset_t start; mach_vm_size_t size; vm_behavior_t new_behavior; kern_return_t result; /* * Since this routine is only advisory, we default to conservative * behavior. */ switch (uap->behav) { case MADV_RANDOM: new_behavior = VM_BEHAVIOR_RANDOM; break; case MADV_SEQUENTIAL: new_behavior = VM_BEHAVIOR_SEQUENTIAL; break; case MADV_NORMAL: new_behavior = VM_BEHAVIOR_DEFAULT; break; case MADV_WILLNEED: new_behavior = VM_BEHAVIOR_WILLNEED; break; case MADV_DONTNEED: new_behavior = VM_BEHAVIOR_DONTNEED; break; default: return(EINVAL); } start = (mach_vm_offset_t) uap->addr; size = (mach_vm_size_t) uap->len; user_map = current_map(); result = mach_vm_behavior_set(user_map, start, size, new_behavior); switch (result) { case KERN_SUCCESS: return (0); case KERN_INVALID_ADDRESS: return (ENOMEM); } return (EINVAL); }
int useracc( user_addr_t addr, user_size_t len, int prot) { vm_map_t map; map = current_map(); return (vm_map_check_protection( map, vm_map_trunc_page(addr, vm_map_page_mask(map)), vm_map_round_page(addr+len, vm_map_page_mask(map)), prot == B_READ ? VM_PROT_READ : VM_PROT_WRITE)); }
int copyoutmap( vm_map_t map, char *fromaddr, char *toaddr, int length) { if (vm_map_pmap(map) == kernel_pmap) { /* assume a correct copy */ memcpy(toaddr, fromaddr, length); return 0; } if (current_map() == map) return copyout(fromaddr, toaddr, length); return 1; }
int munlock(__unused proc_t p, struct munlock_args *uap, __unused register_t *retval) { mach_vm_offset_t addr; mach_vm_size_t size; vm_map_t user_map; kern_return_t result; AUDIT_ARG(addr, uap->addr); AUDIT_ARG(addr, uap->len); addr = (mach_vm_offset_t) uap->addr; size = (mach_vm_size_t)uap->len; user_map = current_map(); /* JMM - need to remove all wirings by spec - this just removes one */ result = mach_vm_wire(host_priv_self(), user_map, addr, size, VM_PROT_NONE); return (result == KERN_SUCCESS ? 0 : ENOMEM); }
int mlock(__unused proc_t p, struct mlock_args *uap, __unused int32_t *retvalval) { vm_map_t user_map; vm_map_offset_t addr; vm_map_size_t size, pageoff; kern_return_t result; AUDIT_ARG(addr, uap->addr); AUDIT_ARG(len, uap->len); addr = (vm_map_offset_t) uap->addr; size = (vm_map_size_t)uap->len; /* disable wrap around */ if (addr + size < addr) return (EINVAL); if (size == 0) return (0); user_map = current_map(); pageoff = (addr & vm_map_page_mask(user_map)); addr -= pageoff; size = vm_map_round_page(size+pageoff, vm_map_page_mask(user_map)); /* have to call vm_map_wire directly to pass "I don't know" protections */ result = vm_map_wire(user_map, addr, addr+size, VM_PROT_NONE | VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_MLOCK), TRUE); if (result == KERN_RESOURCE_SHORTAGE) return EAGAIN; else if (result == KERN_PROTECTION_FAILURE) return EACCES; else if (result != KERN_SUCCESS) return ENOMEM; return 0; /* KERN_SUCCESS */ }
mach_msg_return_t mach_msg_receive( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t rcv_size, mach_port_t rcv_name, mach_msg_timeout_t time_out, mach_port_t notify) { ipc_thread_t self = current_thread(); ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_object_t object; ipc_mqueue_t mqueue; ipc_kmsg_t kmsg; mach_port_seqno_t seqno; mach_msg_return_t mr; mr = ipc_mqueue_copyin(space, rcv_name, &mqueue, &object); if (mr != MACH_MSG_SUCCESS) return mr; /* hold ref for object; mqueue is locked */ /* * ipc_mqueue_receive may not return, because if we block * then our kernel stack may be discarded. So we save * state here for mach_msg_receive_continue to pick up. */ self->ith_msg = msg; self->ith_option = option; self->ith_rcv_size = rcv_size; self->ith_timeout = time_out; self->ith_notify = notify; self->ith_object = object; self->ith_mqueue = mqueue; if (option & MACH_RCV_LARGE) { mr = ipc_mqueue_receive(mqueue, option & MACH_RCV_TIMEOUT, rcv_size, time_out, FALSE, mach_msg_receive_continue, &kmsg, &seqno); /* mqueue is unlocked */ ipc_object_release(object); if (mr != MACH_MSG_SUCCESS) { if (mr == MACH_RCV_TOO_LARGE) { mach_msg_size_t real_size = (mach_msg_size_t) (vm_offset_t) kmsg; assert(real_size > rcv_size); (void) copyout(&real_size, &msg->msgh_size, sizeof(mach_msg_size_t)); } return mr; } kmsg->ikm_header.msgh_seqno = seqno; assert(kmsg->ikm_header.msgh_size <= rcv_size); } else { mr = ipc_mqueue_receive(mqueue, option & MACH_RCV_TIMEOUT, MACH_MSG_SIZE_MAX, time_out, FALSE, mach_msg_receive_continue, &kmsg, &seqno); /* mqueue is unlocked */ ipc_object_release(object); if (mr != MACH_MSG_SUCCESS) return mr; kmsg->ikm_header.msgh_seqno = seqno; if (kmsg->ikm_header.msgh_size > rcv_size) { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); return MACH_RCV_TOO_LARGE; } } if (option & MACH_RCV_NOTIFY) { if (notify == MACH_PORT_NULL) mr = MACH_RCV_INVALID_NOTIFY; else mr = ipc_kmsg_copyout(kmsg, space, map, notify); } else mr = ipc_kmsg_copyout(kmsg, space, map, MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); } return mr; } return ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); }
void kill_field(ciField* field) { current_map()->kill_field(field); }
void kill_array(ValueType* type) { current_map()->kill_array(type); }
uap->behav == MADV_FREE_REUSABLE)) { printf("** FOURK_COMPAT: %d[%s] " "failing madvise(0x%llx,0x%llx,%s)\n", p->p_pid, p->p_comm, start, size, ((uap->behav == MADV_FREE_REUSABLE) ? "MADV_FREE_REUSABLE" : "MADV_FREE")); DTRACE_VM3(fourk_compat_madvise, uint64_t, start, uint64_t, size, int, uap->behav); return EINVAL; } #endif /* __arm64__ */ user_map = current_map(); result = mach_vm_behavior_set(user_map, start, size, new_behavior); switch (result) { case KERN_SUCCESS: return 0; case KERN_INVALID_ADDRESS: return EINVAL; case KERN_NO_SPACE: return ENOMEM; } return EINVAL; } int
// implementation for abstract methods of ValueNumberingVisitor void kill_memory() { current_map()->kill_memory(); }
void kill_field(ciField* field, bool all_offsets) { current_map()->kill_field(field, all_offsets); assert(field->type()->basic_type() >= 0 && field->type()->basic_type() <= T_ARRAY, "Invalid type"); _has_field_store[field->type()->basic_type()] = true; }
int mprotect(__unused proc_t p, struct mprotect_args *uap, __unused int32_t *retval) { vm_prot_t prot; mach_vm_offset_t user_addr; mach_vm_size_t user_size; kern_return_t result; vm_map_t user_map; #if CONFIG_MACF int error; #endif AUDIT_ARG(addr, uap->addr); AUDIT_ARG(len, uap->len); AUDIT_ARG(value32, uap->prot); user_map = current_map(); user_addr = (mach_vm_offset_t) uap->addr; user_size = (mach_vm_size_t) uap->len; prot = (vm_prot_t)(uap->prot & (VM_PROT_ALL | VM_PROT_TRUSTED | VM_PROT_STRIP_READ)); if (user_addr & vm_map_page_mask(user_map)) { /* UNIX SPEC: user address is not page-aligned, return EINVAL */ return EINVAL; } #ifdef notyet /* Hmm .. */ #if defined(VM_PROT_READ_IS_EXEC) if (prot & VM_PROT_READ) prot |= VM_PROT_EXECUTE; #endif #endif /* notyet */ #if 3936456 if (prot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) prot |= VM_PROT_READ; #endif /* 3936456 */ #if defined(__arm64__) if (prot & VM_PROT_STRIP_READ) prot &= ~(VM_PROT_READ | VM_PROT_STRIP_READ); #endif #if CONFIG_MACF /* * The MAC check for mprotect is of limited use for 2 reasons: * Without mmap revocation, the caller could have asked for the max * protections initially instead of a reduced set, so a mprotect * check would offer no new security. * It is not possible to extract the vnode from the pager object(s) * of the target memory range. * However, the MAC check may be used to prevent a process from, * e.g., making the stack executable. */ error = mac_proc_check_mprotect(p, user_addr, user_size, prot); if (error) return (error); #endif if(prot & VM_PROT_TRUSTED) { #if CONFIG_DYNAMIC_CODE_SIGNING /* CODE SIGNING ENFORCEMENT - JIT support */ /* The special protection value VM_PROT_TRUSTED requests that we treat * this page as if it had a valid code signature. * If this is enabled, there MUST be a MAC policy implementing the * mac_proc_check_mprotect() hook above. Otherwise, Codesigning will be * compromised because the check would always succeed and thusly any * process could sign dynamically. */ result = vm_map_sign( user_map, vm_map_trunc_page(user_addr, vm_map_page_mask(user_map)), vm_map_round_page(user_addr+user_size, vm_map_page_mask(user_map))); switch (result) { case KERN_SUCCESS: break; case KERN_INVALID_ADDRESS: /* UNIX SPEC: for an invalid address range, return ENOMEM */ return ENOMEM; default: return EINVAL; } #else return ENOTSUP; #endif } prot &= ~VM_PROT_TRUSTED; result = mach_vm_protect(user_map, user_addr, user_size, FALSE, prot); switch (result) { case KERN_SUCCESS: return (0); case KERN_PROTECTION_FAILURE: return (EACCES); case KERN_INVALID_ADDRESS: /* UNIX SPEC: for an invalid address range, return ENOMEM */ return ENOMEM; } return (EINVAL); }
