void _cldClipCylinderToTriangle(sData& cData,const dVector3 &v0, const dVector3 &v1, const dVector3 &v2) { int i = 0; dVector3 avPoints[3]; dVector3 avTempArray1[nMAX_CYLINDER_TRIANGLE_CLIP_POINTS]; dVector3 avTempArray2[nMAX_CYLINDER_TRIANGLE_CLIP_POINTS]; dSetZero(&avTempArray1[0][0],nMAX_CYLINDER_TRIANGLE_CLIP_POINTS * 4); dSetZero(&avTempArray2[0][0],nMAX_CYLINDER_TRIANGLE_CLIP_POINTS * 4); // setup array of triangle vertices dVector3Copy(v0,avPoints[0]); dVector3Copy(v1,avPoints[1]); dVector3Copy(v2,avPoints[2]); dVector3 vCylinderCirclePos, vCylinderCircleNormal_Rel; dSetZero(vCylinderCircleNormal_Rel,4); // check which circle from cylinder we take for clipping if ( dVector3Dot(cData.vCylinderAxis , cData.vContactNormal) > REAL(0.0)) { // get top circle vCylinderCirclePos[0] = cData.vCylinderPos[0] + cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[1] = cData.vCylinderPos[1] + cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[2] = cData.vCylinderPos[2] + cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5)); vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(-1.0); } else { // get bottom circle vCylinderCirclePos[0] = cData.vCylinderPos[0] - cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[1] = cData.vCylinderPos[1] - cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[2] = cData.vCylinderPos[2] - cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5)); vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(1.0); } dVector3 vTemp; dQuatInv(cData.qCylinderRot , cData.qInvCylinderRot); // transform triangle points to space of cylinder circle for(i=0; i<3; i++) { dVector3Subtract(avPoints[i] , vCylinderCirclePos , vTemp); dQuatTransform(cData.qInvCylinderRot,vTemp,avPoints[i]); } int iTmpCounter1 = 0; int iTmpCounter2 = 0; dVector4 plPlane; // plane of cylinder that contains circle for intersection //plPlane = Plane4f( vCylinderCircleNormal_Rel, 0.0f ); dConstructPlane(vCylinderCircleNormal_Rel,REAL(0.0),plPlane); dClipPolyToPlane(avPoints, 3, avTempArray1, iTmpCounter1, plPlane); // Body of base circle of Cylinder int nCircleSegment = 0; for (nCircleSegment = 0; nCircleSegment < nCYLINDER_CIRCLE_SEGMENTS; nCircleSegment++) { dConstructPlane(cData.avCylinderNormals[nCircleSegment],cData.fCylinderRadius,plPlane); if (0 == (nCircleSegment % 2)) { dClipPolyToPlane( avTempArray1 , iTmpCounter1 , avTempArray2, iTmpCounter2, plPlane); } else { dClipPolyToPlane( avTempArray2, iTmpCounter2, avTempArray1 , iTmpCounter1 , plPlane ); } dIASSERT( iTmpCounter1 >= 0 && iTmpCounter1 <= nMAX_CYLINDER_TRIANGLE_CLIP_POINTS ); dIASSERT( iTmpCounter2 >= 0 && iTmpCounter2 <= nMAX_CYLINDER_TRIANGLE_CLIP_POINTS ); } // back transform clipped points to absolute space dReal ftmpdot; dReal fTempDepth; dVector3 vPoint; if (nCircleSegment %2) { for( i=0; i<iTmpCounter2; i++) { dQuatTransform(cData.qCylinderRot,avTempArray2[i], vPoint); vPoint[0] += vCylinderCirclePos[0]; vPoint[1] += vCylinderCirclePos[1]; vPoint[2] += vCylinderCirclePos[2]; dVector3Subtract(vPoint,cData.vCylinderPos,vTemp); ftmpdot = dFabs(dVector3Dot(vTemp, cData.vContactNormal)); fTempDepth = cData.fBestrt - ftmpdot; // Depth must be positive if (fTempDepth > REAL(0.0)) { cData.gLocalContacts[cData.nContacts].fDepth = fTempDepth; dVector3Copy(cData.vContactNormal,cData.gLocalContacts[cData.nContacts].vNormal); dVector3Copy(vPoint,cData.gLocalContacts[cData.nContacts].vPos); cData.gLocalContacts[cData.nContacts].nFlags = 1; cData.nContacts++; if(cData.nContacts >= (cData.iFlags & NUMC_MASK)) return;; } } } else { for( i=0; i<iTmpCounter1; i++) { dQuatTransform(cData.qCylinderRot,avTempArray1[i], vPoint); vPoint[0] += vCylinderCirclePos[0]; vPoint[1] += vCylinderCirclePos[1]; vPoint[2] += vCylinderCirclePos[2]; dVector3Subtract(vPoint,cData.vCylinderPos,vTemp); ftmpdot = dFabs(dVector3Dot(vTemp, cData.vContactNormal)); fTempDepth = cData.fBestrt - ftmpdot; // Depth must be positive if (fTempDepth > REAL(0.0)) { cData.gLocalContacts[cData.nContacts].fDepth = fTempDepth; dVector3Copy(cData.vContactNormal,cData.gLocalContacts[cData.nContacts].vNormal); dVector3Copy(vPoint,cData.gLocalContacts[cData.nContacts].vPos); cData.gLocalContacts[cData.nContacts].nFlags = 1; cData.nContacts++; if(cData.nContacts >= (cData.iFlags & NUMC_MASK)) return;; } } } }
void _cldClipBoxToCylinder(sCylinderBoxData& cData ) { dVector3 vCylinderCirclePos, vCylinderCircleNormal_Rel; // check which circle from cylinder we take for clipping if ( dVector3Dot(cData.vCylinderAxis, cData.vNormal) > REAL(0.0) ) { // get top circle vCylinderCirclePos[0] = cData.vCylinderPos[0] + cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[1] = cData.vCylinderPos[1] + cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[2] = cData.vCylinderPos[2] + cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5)); vCylinderCircleNormal_Rel[0] = REAL(0.0); vCylinderCircleNormal_Rel[1] = REAL(0.0); vCylinderCircleNormal_Rel[2] = REAL(0.0); vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(-1.0); } else { // get bottom circle vCylinderCirclePos[0] = cData.vCylinderPos[0] - cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[1] = cData.vCylinderPos[1] - cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5)); vCylinderCirclePos[2] = cData.vCylinderPos[2] - cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5)); vCylinderCircleNormal_Rel[0] = REAL(0.0); vCylinderCircleNormal_Rel[1] = REAL(0.0); vCylinderCircleNormal_Rel[2] = REAL(0.0); vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(1.0); } // vNr is normal in Box frame, pointing from Cylinder to Box dVector3 vNr; dMatrix3 mBoxInv; // Find a way to use quaternion dMatrix3Inv(cData.mBoxRot,mBoxInv); dMultiplyMat3Vec3(mBoxInv,cData.vNormal,vNr); dVector3 