mach_msg_return_t mach_msg_overwrite( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t rcv_size, mach_port_name_t rcv_name, __unused mach_msg_timeout_t msg_timeout, __unused mach_port_name_t notify, __unused mach_msg_header_t *rcv_msg, __unused mach_msg_size_t rcv_msg_size) { ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_kmsg_t kmsg; mach_port_seqno_t seqno; mach_msg_return_t mr; mach_msg_trailer_size_t trailer_size; if (option & MACH_SEND_MSG) { mach_msg_size_t msg_and_trailer_size; mach_msg_max_trailer_t *max_trailer; if ((send_size < sizeof(mach_msg_header_t)) || (send_size & 3)) return MACH_SEND_MSG_TOO_SMALL; if (send_size > MACH_MSG_SIZE_MAX - MAX_TRAILER_SIZE) return MACH_SEND_TOO_LARGE; msg_and_trailer_size = send_size + MAX_TRAILER_SIZE; kmsg = ipc_kmsg_alloc(msg_and_trailer_size); if (kmsg == IKM_NULL) return MACH_SEND_NO_BUFFER; (void) memcpy((void *) kmsg->ikm_header, (const void *) msg, send_size); kmsg->ikm_header->msgh_size = send_size; /* * Reserve for the trailer the largest space (MAX_TRAILER_SIZE) * However, the internal size field of the trailer (msgh_trailer_size) * is initialized to the minimum (sizeof(mach_msg_trailer_t)), to optimize * the cases where no implicit data is requested. */ max_trailer = (mach_msg_max_trailer_t *) ((vm_offset_t)kmsg->ikm_header + send_size); max_trailer->msgh_sender = current_thread()->task->sec_token; max_trailer->msgh_audit = current_thread()->task->audit_token; max_trailer->msgh_trailer_type = MACH_MSG_TRAILER_FORMAT_0; max_trailer->msgh_trailer_size = MACH_MSG_TRAILER_MINIMUM_SIZE; mr = ipc_kmsg_copyin(kmsg, space, map, &option); if (mr != MACH_MSG_SUCCESS) { ipc_kmsg_free(kmsg); return mr; } do { mr = ipc_kmsg_send(kmsg, MACH_MSG_OPTION_NONE, MACH_MSG_TIMEOUT_NONE); } while (mr == MACH_SEND_INTERRUPTED); assert(mr == MACH_MSG_SUCCESS); } if (option & MACH_RCV_MSG) { thread_t self = current_thread(); do { ipc_object_t object; ipc_mqueue_t mqueue; mr = ipc_mqueue_copyin(space, rcv_name, &mqueue, &object); if (mr != MACH_MSG_SUCCESS) return mr; /* hold ref for object */ self->ith_continuation = (void (*)(mach_msg_return_t))0; ipc_mqueue_receive(mqueue, MACH_MSG_OPTION_NONE, MACH_MSG_SIZE_MAX, MACH_MSG_TIMEOUT_NONE, THREAD_ABORTSAFE); mr = self->ith_state; kmsg = self->ith_kmsg; seqno = self->ith_seqno; io_release(object); } while (mr == MACH_RCV_INTERRUPTED); if (mr != MACH_MSG_SUCCESS) return mr; trailer_size = ipc_kmsg_add_trailer(kmsg, space, option, current_thread(), seqno, TRUE, kmsg->ikm_header->msgh_remote_port->ip_context); if (rcv_size < (kmsg->ikm_header->msgh_size + trailer_size)) { ipc_kmsg_copyout_dest(kmsg, space); (void) memcpy((void *) msg, (const void *) kmsg->ikm_header, sizeof *msg); ipc_kmsg_free(kmsg); return MACH_RCV_TOO_LARGE; } mr = ipc_kmsg_copyout(kmsg, space, map, MACH_MSG_BODY_NULL, option); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { ipc_kmsg_put_to_kernel(msg, kmsg, kmsg->ikm_header->msgh_size + trailer_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) memcpy((void *) msg, (const void *) kmsg->ikm_header, sizeof *msg); ipc_kmsg_free(kmsg); } return mr; } (void) memcpy((void *) msg, (const void *) kmsg->ikm_header, kmsg->ikm_header->msgh_size + trailer_size); ipc_kmsg_free(kmsg); } return MACH_MSG_SUCCESS; }
static vm_map_t _current_map(void) { return current_map(); }
void kill_array(ValueType* type) { current_map()->kill_array(type); BasicType basic_type = as_BasicType(type); assert(basic_type >= 0 && basic_type <= T_ARRAY, "Invalid type"); _has_indexed_store[basic_type] = true; }
int mincore(__unused proc_t p, struct mincore_args *uap, __unused register_t *retval) { mach_vm_offset_t addr, first_addr, end; vm_map_t map; user_addr_t vec; int error; int vecindex, lastvecindex; int mincoreinfo=0; int pqueryinfo; kern_return_t ret; int numref; char c; map = current_map(); /* * Make sure that the addresses presented are valid for user * mode. */ first_addr = addr = mach_vm_trunc_page(uap->addr); end = addr + mach_vm_round_page(uap->len); if (end < addr) return (EINVAL); /* * Address of byte vector */ vec = uap->vec; map = current_map(); /* * Do this on a map entry basis so that if the pages are not * in the current processes address space, we can easily look * up the pages elsewhere. */ lastvecindex = -1; for( ; addr < end; addr += PAGE_SIZE ) { pqueryinfo = 0; ret = mach_vm_page_query(map, addr, &pqueryinfo, &numref); if (ret != KERN_SUCCESS) pqueryinfo = 0; mincoreinfo = 0; if (pqueryinfo & VM_PAGE_QUERY_PAGE_PRESENT) mincoreinfo |= MINCORE_INCORE; if (pqueryinfo & VM_PAGE_QUERY_PAGE_REF) mincoreinfo |= MINCORE_REFERENCED; if (pqueryinfo & VM_PAGE_QUERY_PAGE_DIRTY) mincoreinfo |= MINCORE_MODIFIED; /* * calculate index into user supplied byte vector */ vecindex = (addr - first_addr)>> PAGE_SHIFT; /* * If we have skipped map entries, we need to make sure that * the byte vector is zeroed for those skipped entries. */ while((lastvecindex + 1) < vecindex) { c = 0; error = copyout(&c, vec + lastvecindex, 1); if (error) { return (EFAULT); } ++lastvecindex; } /* * Pass the page information to the user */ c = (char)mincoreinfo; error = copyout(&c, vec + vecindex, 1); if (error) { return (EFAULT); } lastvecindex = vecindex; } /* * Zero the last entries in the byte vector. */ vecindex = (end - first_addr) >> PAGE_SHIFT; while((lastvecindex + 1) < vecindex) { c = 0; error = copyout(&c, vec + lastvecindex, 1); if (error) { return (EFAULT); } ++lastvecindex; } return (0); }
*/ mach_msg_return_t mach_msg_overwrite( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t rcv_size, mach_port_name_t rcv_name, __unused mach_msg_timeout_t msg_timeout, mach_msg_priority_t override, __unused mach_msg_header_t *rcv_msg, __unused mach_msg_size_t rcv_msg_size) { ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_kmsg_t kmsg; mach_port_seqno_t seqno; mach_msg_return_t mr; mach_msg_trailer_size_t trailer_size; if (option & MACH_SEND_MSG) { mach_msg_size_t msg_and_trailer_size; mach_msg_max_trailer_t *max_trailer; if ((send_size & 3) || send_size < sizeof(mach_msg_header_t) || (send_size < sizeof(mach_msg_body_t) && (msg->msgh_bits & MACH_MSGH_BITS_COMPLEX))) return MACH_SEND_MSG_TOO_SMALL; if (send_size > MACH_MSG_SIZE_MAX - MAX_TRAILER_SIZE)
kern_return_t map_fd_funneled( int fd, vm_object_offset_t offset, vm_offset_t *va, boolean_t findspace, vm_size_t size) { kern_return_t result; struct fileproc *fp; struct vnode *vp; void * pager; vm_offset_t map_addr=0; vm_size_t map_size; int err=0; vm_map_t my_map; proc_t p = current_proc(); struct vnode_attr vattr; /* * Find the inode; verify that it's a regular file. */ err = fp_lookup(p, fd, &fp, 0); if (err) return(err); if (fp->f_fglob->fg_type != DTYPE_VNODE){ err = KERN_INVALID_ARGUMENT; goto bad; } if (!(fp->f_fglob->fg_flag & FREAD)) { err = KERN_PROTECTION_FAILURE; goto bad; } vp = (struct vnode *)fp->f_fglob->fg_data; err = vnode_getwithref(vp); if(err != 0) goto bad; if (vp->v_type != VREG) { (void)vnode_put(vp); err = KERN_INVALID_ARGUMENT; goto bad; } AUDIT_ARG(vnpath, vp, ARG_VNODE1); /* * POSIX: mmap needs to update access time for mapped files */ if ((vnode_vfsvisflags(vp) & MNT_NOATIME) == 0) { VATTR_INIT(&vattr); nanotime(&vattr.va_access_time); VATTR_SET_ACTIVE(&vattr, va_access_time); vnode_setattr(vp, &vattr, vfs_context_current()); } if (offset & PAGE_MASK_64) { printf("map_fd: file offset not page aligned(%d : %s)\n",p->p_pid, p->p_comm); (void)vnode_put(vp); err = KERN_INVALID_ARGUMENT; goto bad; } map_size = round_page(size); /* * Allow user to map in a zero length file. */ if (size == 0) { (void)vnode_put(vp); err = KERN_SUCCESS; goto bad; } /* * Map in the file. */ pager = (void *)ubc_getpager(vp); if (pager == NULL) { (void)vnode_put(vp); err = KERN_FAILURE; goto bad; } my_map = current_map(); result = vm_map_64( my_map, &map_addr, map_size, (vm_offset_t)0, VM_FLAGS_ANYWHERE, pager, offset, TRUE, VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); if (result != KERN_SUCCESS) { (void)vnode_put(vp); err = result; goto bad; } if (!findspace) { vm_offset_t dst_addr; vm_map_copy_t tmp; if (copyin(CAST_USER_ADDR_T(va), &dst_addr, sizeof (dst_addr)) || trunc_page_32(dst_addr) != dst_addr) { (void) vm_map_remove( my_map, map_addr, map_addr + map_size, VM_MAP_NO_FLAGS); (void)vnode_put(vp); err = KERN_INVALID_ADDRESS; goto bad; } result = vm_map_copyin(my_map, (vm_map_address_t)map_addr, (vm_map_size_t)map_size, TRUE, &tmp); if (result != KERN_SUCCESS) { (void) vm_map_remove(my_map, vm_map_trunc_page(map_addr), vm_map_round_page(map_addr + map_size), VM_MAP_NO_FLAGS); (void)vnode_put(vp); err = result; goto bad; } result = vm_map_copy_overwrite(my_map, (vm_map_address_t)dst_addr, tmp, FALSE); if (result != KERN_SUCCESS) { vm_map_copy_discard(tmp); (void)vnode_put(vp); err = result; goto bad; } } else { if (copyout(&map_addr, CAST_USER_ADDR_T(va), sizeof (map_addr))) { (void) vm_map_remove(my_map, vm_map_trunc_page(map_addr), vm_map_round_page(map_addr + map_size), VM_MAP_NO_FLAGS); (void)vnode_put(vp); err = KERN_INVALID_ADDRESS; goto bad; } } ubc_setthreadcred(vp, current_proc(), current_thread()); (void)ubc_map(vp, (PROT_READ | PROT_EXEC)); (void)vnode_put(vp); err = 0; bad: fp_drop(p, fd, fp, 0); return (err); }
void mach_msg_receive_continue(void) { ipc_thread_t self = current_thread(); ipc_space_t space = current_space(); vm_map_t map = current_map(); mach_msg_header_t *msg = self->ith_msg; mach_msg_option_t option = self->ith_option; mach_msg_size_t rcv_size = self->ith_rcv_size; mach_msg_timeout_t time_out = self->ith_timeout; mach_port_t notify = self->ith_notify; ipc_object_t object = self->ith_object; ipc_mqueue_t mqueue = self->ith_mqueue; ipc_kmsg_t kmsg; mach_port_seqno_t seqno; mach_msg_return_t mr; if (option & MACH_RCV_LARGE) { mr = ipc_mqueue_receive(mqueue, option & MACH_RCV_TIMEOUT, rcv_size, time_out, TRUE, mach_msg_receive_continue, &kmsg, &seqno); /* mqueue is unlocked */ ipc_object_release(object); if (mr != MACH_MSG_SUCCESS) { if (mr == MACH_RCV_TOO_LARGE) { mach_msg_size_t real_size = (mach_msg_size_t) (vm_offset_t) kmsg; assert(real_size > rcv_size); (void) copyout(&real_size, &msg->msgh_size, sizeof(mach_msg_size_t)); } thread_syscall_return(mr); /*NOTREACHED*/ } kmsg->ikm_header.msgh_seqno = seqno; assert(kmsg->ikm_header.msgh_size <= rcv_size); } else { mr = ipc_mqueue_receive(mqueue, option & MACH_RCV_TIMEOUT, MACH_MSG_SIZE_MAX, time_out, TRUE, mach_msg_receive_continue, &kmsg, &seqno); /* mqueue is unlocked */ ipc_object_release(object); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } kmsg->ikm_header.msgh_seqno = seqno; if (kmsg->ikm_header.msgh_size > rcv_size) { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); thread_syscall_return(MACH_RCV_TOO_LARGE); /*NOTREACHED*/ } } if (option & MACH_RCV_NOTIFY) { if (notify == MACH_PORT_NULL) mr = MACH_RCV_INVALID_NOTIFY; else mr = ipc_kmsg_copyout(kmsg, space, map, notify); } else mr = ipc_kmsg_copyout(kmsg, space, map, MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); } thread_syscall_return(mr); /*NOTREACHED*/ } mr = ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); thread_syscall_return(mr); /*NOTREACHED*/ }
int msync_nocancel(__unused proc_t p, struct msync_nocancel_args *uap, __unused register_t *retval) { mach_vm_offset_t addr; mach_vm_size_t size; int flags; vm_map_t user_map; int rv; vm_sync_t sync_flags=0; addr = (mach_vm_offset_t) uap->addr; size = (mach_vm_size_t)uap->len; KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_msync) | DBG_FUNC_NONE), (uint32_t)(addr >> 32), (uint32_t)(size >> 32), 0, 0, 0); if (addr & PAGE_MASK_64) { /* UNIX SPEC: user address is not page-aligned, return EINVAL */ return EINVAL; } if (size == 0) { /* * We cannot support this properly without maintaining * list all mmaps done. Cannot use vm_map_entry as they could be * split or coalesced by indepenedant actions. So instead of * inaccurate results, lets just return error as invalid size * specified */ return (EINVAL); /* XXX breaks posix apps */ } flags = uap->flags; /* disallow contradictory flags */ if ((flags & (MS_SYNC|MS_ASYNC)) == (MS_SYNC|MS_ASYNC)) return (EINVAL); if (flags & MS_KILLPAGES) sync_flags |= VM_SYNC_KILLPAGES; if (flags & MS_DEACTIVATE) sync_flags |= VM_SYNC_DEACTIVATE; if (flags & MS_INVALIDATE) sync_flags |= VM_SYNC_INVALIDATE; if ( !(flags & (MS_KILLPAGES | MS_DEACTIVATE))) { if (flags & MS_ASYNC) sync_flags |= VM_SYNC_ASYNCHRONOUS; else sync_flags |= VM_SYNC_SYNCHRONOUS; } sync_flags |= VM_SYNC_CONTIGUOUS; /* complain if holes */ user_map = current_map(); rv = mach_vm_msync(user_map, addr, size, sync_flags); switch (rv) { case KERN_SUCCESS: break; case KERN_INVALID_ADDRESS: /* hole in region being sync'ed */ return (ENOMEM); case KERN_FAILURE: return (EIO); default: return (EINVAL); } return (0); }
/* * XXX Internally, we use VM_PROT_* somewhat interchangeably, but the correct * XXX usage is PROT_* from an interface perspective. Thus the values of * XXX VM_PROT_* and PROT_* need to correspond. */ int mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval) { /* * Map in special device (must be SHARED) or file */ struct fileproc *fp; register struct vnode *vp; int flags; int prot, file_prot; int err=0; vm_map_t user_map; kern_return_t result; mach_vm_offset_t user_addr; mach_vm_size_t user_size; vm_object_offset_t pageoff; vm_object_offset_t file_pos; int alloc_flags=0; boolean_t docow; vm_prot_t maxprot; void *handle; vm_pager_t pager; int mapanon=0; int fpref=0; int error =0; int fd = uap->fd; user_addr = (mach_vm_offset_t)uap->addr; user_size = (mach_vm_size_t) uap->len; AUDIT_ARG(addr, user_addr); AUDIT_ARG(len, user_size); AUDIT_ARG(fd, uap->fd); prot = (uap->prot & VM_PROT_ALL); #if 3777787 /* * Since the hardware currently does not support writing without * read-before-write, or execution-without-read, if the request is * for write or execute access, we must imply read access as well; * otherwise programs expecting this to work will fail to operate. */ if (prot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) prot |= VM_PROT_READ; #endif /* radar 3777787 */ flags = uap->flags; vp = NULLVP; /* * The vm code does not have prototypes & compiler