vAbsNormal; vAbsNormal[0] = dFabs( vNr[0] ); vAbsNormal[1] = dFabs( vNr[1] ); vAbsNormal[2] = dFabs( vNr[2] ); // find which face in box is closest to cylinder int iB0, iB1, iB2; // Different from Croteam's code if (vAbsNormal[1] > vAbsNormal[0]) { // 1 > 0 if (vAbsNormal[0]> vAbsNormal[2]) { // 0 > 2 -> 1 > 0 >2 iB0 = 1; iB1 = 0; iB2 = 2; } else { // 2 > 0-> Must compare 1 and 2 if (vAbsNormal[1] > vAbsNormal[2]) { // 1 > 2 -> 1 > 2 > 0 iB0 = 1; iB1 = 2; iB2 = 0; } else { // 2 > 1 -> 2 > 1 > 0; iB0 = 2; iB1 = 1; iB2 = 0; } } } else { // 0 > 1 if (vAbsNormal[1] > vAbsNormal[2]) { // 1 > 2 -> 0 > 1 > 2 iB0 = 0; iB1 = 1; iB2 = 2; } else { // 2 > 1 -> Must compare 0 and 2 if (vAbsNormal[0] > vAbsNormal[2]) { // 0 > 2 -> 0 > 2 > 1; iB0 = 0; iB1 = 2; iB2 = 1; } else { // 2 > 0 -> 2 > 0 > 1; iB0 = 2; iB1 = 0; iB2 = 1; } } } dVector3 vCenter; // find center of box polygon dVector3 vTemp; if (vNr[iB0] > 0) { dMat3GetCol(cData.mBoxRot,iB0,vTemp); vCenter[0] = cData.vBoxPos[0] - cData.vBoxHalfSize[iB0]*vTemp[0]; vCenter[1] = cData.vBoxPos[1] - cData.vBoxHalfSize[iB0]*vTemp[1]; vCenter[2] = cData.vBoxPos[2] - cData.vBoxHalfSize[iB0]*vTemp[2]; } else { dMat3GetCol(cData.mBoxRot,iB0,vTemp); vCenter[0] = cData.vBoxPos[0] + cData.vBoxHalfSize[iB0]*vTemp[0]; vCenter[1] = cData.vBoxPos[1] + cData.vBoxHalfSize[iB0]*vTemp[1]; vCenter[2] = cData.vBoxPos[2] + cData.vBoxHalfSize[iB0]*vTemp[2]; } // find the vertices of box polygon dVector3 avPoints[4]; dVector3 avTempArray1[MAX_CYLBOX_CLIP_POINTS]; dVector3 avTempArray2[MAX_CYLBOX_CLIP_POINTS]; int i=0; for(i=0; i<MAX_CYLBOX_CLIP_POINTS; i++) { avTempArray1[i][0] = REAL(0.0); avTempArray1[i][1] = REAL(0.0); avTempArray1[i][2] = REAL(0.0); avTempArray2[i][0] = REAL(0.0); avTempArray2[i][1] = REAL(0.0); avTempArray2[i][2] = REAL(0.0); } dVector3 vAxis1, vAxis2; dMat3GetCol(cData.mBoxRot,iB1,vAxis1); dMat3GetCol(cData.mBoxRot,iB2,vAxis2); avPoints[0][0] = vCenter[0] + cData.vBoxHalfSize[iB1] * vAxis1[0] - cData.vBoxHalfSize[iB2] * vAxis2[0]; avPoints[0][1] = vCenter[1] + cData.vBoxHalfSize[iB1] * vAxis1[1] - cData.vBoxHalfSize[iB2] * vAxis2[1]; avPoints[0][2] = vCenter[2] + cData.vBoxHalfSize[iB1] * vAxis1[2] - cData.vBoxHalfSize[iB2] * vAxis2[2]; avPoints[1][0] = vCenter[0] - cData.vBoxHalfSize[iB1] * vAxis1[0] - cData.vBoxHalfSize[iB2] * vAxis2[0]; avPoints[1][1] = vCenter[1] - cData.vBoxHalfSize[iB1] * vAxis1[1] - cData.vBoxHalfSize[iB2] * vAxis2[1]; avPoints[1][2] = vCenter[2] - cData.vBoxHalfSize[iB1] * vAxis1[2] - cData.vBoxHalfSize[iB2] * vAxis2[2]; avPoints[2][0] = vCenter[0] - cData.vBoxHalfSize[iB1] * vAxis1[0] + cData.vBoxHalfSize[iB2] * vAxis2[0]; avPoints[2][1] = vCenter[1] - cData.vBoxHalfSize[iB1] * vAxis1[1] + cData.vBoxHalfSize[iB2] * vAxis2[1]; avPoints[2][2] = vCenter[2] - cData.vBoxHalfSize[iB1] * vAxis1[2] + cData.vBoxHalfSize[iB2] * vAxis2[2]; avPoints[3][0] = vCenter[0] + cData.vBoxHalfSize[iB1] * vAxis1[0] + cData.vBoxHalfSize[iB2] * vAxis2[0]; avPoints[3][1] = vCenter[1] + cData.vBoxHalfSize[iB1] * vAxis1[1] + cData.vBoxHalfSize[iB2] * vAxis2[1]; avPoints[3][2] = vCenter[2] + cData.vBoxHalfSize[iB1] * vAxis1[2] + cData.vBoxHalfSize[iB2] * vAxis2[2]; // transform