doesn't do the' * the right thing when you cast 64bit value and pass it in function * call. So here it is. */ file_pos = (vm_object_offset_t)uap->pos; /* make sure mapping fits into numeric range etc */ if (file_pos + user_size > (vm_object_offset_t)-PAGE_SIZE_64) return (EINVAL); /* * Align the file position to a page boundary, * and save its page offset component. */ pageoff = (file_pos & PAGE_MASK); file_pos -= (vm_object_offset_t)pageoff; /* Adjust size for rounding (on both ends). */ user_size += pageoff; /* low end... */ user_size = mach_vm_round_page(user_size); /* hi end */ /* * Check for illegal addresses. Watch out for address wrap... Note * that VM_*_ADDRESS are not constants due to casts (argh). */ if (flags & MAP_FIXED) { /* * The specified address must have the same remainder * as the file offset taken modulo PAGE_SIZE, so it * should be aligned after adjustment by pageoff. */ user_addr -= pageoff; if (user_addr & PAGE_MASK) return (EINVAL); } #ifdef notyet /* DO not have apis to get this info, need to wait till then*/ /* * XXX for non-fixed mappings where no hint is provided or * the hint would fall in the potential heap space, * place it after the end of the largest possible heap. * * There should really be a pmap call to determine a reasonable * location. */ else if (addr < mach_vm_round_page(p->p_vmspace->vm_daddr + MAXDSIZ)) addr = mach_vm_round_page(p->p_vmspace->vm_daddr + MAXDSIZ); #endif alloc_flags = 0; if (flags & MAP_ANON) { /* * Mapping blank space is trivial. Use positive fds as the alias * value for memory tracking. */ if (fd != -1) { /* * Use "fd" to pass (some) Mach VM allocation flags, * (see the VM_FLAGS_* definitions). */ alloc_flags = fd & (VM_FLAGS_ALIAS_MASK | VM_FLAGS_PURGABLE); if (alloc_flags != fd) { /* reject if there are any extra flags */ return EINVAL; } } handle = NULL; maxprot = VM_PROT_ALL; file_pos = 0; mapanon = 1; } else { struct vnode_attr va; vfs_context_t ctx = vfs_context_current(); /* * Mapping file, get fp for validation. Obtain vnode and make * sure it is of appropriate type. */ err = fp_lookup(p, fd, &fp, 0); if (err) return(err); fpref = 1; if(fp->f_fglob->fg_type == DTYPE_PSXSHM) { uap->addr = (user_addr_t)user_addr; uap->len = (user_size_t)user_size; uap->prot = prot; uap->flags = flags; uap->pos = file_pos; error = pshm_mmap(p, uap, retval, fp, (off_t)pageoff); goto bad; } if (fp->f_fglob->fg_type != DTYPE_VNODE) { error = EINVAL; goto bad; } vp = (struct vnode *)fp->f_fglob->fg_data; error = vnode_getwithref(vp); if(error != 0) goto bad; if (vp->v_type != VREG && vp->v_type != VCHR) { (void)vnode_put(vp); error = EINVAL; goto bad; } AUDIT_ARG(vnpath, vp, ARG_VNODE1); /* * POSIX: mmap needs to update access time for mapped files */ if ((vnode_vfsvisflags(vp) & MNT_NOATIME) == 0) { VATTR_INIT(&va); nanotime(&va.va_access_time); VATTR_SET_ACTIVE(&va, va_access_time); vnode_setattr(vp, &va, ctx); } /* * XXX hack to handle use of /dev/zero to map anon memory (ala * SunOS). */ if (vp->v_type == VCHR || vp->v_type == VSTR) { (void)vnode_put(vp); error = ENODEV; goto bad; } else { /* * Ensure that file and memory protections are * compatible. Note that we only worry about * writability if mapping is shared; in this case, * current and max prot are dictated by the open file. * XXX use the vnode instead? Problem is: what * credentials do we use for determination? What if * proc does a setuid? */ maxprot = VM_PROT_EXECUTE; /* ??? */ if (fp->f_fglob->fg_flag & FREAD) maxprot |= VM_PROT_READ; else if (prot & PROT_READ) { (void)vnode_put(vp); error = EACCES; goto bad; } /* * If we are sharing potential changes (either via * MAP_SHARED or via the implicit sharing of character * device mappings), and we are trying to get write * permission although we opened it without asking * for it, bail out. */ if ((flags & MAP_SHARED) != 0) { if ((fp->f_fglob->fg_flag & FWRITE) != 0) { /* * check for write access * * Note that we already made this check when granting FWRITE * against the file, so it seems redundant here. */ error = vnode_authorize(vp, NULL, KAUTH_VNODE_CHECKIMMUTABLE, ctx); /* if not granted for any reason, but we wanted it, bad */ if ((prot & PROT_WRITE) && (error != 0)) { vnode_put(vp); goto bad; } /* if writable, remember */ if (error == 0) maxprot |= VM_PROT_WRITE; } else if ((prot & PROT_WRITE) != 0) { (void)vnode_put(vp); error = EACCES; goto bad; } } else maxprot |= VM_PROT_WRITE; handle = (void *)vp; #if CONFIG_MACF error = mac_file_check_mmap(vfs_context_ucred(ctx), fp->f_fglob, prot, flags, &maxprot); if (error) { (void)vnode_put(vp); goto bad; } #endif /* MAC */ } } if (user_size == 0) { if (!mapanon) (void)vnode_put(vp); error = 0; goto bad; } /* * We bend a little - round the start and end addresses * to the nearest page boundary. */ user_size = mach_vm_round_page(user_size); if (file_pos & PAGE_MASK_64) { if (!mapanon) (void)vnode_put(vp); error = EINVAL; goto bad; } user_map = current_map(); if ((flags & MAP_FIXED) == 0) { alloc_flags |= VM_FLAGS_ANYWHERE; user_addr = mach_vm_round_page(user_addr); } else { if (user_addr != mach_vm_trunc_page(user_addr)) { if (!mapanon) (void)vnode_put(vp); error = EINVAL; goto bad; } /* * mmap(MAP_FIXED) will replace any existing mappings in the * specified range, if the new mapping is successful. * If we just deallocate the specified address range here, * another thread might jump in and allocate memory in that * range before we get a chance to establish the new mapping, * and we won't have a chance to restore the old mappings. * So we use VM_FLAGS_OVERWRITE to let Mach VM know that it * has to deallocate the existing mappings and establish the * new ones atomically. */ alloc_flags |= VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE; } if (flags & MAP_NOCACHE) alloc_flags |= VM_FLAGS_NO_CACHE; /* * Lookup/allocate object. */ if (handle == NULL) { pager = NULL; #ifdef notyet /* Hmm .. */ #if defined(VM_PROT_READ_IS_EXEC) if (prot & VM_PROT_READ) prot |= VM_PROT_EXECUTE; if (maxprot & VM_PROT_READ) maxprot |= VM_PROT_EXECUTE; #endif #endif #if 3777787 if (prot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) prot |= VM_PROT_READ; if (maxprot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) maxprot |= VM_PROT_READ; #endif /* radar 3777787 */ result = vm_map_enter_mem_object(user_map, &user_addr, user_size, 0, alloc_flags, IPC_PORT_NULL, 0, FALSE, prot, maxprot, (flags & MAP_SHARED) ? VM_INHERIT_SHARE : VM_INHERIT_DEFAULT); if (result != KERN_SUCCESS) goto out; } else { pager = (vm_pager_t)ubc_getpager(vp); if (pager == NULL) { (void)vnode_put(vp); error = ENOMEM; goto bad; } /* * Set credentials: * FIXME: if we're writing the file we need a way to * ensure that someone doesn't replace our R/W creds * with ones that only work for read. */ ubc_setthreadcred(vp, p, current_thread()); docow = FALSE; if ((flags & (MAP_ANON|MAP_SHARED)) == 0) { docow = TRUE; } #ifdef notyet /* Hmm .. */ #if defined(VM_PROT_READ_IS_EXEC) if (prot & VM_PROT_READ) prot |= VM_PROT_EXECUTE; if (maxprot & VM_PROT_READ) maxprot |= VM_PROT_EXECUTE; #endif #endif /* notyet */ #if 3777787 if (prot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) prot |= VM_PROT_READ; if (maxprot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) maxprot |= VM_PROT_READ; #endif /* radar 3777787 */ result = vm_map_enter_mem_object(user_map, &user_addr, user_size, 0, alloc_flags, (ipc_port_t)pager, file_pos, docow, prot, maxprot, (flags & MAP_SHARED) ? VM_INHERIT_SHARE : VM_INHERIT_DEFAULT); if (result != KERN_SUCCESS) { (void)vnode_put(vp); goto out; } file_prot = prot & (PROT_READ | PROT_WRITE | PROT_EXEC); if (docow) { /* private mapping: won't write to the file */ file_prot &= ~PROT_WRITE; } (void) ubc_map(vp, file_prot); } if (!mapanon) (void)vnode_put(vp); out: switch (result) { case KERN_SUCCESS: *retval = user_addr + pageoff; error = 0; break; case KERN_INVALID_ADDRESS: case KERN_NO_SPACE: error = ENOMEM; break; case KERN_PROTECTION_FAILURE: error = EACCES; break; default: error = EINVAL; break; } bad: if (fpref) fp_drop(p, fd, fp, 0); KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_mmap) | DBG_FUNC_NONE), fd, (uint32_t)(*retval), (uint32_t)user_size, error, 0); KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO2, SYS_mmap) | DBG_FUNC_NONE), (uint32_t)(*retval >> 32), (uint32_t)(user_size >> 32), (uint32_t)(file_pos >> 32), (uint32_t)file_pos, 0); return(error); }
mach_msg_return_t mach_msg_trap( mach_msg_header_t *msg, mach_msg_option_t option, mach_msg_size_t send_size, mach_msg_size_t rcv_size, mach_port_t rcv_name, mach_msg_timeout_t time_out, mach_port_t notify) { mach_msg_return_t mr; /* first check for common cases */ if (option == (MACH_SEND_MSG|MACH_RCV_MSG)) { ipc_thread_t self = current_thread(); ipc_space_t space = self->task->itk_space; ipc_kmsg_t kmsg; ipc_port_t dest_port; ipc_object_t rcv_object; ipc_mqueue_t rcv_mqueue; mach_msg_size_t reply_size; /* * This case is divided into ten sections, each * with a label. There are five optimized * sections and six unoptimized sections, which * do the same thing but handle all possible * cases and are slower. * * The five sections for an RPC are * 1) Get request message into a buffer. * (fast_get or slow_get) * 2) Copyin request message and rcv_name. * (fast_copyin or slow_copyin) * 3) Enqueue request and dequeue reply. * (fast_send_receive or * slow_send and slow_receive) * 4) Copyout reply message. * (fast_copyout or slow_copyout) * 5) Put reply message to user's buffer. * (fast_put or slow_put) * * Keep the locking hierarchy firmly in mind. * (First spaces, then ports, then port sets, * then message queues.) Only a non-blocking * attempt can be made to acquire locks out of * order, or acquire two locks on the same level. * Acquiring two locks on the same level will * fail if the objects are really the same, * unless simple locking is disabled. This is OK, * because then the extra unlock does nothing. * * There are two major reasons these RPCs can't use * ipc_thread_switch, and use slow_send/slow_receive: * 1) Kernel RPCs. * 2) Servers fall behind clients, so * client doesn't find a blocked server thread and * server finds waiting messages and can't block. */ /* fast_get: */ /* * optimized ipc_kmsg_get * * No locks, references, or messages held. * We must clear ikm_cache before copyinmsg. */ if ((send_size > IKM_SAVED_MSG_SIZE) || (send_size < sizeof(mach_msg_header_t)) || (send_size & 3) || ((kmsg = ikm_cache()) == IKM_NULL)) goto slow_get; ikm_cache() = IKM_NULL; ikm_check_initialized(kmsg, IKM_SAVED_KMSG_SIZE); if (copyinmsg(msg, &kmsg->ikm_header, send_size)) { ikm_free(kmsg); goto slow_get; } kmsg->ikm_header.msgh_size = send_size; fast_copyin: /* * optimized ipc_kmsg_copyin/ipc_mqueue_copyin * * We have the request message data in kmsg. * Must still do copyin, send, receive, etc. * * If the message isn't simple, we can't combine * ipc_kmsg_copyin_header and ipc_mqueue_copyin, * because copyin of the message body might * affect rcv_name. */ switch (kmsg->ikm_header.msgh_bits) { case MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE): { ipc_entry_t table; ipc_entry_num_t size; ipc_port_t reply_port; /* sending a request message */ { mach_port_index_t index; mach_port_gen_t gen; { mach_port_t reply_name = kmsg->ikm_header.msgh_local_port; if (reply_name != rcv_name) goto slow_copyin; /* optimized ipc_entry_lookup of reply_name */ index = MACH_PORT_INDEX(reply_name); gen = MACH_PORT_GEN(reply_name); } is_read_lock(space); assert(space->is_active); size = space->is_table_size; table = space->is_table; if (index >= size) goto abort_request_copyin; { ipc_entry_t entry; ipc_entry_bits_t bits; entry = &table[index]; bits = entry->ie_bits; /* check generation number and type bit */ if ((bits & (IE_BITS_GEN_MASK| MACH_PORT_TYPE_RECEIVE)) != (gen | MACH_PORT_TYPE_RECEIVE)) goto abort_request_copyin; reply_port = (ipc_port_t) entry->ie_object; assert(reply_port != IP_NULL); } } /* optimized ipc_entry_lookup of dest_name */ { mach_port_index_t index; mach_port_gen_t gen; { mach_port_t dest_name = kmsg->ikm_header.msgh_remote_port; index = MACH_PORT_INDEX(dest_name); gen = MACH_PORT_GEN(dest_name); } if (index >= size) goto abort_request_copyin; { ipc_entry_t entry; ipc_entry_bits_t bits; entry = &table[index]; bits = entry->ie_bits; /* check generation number and type bit */ if ((bits & (IE_BITS_GEN_MASK|MACH_PORT_TYPE_SEND)) != (gen | MACH_PORT_TYPE_SEND)) goto abort_request_copyin; assert(IE_BITS_UREFS(bits) > 0); dest_port = (ipc_port_t) entry->ie_object; assert(dest_port != IP_NULL); } } /* * To do an atomic copyin, need simultaneous * locks on both ports and the space. If * dest_port == reply_port, and simple locking is * enabled, then we will abort. Otherwise it's * OK to unlock twice. */ ip_lock(dest_port); if (!ip_active(dest_port) || !ip_lock_try(reply_port)) { ip_unlock(dest_port); goto abort_request_copyin; } is_read_unlock(space); assert(dest_port->ip_srights > 0); dest_port->ip_srights++; ip_reference(dest_port); assert(ip_active(reply_port)); assert(reply_port->ip_receiver_name == kmsg->ikm_header.msgh_local_port); assert(reply_port->ip_receiver == space); reply_port->ip_sorights++; ip_reference(reply_port); kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE); kmsg->ikm_header.msgh_remote_port = (mach_port_t) dest_port; kmsg->ikm_header.msgh_local_port = (mach_port_t) reply_port; /* make sure we can queue to the destination */ if (dest_port->ip_receiver == ipc_space_kernel) { /* * The kernel server has a reference to * the reply port, which it hands back * to us in the reply message. We do * not need to keep another reference to * it. */ ip_unlock(reply_port); assert(ip_active(dest_port)); ip_unlock(dest_port); goto kernel_send; } if (dest_port->ip_msgcount >= dest_port->ip_qlimit) goto abort_request_send_receive; /* optimized ipc_mqueue_copyin */ if (reply_port->ip_pset != IPS_NULL) goto abort_request_send_receive; rcv_object = (ipc_object_t) reply_port; io_reference(rcv_object); rcv_mqueue = &reply_port->ip_messages; imq_lock(rcv_mqueue); io_unlock(rcv_object); goto fast_send_receive; abort_request_copyin: is_read_unlock(space); goto slow_copyin; abort_request_send_receive: ip_unlock(dest_port); ip_unlock(reply_port); goto slow_send; } case MACH_MSGH_BITS(MACH_MSG_TYPE_MOVE_SEND_ONCE, 0): { ipc_entry_num_t size; ipc_entry_t table; /* sending a reply message */ { mach_port_t reply_name = kmsg->ikm_header.msgh_local_port; if (reply_name != MACH_PORT_NULL) goto slow_copyin; } is_write_lock(space); assert(space->is_active); /* optimized ipc_entry_lookup */ size = space->is_table_size; table = space->is_table; { ipc_entry_t entry; mach_port_gen_t gen; mach_port_index_t index; { mach_port_t dest_name = kmsg->ikm_header.msgh_remote_port; index = MACH_PORT_INDEX(dest_name); gen = MACH_PORT_GEN(dest_name); } if (index >= size) goto abort_reply_dest_copyin; entry = &table[index]; /* check generation, collision bit, and type bit */ if ((entry->ie_bits & (IE_BITS_GEN_MASK| IE_BITS_COLLISION| MACH_PORT_TYPE_SEND_ONCE)) != (gen | MACH_PORT_TYPE_SEND_ONCE)) goto abort_reply_dest_copyin; /* optimized ipc_right_copyin */ assert(IE_BITS_TYPE(entry->ie_bits) == MACH_PORT_TYPE_SEND_ONCE); assert(IE_BITS_UREFS(entry->ie_bits) == 1); assert((entry->ie_bits & IE_BITS_MAREQUEST) == 