box points to space of cylinder circle dMatrix3 mCylinderInv; dMatrix3Inv(cData.mCylinderRot,mCylinderInv); for(i=0; i<4; i++) { dVector3Subtract(avPoints[i],vCylinderCirclePos,vTemp); dMultiplyMat3Vec3(mCylinderInv,vTemp,avPoints[i]); } int iTmpCounter1 = 0; int iTmpCounter2 = 0; dVector4 plPlane; // plane of cylinder that contains circle for intersection dConstructPlane(vCylinderCircleNormal_Rel,REAL(0.0),plPlane); dClipPolyToPlane(avPoints, 4, avTempArray1, iTmpCounter1, plPlane); // Body of base circle of Cylinder int nCircleSegment = 0; for (nCircleSegment = 0; nCircleSegment < nCYLINDER_SEGMENT; nCircleSegment++) { dConstructPlane(cData.avCylinderNormals[nCircleSegment],cData.fCylinderRadius,plPlane); if (0 == (nCircleSegment % 2)) { dClipPolyToPlane( avTempArray1 , iTmpCounter1 , avTempArray2, iTmpCounter2, plPlane); } else { dClipPolyToPlane( avTempArray2, iTmpCounter2, avTempArray1 , iTmpCounter1 , plPlane ); } dIASSERT( iTmpCounter1 >= 0 && iTmpCounter1 <= MAX_CYLBOX_CLIP_POINTS ); dIASSERT( iTmpCounter2 >= 0 && iTmpCounter2 <= MAX_CYLBOX_CLIP_POINTS ); } // back transform clipped points to absolute space dReal ftmpdot; dReal fTempDepth; dVector3 vPoint; if (nCircleSegment %2) { for( i=0; i<iTmpCounter2; i++) { dMULTIPLY0_331(vPoint,cData.mCylinderRot,avTempArray2[i]); vPoint[0] += vCylinderCirclePos[0]; vPoint[1] += vCylinderCirclePos[1]; vPoint[2] += vCylinderCirclePos[2]; dVector3Subtract(vPoint,cData.vCylinderPos,vTemp); ftmpdot = dVector3Dot(vTemp, cData.vNormal); fTempDepth = cData.fBestrc - ftmpdot; // Depth must be positive if (fTempDepth > REAL(0.0)) { // generate contacts dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip); Contact0->depth = fTempDepth; dVector3Copy(cData.vNormal,Contact0->normal); dVector3Copy(vPoint,Contact0->pos); Contact0->g1 = cData.gCylinder; Contact0->g2 = cData.gBox; dVector3Inv(Contact0->normal); cData.nContacts++; } } } else { for( i=0; i<iTmpCounter1; i++) { dMULTIPLY0_331(vPoint,cData.mCylinderRot,avTempArray1[i]); vPoint[0] += vCylinderCirclePos[0]; vPoint[1] += vCylinderCirclePos[1]; vPoint[2] += vCylinderCirclePos[2]; dVector3Subtract(vPoint,cData.vCylinderPos,vTemp); ftmpdot = dVector3Dot(vTemp, cData.vNormal); fTempDepth = cData.fBestrc - ftmpdot; // Depth must be positive if (fTempDepth > REAL(0.0)) { // generate contacts dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip); Contact0->depth = fTempDepth; dVector3Copy(cData.vNormal,Contact0->normal); dVector3Copy(vPoint,Contact0->pos); Contact0->g1 = cData.gCylinder; Contact0->g2 = cData.gBox; dVector3Inv(Contact0->normal); cData.nContacts++; } } } }