0); if (entry->ie_request != 0) goto abort_reply_dest_copyin; dest_port = (ipc_port_t) entry->ie_object; assert(dest_port != IP_NULL); ip_lock(dest_port); if (!ip_active(dest_port)) { ip_unlock(dest_port); goto abort_reply_dest_copyin; } assert(dest_port->ip_sorights > 0); /* optimized ipc_entry_dealloc */ entry->ie_next = table->ie_next; table->ie_next = index; entry->ie_bits = gen; entry->ie_object = IO_NULL; } kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, 0); kmsg->ikm_header.msgh_remote_port = (mach_port_t) dest_port; /* make sure we can queue to the destination */ assert(dest_port->ip_receiver != ipc_space_kernel); /* optimized ipc_entry_lookup/ipc_mqueue_copyin */ { ipc_entry_t entry; ipc_entry_bits_t bits; { mach_port_index_t index; mach_port_gen_t gen; index = MACH_PORT_INDEX(rcv_name); gen = MACH_PORT_GEN(rcv_name); if (index >= size) goto abort_reply_rcv_copyin; entry = &table[index]; bits = entry->ie_bits; /* check generation number */ if ((bits & IE_BITS_GEN_MASK) != gen) goto abort_reply_rcv_copyin; } /* check type bits; looking for receive or set */ if (bits & MACH_PORT_TYPE_PORT_SET) { ipc_pset_t rcv_pset; rcv_pset = (ipc_pset_t) entry->ie_object; assert(rcv_pset != IPS_NULL); ips_lock(rcv_pset); assert(ips_active(rcv_pset)); rcv_object = (ipc_object_t) rcv_pset; rcv_mqueue = &rcv_pset->ips_messages; } else if (bits & MACH_PORT_TYPE_RECEIVE) { ipc_port_t rcv_port; rcv_port = (ipc_port_t) entry->ie_object; assert(rcv_port != IP_NULL); if (!ip_lock_try(rcv_port)) goto abort_reply_rcv_copyin; assert(ip_active(rcv_port)); if (rcv_port->ip_pset != IPS_NULL) { ip_unlock(rcv_port); goto abort_reply_rcv_copyin; } rcv_object = (ipc_object_t) rcv_port; rcv_mqueue = &rcv_port->ip_messages; } else goto abort_reply_rcv_copyin; } is_write_unlock(space); io_reference(rcv_object); imq_lock(rcv_mqueue); io_unlock(rcv_object); goto fast_send_receive; abort_reply_dest_copyin: is_write_unlock(space); goto slow_copyin; abort_reply_rcv_copyin: ip_unlock(dest_port); is_write_unlock(space); goto slow_send; } default: goto slow_copyin; } /*NOTREACHED*/ fast_send_receive: /* * optimized ipc_mqueue_send/ipc_mqueue_receive * * Finished get/copyin of kmsg and copyin of rcv_name. * space is unlocked, dest_port is locked, * we can queue kmsg to dest_port, * rcv_mqueue is locked, rcv_object holds a ref, * if rcv_object is a port it isn't in a port set * * Note that if simple locking is turned off, * then we could have dest_mqueue == rcv_mqueue * and not abort when we try to lock dest_mqueue. */ assert(ip_active(dest_port)); assert(dest_port->ip_receiver != ipc_space_kernel); assert((dest_port->ip_msgcount < dest_port->ip_qlimit) || (MACH_MSGH_BITS_REMOTE(kmsg->ikm_header.msgh_bits) == MACH_MSG_TYPE_PORT_SEND_ONCE)); assert((kmsg->ikm_header.msgh_bits & MACH_MSGH_BITS_CIRCULAR) == 0); { ipc_mqueue_t dest_mqueue; ipc_thread_t receiver; { ipc_pset_t dest_pset; dest_pset = dest_port->ip_pset; if (dest_pset == IPS_NULL) dest_mqueue = &dest_port->ip_messages; else dest_mqueue = &dest_pset->ips_messages; } if (!imq_lock_try(dest_mqueue)) { abort_send_receive: ip_unlock(dest_port); imq_unlock(rcv_mqueue); ipc_object_release(rcv_object); goto slow_send; } receiver = ipc_thread_queue_first(&dest_mqueue->imq_threads); if ((receiver == ITH_NULL) || (ipc_kmsg_queue_first(&rcv_mqueue->imq_messages) != IKM_NULL)) { imq_unlock(dest_mqueue); goto abort_send_receive; } /* * There is a receiver thread waiting, and * there is no reply message for us to pick up. * We have hope of hand-off, so save state. */ self->ith_msg = msg; self->ith_rcv_size = rcv_size; self->ith_object = rcv_object; self->ith_mqueue = rcv_mqueue; if ((receiver->swap_func == (void (*)()) mach_msg_continue) && thread_handoff(self, mach_msg_continue, receiver)) { assert(current_thread() == receiver); /* * We can use the optimized receive code, * because the receiver is using no options. */ } else if ((receiver->swap_func == (void (*)()) exception_raise_continue) && thread_handoff(self, mach_msg_continue, receiver)) { counter(c_mach_msg_trap_block_exc++); assert(current_thread() == receiver); /* * We are a reply message coming back through * the optimized exception-handling path. * Finish with rcv_mqueue and dest_mqueue, * and then jump to exception code with * dest_port still locked. We don't bother * with a sequence number in this case. */ ipc_thread_enqueue_macro( &rcv_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(rcv_mqueue); ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); imq_unlock(dest_mqueue); exception_raise_continue_fast(dest_port, kmsg); /*NOTREACHED*/ return MACH_MSG_SUCCESS; } else if ((send_size <= receiver->ith_msize) && thread_handoff(self, mach_msg_continue, receiver)) { assert(current_thread() == receiver); if ((receiver->swap_func == (void (*)()) mach_msg_receive_continue) && ((receiver->ith_option & MACH_RCV_NOTIFY) == 0)) { /* * We can still use the optimized code. */ } else { counter(c_mach_msg_trap_block_slow++); /* * We are running as the receiver, * but we can't use the optimized code. * Finish send/receive processing. */ dest_port->ip_msgcount++; ip_unlock(dest_port); ipc_thread_enqueue_macro( &rcv_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(rcv_mqueue); ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); receiver->ith_state = MACH_MSG_SUCCESS; receiver->ith_kmsg = kmsg; receiver->ith_seqno = dest_port->ip_seqno++; imq_unlock(dest_mqueue); /* * Call the receiver's continuation. */ receiver->wait_result = THREAD_AWAKENED; (*receiver->swap_func)(); /*NOTREACHED*/ return MACH_MSG_SUCCESS; } } else { /* * The receiver can't accept the message, * or we can't switch to the receiver. */ imq_unlock(dest_mqueue); goto abort_send_receive; } counter(c_mach_msg_trap_block_fast++); /* * Safe to unlock dest_port now that we are * committed to this path, because we hold * dest_mqueue locked. We never bother changing * dest_port->ip_msgcount. */ ip_unlock(dest_port); /* * We need to finish preparing self for its * time asleep in rcv_mqueue. */ ipc_thread_enqueue_macro(&rcv_mqueue->imq_threads, self); self->ith_state = MACH_RCV_IN_PROGRESS; self->ith_msize = MACH_MSG_SIZE_MAX; imq_unlock(rcv_mqueue); /* * Finish extracting receiver from dest_mqueue. */ ipc_thread_rmqueue_first_macro( &dest_mqueue->imq_threads, receiver); kmsg->ikm_header.msgh_seqno = dest_port->ip_seqno++; imq_unlock(dest_mqueue); /* * We don't have to do any post-dequeue processing of * the message. We never incremented ip_msgcount, we * know it has no msg-accepted request, and blocked * senders aren't a worry because we found the port * with a receiver waiting. */ self = receiver; space = self->task->itk_space; msg = self->ith_msg; rcv_size = self->ith_rcv_size; rcv_object = self->ith_object; /* inline ipc_object_release */ io_lock(rcv_object); io_release(rcv_object); io_check_unlock(rcv_object); } fast_copyout: /* * Nothing locked and no references held, except * we have kmsg with msgh_seqno filled in. Must * still check against rcv_size and do * ipc_kmsg_copyout/ipc_kmsg_put. */ assert((ipc_port_t) kmsg->ikm_header.msgh_remote_port == dest_port); reply_size = kmsg->ikm_header.msgh_size; if (rcv_size < reply_size) goto slow_copyout; /* optimized ipc_kmsg_copyout/ipc_kmsg_copyout_header */ switch (kmsg->ikm_header.msgh_bits) { case MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, MACH_MSG_TYPE_PORT_SEND_ONCE): { ipc_port_t reply_port = (ipc_port_t) kmsg->ikm_header.msgh_local_port; mach_port_t dest_name, reply_name; /* receiving a request message */ if (!IP_VALID(reply_port)) goto slow_copyout; is_write_lock(space); assert(space->is_active); /* * To do an atomic copyout, need simultaneous * locks on both ports and the space. If * dest_port == reply_port, and simple locking is * enabled, then we will abort. Otherwise it's * OK to unlock twice. */ ip_lock(dest_port); if (!ip_active(dest_port) || !ip_lock_try(reply_port)) goto abort_request_copyout; if (!ip_active(reply_port)) { ip_unlock(reply_port); goto abort_request_copyout; } assert(reply_port->ip_sorights > 0); ip_unlock(reply_port); { ipc_entry_t table; ipc_entry_t entry; mach_port_index_t index; /* optimized ipc_entry_get */ table = space->is_table; index = table->ie_next; if (index == 0) goto abort_request_copyout; entry = &table[index]; table->ie_next = entry->ie_next; entry->ie_request = 0; { mach_port_gen_t gen; assert((entry->ie_bits &~ IE_BITS_GEN_MASK) == 0); gen = entry->ie_bits + IE_BITS_GEN_ONE; reply_name = MACH_PORT_MAKE(index, gen); /* optimized ipc_right_copyout */ entry->ie_bits = gen | (MACH_PORT_TYPE_SEND_ONCE | 1); } assert(MACH_PORT_VALID(reply_name)); entry->ie_object = (ipc_object_t) reply_port; is_write_unlock(space); } /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_srights > 0); ip_release(dest_port); if (dest_port->ip_receiver == space) dest_name = dest_port->ip_receiver_name; else dest_name = MACH_PORT_NULL; if ((--dest_port->ip_srights == 0) && (dest_port->ip_nsrequest != IP_NULL)) { ipc_port_t nsrequest; mach_port_mscount_t mscount; /* a rather rare case */ nsrequest = dest_port->ip_nsrequest; mscount = dest_port->ip_mscount; dest_port->ip_nsrequest = IP_NULL; ip_unlock(dest_port); ipc_notify_no_senders(nsrequest, mscount); } else ip_unlock(dest_port); if (! ipc_port_flag_protected_payload(dest_port)) { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( MACH_MSG_TYPE_PORT_SEND_ONCE, MACH_MSG_TYPE_PORT_SEND); kmsg->ikm_header.msgh_local_port = dest_name; } else { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( MACH_MSG_TYPE_PORT_SEND_ONCE, MACH_MSG_TYPE_PROTECTED_PAYLOAD); kmsg->ikm_header.msgh_protected_payload = dest_port->ip_protected_payload; } kmsg->ikm_header.msgh_remote_port = reply_name; goto fast_put; abort_request_copyout: ip_unlock(dest_port); is_write_unlock(space); goto slow_copyout; } case MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, 0): { mach_port_t dest_name; /* receiving a reply message */ ip_lock(dest_port); if (!ip_active(dest_port)) goto slow_copyout; /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_sorights > 0); if (dest_port->ip_receiver == space) { ip_release(dest_port); dest_port->ip_sorights--; dest_name = dest_port->ip_receiver_name; ip_unlock(dest_port); } else { ip_unlock(dest_port); ipc_notify_send_once(dest_port); dest_name = MACH_PORT_NULL; } if (! ipc_port_flag_protected_payload(dest_port)) { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PORT_SEND_ONCE); kmsg->ikm_header.msgh_local_port = dest_name; } else { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PROTECTED_PAYLOAD); kmsg->ikm_header.msgh_protected_payload = dest_port->ip_protected_payload; } kmsg->ikm_header.msgh_remote_port = MACH_PORT_NULL; goto fast_put; } case MACH_MSGH_BITS_COMPLEX| MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND_ONCE, 0): { mach_port_t dest_name; /* receiving a complex reply message */ ip_lock(dest_port); if (!ip_active(dest_port)) goto slow_copyout; /* optimized ipc_object_copyout_dest */ assert(dest_port->ip_sorights > 0); if (dest_port->ip_receiver == space) { ip_release(dest_port); dest_port->ip_sorights--; dest_name = dest_port->ip_receiver_name; ip_unlock(dest_port); } else { ip_unlock(dest_port); ipc_notify_send_once(dest_port); dest_name = MACH_PORT_NULL; } if (! ipc_port_flag_protected_payload(dest_port)) { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PORT_SEND_ONCE); kmsg->ikm_header.msgh_local_port = dest_name; } else { kmsg->ikm_header.msgh_bits = MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS( 0, MACH_MSG_TYPE_PROTECTED_PAYLOAD); kmsg->ikm_header.msgh_protected_payload = dest_port->ip_protected_payload; } kmsg->ikm_header.msgh_remote_port = MACH_PORT_NULL; mr = ipc_kmsg_copyout_body( (vm_offset_t) (&kmsg->ikm_header + 1), (vm_offset_t) &kmsg->ikm_header + kmsg->ikm_header.msgh_size, space, current_map()); if (mr != MACH_MSG_SUCCESS) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); return mr | MACH_RCV_BODY_ERROR; } goto fast_put; } default: goto slow_copyout; } /*NOTREACHED*/ fast_put: /* * We have the reply message data in kmsg, * and the reply message size in reply_size. * Just need to copy it out to the user and free kmsg. * We must check ikm_cache after copyoutmsg. */ ikm_check_initialized(kmsg, kmsg->ikm_size); if ((kmsg->ikm_size != IKM_SAVED_KMSG_SIZE) || copyoutmsg(&kmsg->ikm_header, msg, reply_size) || (ikm_cache() != IKM_NULL)) goto slow_put; ikm_cache() = kmsg; thread_syscall_return(MACH_MSG_SUCCESS); /*NOTREACHED*/ return MACH_MSG_SUCCESS; /* help for the compiler */ /* * The slow path has a few non-register temporary * variables used only for call-by-reference. */ { ipc_kmsg_t temp_kmsg; mach_port_seqno_t temp_seqno; ipc_object_t temp_rcv_object; ipc_mqueue_t temp_rcv_mqueue; slow_get: /* * No locks, references, or messages held. * Still have to get the request, send it, * receive reply, etc. */ mr = ipc_kmsg_get(msg, send_size, &temp_kmsg); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } kmsg = temp_kmsg; /* try to get back on optimized path */ goto fast_copyin; slow_copyin: /* * We have the message data in kmsg, but * we still need to copyin, send it, * receive a reply, and do copyout. */ mr = ipc_kmsg_copyin(kmsg, space, current_map(), MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { ikm_free(kmsg); thread_syscall_return(mr); /*NOTREACHED*/ } /* try to get back on optimized path */ if (kmsg->ikm_header.msgh_bits & MACH_MSGH_BITS_CIRCULAR) goto slow_send; dest_port = (ipc_port_t) kmsg->ikm_header.msgh_remote_port; assert(IP_VALID(dest_port)); ip_lock(dest_port); if (dest_port->ip_receiver == ipc_space_kernel) { assert(ip_active(dest_port)); ip_unlock(dest_port); goto kernel_send; } if (ip_active(dest_port) && ((dest_port->ip_msgcount < dest_port->ip_qlimit) || (MACH_MSGH_BITS_REMOTE(kmsg->ikm_header.msgh_bits) == MACH_MSG_TYPE_PORT_SEND_ONCE))) { /* * Try an optimized ipc_mqueue_copyin. * It will work if this is a request message. */ ipc_port_t reply_port; reply_port = (ipc_port_t) kmsg->ikm_header.msgh_local_port; if (IP_VALID(reply_port)) { if (ip_lock_try(reply_port)) { if (ip_active(reply_port) && reply_port->ip_receiver == space && reply_port->ip_receiver_name == rcv_name && reply_port->ip_pset == IPS_NULL) { /* Grab a reference to the reply port. */ rcv_object = (ipc_object_t) reply_port; io_reference(rcv_object); rcv_mqueue = &reply_port->ip_messages; imq_lock(rcv_mqueue); io_unlock(rcv_object); goto fast_send_receive; } ip_unlock(reply_port); } } } ip_unlock(dest_port); goto slow_send; kernel_send: /* * Special case: send message to kernel services. * The request message has been copied into the * kmsg. Nothing is locked. */ { ipc_port_t reply_port; /* * Perform the kernel function. */ kmsg = ipc_kobject_server(kmsg); if (kmsg == IKM_NULL) { /* * No reply. Take the * slow receive path. */ goto slow_get_rcv_port; } /* * Check that: * the reply port is alive * we hold the receive right * the name has not changed. * the port is not in a set * If any of these are not true, * we cannot directly receive the reply * message. */ reply_port = (ipc_port_t) kmsg->ikm_header.msgh_remote_port; ip_lock(reply_port); if ((!ip_active(reply_port)) || (reply_port->ip_receiver != space) || (reply_port->ip_receiver_name != rcv_name) || (reply_port->ip_pset != IPS_NULL)) { ip_unlock(reply_port); ipc_mqueue_send_always(kmsg); goto slow_get_rcv_port; } rcv_mqueue = &reply_port->ip_messages; imq_lock(rcv_mqueue); /* keep port locked, and don`t change ref count yet */ /* * If there are messages on the port * or other threads waiting for a message, * we cannot directly receive the reply. */ if ((ipc_thread_queue_first(&rcv_mqueue->imq_threads) != ITH_NULL) || (ipc_kmsg_queue_first(&rcv_mqueue->imq_messages) != IKM_NULL)) { imq_unlock(rcv_mqueue); ip_unlock(reply_port); ipc_mqueue_send_always(kmsg); goto slow_get_rcv_port; } /* * We can directly receive this reply. * Since the kernel reply never blocks, * it holds no message_accepted request. * Since there were no messages queued * on the reply port, there should be * no threads blocked waiting to send. */ assert(kmsg->ikm_marequest == IMAR_NULL); assert(ipc_thread_queue_first(&reply_port->ip_blocked) == ITH_NULL); dest_port = reply_port; kmsg->ikm_header.msgh_seqno = dest_port->ip_seqno++; imq_unlock(rcv_mqueue); /* * inline ipc_object_release. * Port is still locked. * Reference count was not incremented. */ ip_check_unlock(reply_port); /* copy out the kernel reply */ goto fast_copyout; } slow_send: /* * Nothing is locked. We have acquired kmsg, but * we still need to send it and receive a reply. */ mr = ipc_mqueue_send(kmsg, MACH_MSG_OPTION_NONE, MACH_MSG_TIMEOUT_NONE); if (mr != MACH_MSG_SUCCESS) { mr |= ipc_kmsg_copyout_pseudo(kmsg, space, current_map()); assert(kmsg->ikm_marequest == IMAR_NULL); (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); thread_syscall_return(mr); /*NOTREACHED*/ } slow_get_rcv_port: /* * We have sent the message. Copy in the receive port. */ mr = ipc_mqueue_copyin(space, rcv_name, &temp_rcv_mqueue, &temp_rcv_object); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } rcv_mqueue = temp_rcv_mqueue; rcv_object = temp_rcv_object; /* hold ref for rcv_object; rcv_mqueue is locked */ /* slow_receive: */ /* * Now we have sent the request and copied in rcv_name, * so rcv_mqueue is locked and hold ref for rcv_object. * Just receive a reply and try to get back to fast path. * * ipc_mqueue_receive may not return, because if we block * then our kernel stack may be discarded. So we save * state here for mach_msg_continue to pick up. */ self->ith_msg = msg; self->ith_rcv_size = rcv_size; self->ith_object = rcv_object; self->ith_mqueue = rcv_mqueue; mr = ipc_mqueue_receive(rcv_mqueue, MACH_MSG_OPTION_NONE, MACH_MSG_SIZE_MAX, MACH_MSG_TIMEOUT_NONE, FALSE, mach_msg_continue, &temp_kmsg, &temp_seqno); /* rcv_mqueue is unlocked */ ipc_object_release(rcv_object); if (mr != MACH_MSG_SUCCESS) { thread_syscall_return(mr); /*NOTREACHED*/ } (kmsg = temp_kmsg)->ikm_header.msgh_seqno = temp_seqno; dest_port = (ipc_port_t) kmsg->ikm_header.msgh_remote_port; goto fast_copyout; slow_copyout: /* * Nothing locked and no references held, except * we have kmsg with msgh_seqno filled in. Must * still check against rcv_size and do * ipc_kmsg_copyout/ipc_kmsg_put. */ reply_size = kmsg->ikm_header.msgh_size; if (rcv_size < reply_size) { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); thread_syscall_return(MACH_RCV_TOO_LARGE); /*NOTREACHED*/ } mr = ipc_kmsg_copyout(kmsg, space, current_map(), MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); } thread_syscall_return(mr); /*NOTREACHED*/ } /* try to get back on optimized path */ goto fast_put; slow_put: mr = ipc_kmsg_put(msg, kmsg, reply_size); thread_syscall_return(mr); /*NOTREACHED*/ } } else if (option == MACH_SEND_MSG) { ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_kmsg_t kmsg; mr = ipc_kmsg_get(msg, send_size, &kmsg); if (mr != MACH_MSG_SUCCESS) return mr; mr = ipc_kmsg_copyin(kmsg, space, map, MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { ikm_free(kmsg); return mr; } mr = ipc_mqueue_send(kmsg, MACH_MSG_OPTION_NONE, MACH_MSG_TIMEOUT_NONE); if (mr != MACH_MSG_SUCCESS) { mr |= ipc_kmsg_copyout_pseudo(kmsg, space, map); assert(kmsg->ikm_marequest == IMAR_NULL); (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } return mr; } else if (option == MACH_RCV_MSG) { ipc_thread_t self = current_thread(); ipc_space_t space = current_space(); vm_map_t map = current_map(); ipc_object_t object; ipc_mqueue_t mqueue; ipc_kmsg_t kmsg; mach_port_seqno_t seqno; mr = ipc_mqueue_copyin(space, rcv_name, &mqueue, &object); if (mr != MACH_MSG_SUCCESS) return mr; /* hold ref for object; mqueue is locked */ /* * ipc_mqueue_receive may not return, because if we block * then our kernel stack may be discarded. So we save * state here for mach_msg_continue to pick up. */ self->ith_msg = msg; self->ith_rcv_size = rcv_size; self->ith_object = object; self->ith_mqueue = mqueue; mr = ipc_mqueue_receive(mqueue, MACH_MSG_OPTION_NONE, MACH_MSG_SIZE_MAX, MACH_MSG_TIMEOUT_NONE, FALSE, mach_msg_continue, &kmsg, &seqno); /* mqueue is unlocked */ ipc_object_release(object); if (mr != MACH_MSG_SUCCESS) return mr; kmsg->ikm_header.msgh_seqno = seqno; if (rcv_size < kmsg->ikm_header.msgh_size) { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); return MACH_RCV_TOO_LARGE; } mr = ipc_kmsg_copyout(kmsg, space, map, MACH_PORT_NULL); if (mr != MACH_MSG_SUCCESS) { if ((mr &~ MACH_MSG_MASK) == MACH_RCV_BODY_ERROR) { (void) ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else { ipc_kmsg_copyout_dest(kmsg, space); (void) ipc_kmsg_put(msg, kmsg, sizeof *msg); } return mr; } return ipc_kmsg_put(msg, kmsg, kmsg->ikm_header.msgh_size); } else if (option == MACH_MSG_OPTION_NONE) { /* * We can measure the "null mach_msg_trap" * (syscall entry and thread_syscall_return exit) * with this path. */ thread_syscall_return(MACH_MSG_SUCCESS); /*NOTREACHED*/ } if (option & MACH_SEND_MSG) { mr = mach_msg_send(msg, option, send_size, time_out, notify); if (mr != MACH_MSG_SUCCESS) return mr; } if (option & MACH_RCV_MSG) { mr = mach_msg_receive(msg, option, rcv_size, rcv_name, time_out, notify); if (mr != MACH_MSG_SUCCESS) return mr; } return MACH_MSG_SUCCESS; }
int mprotect(__unused proc_t p, struct mprotect_args *uap, __unused register_t *retval) { register vm_prot_t prot; mach_vm_offset_t user_addr; mach_vm_size_t user_size; kern_return_t result; vm_map_t user_map; #if CONFIG_MACF int error; #endif AUDIT_ARG(addr, uap->addr); AUDIT_ARG(len, uap->len); AUDIT_ARG(value, uap->prot); user_addr = (mach_vm_offset_t) uap->addr; user_size = (mach_vm_size_t) uap->len; prot = (vm_prot_t)(uap->prot & VM_PROT_ALL); if (user_addr & PAGE_MASK_64) { /* UNIX SPEC: user address is not page-aligned, return EINVAL */ return EINVAL; } #ifdef notyet /* Hmm .. */ #if defined(VM_PROT_READ_IS_EXEC) if (prot & VM_PROT_READ) prot |= VM_PROT_EXECUTE; #endif #endif /* notyet */ #if 3936456 if (prot & (VM_PROT_EXECUTE | VM_PROT_WRITE)) prot |= VM_PROT_READ; #endif /* 3936456 */ user_map = current_map(); #if CONFIG_MACF /* * The MAC check for mprotect is of limited use for 2 reasons: * Without mmap revocation, the caller could have asked for the max * protections initially instead of a reduced set, so a mprotect * check would offer no new security. * It is not possible to extract the vnode from the pager object(s) * of the target memory range. * However, the MAC check may be used to prevent a process from, * e.g., making the stack executable. */ error = mac_proc_check_mprotect(p, user_addr, user_size, prot); if (error) return (error); #endif result = mach_vm_protect(user_map, user_addr, user_size, FALSE, prot); switch (result) { case KERN_SUCCESS: return (0); case KERN_PROTECTION_FAILURE: return (EACCES); case KERN_INVALID_ADDRESS: /* UNIX SPEC: for an invalid address range, return ENOMEM */ return ENOMEM; } return (EINVAL); }