// Ripped from Opcode 1.1.
static bool GetContactData(const dVector3& Center, dReal Radius, const dVector3 Origin, const dVector3 Edge0, const dVector3 Edge1, dReal& Dist, float& u, float& v){
	//calculate plane of triangle
	dVector4 Plane;
	dCROSS(Plane, =, Edge0, Edge1);
	Plane[3] = dDOT(Plane, Origin);
 
	//normalize
        dNormalize4(Plane);
  
	/* If the center of the sphere is within the positive halfspace of the
         * triangle's plane, allow a contact to be generated.
         * If the center of the sphere made it into the positive halfspace of a
         * back-facing triangle, then the physics update and/or velocity needs
         * to be adjusted (penetration has occured anyway).
         */
  
	float side = dDOT(Plane,Center) - Plane[3];
  
	if(side < 0.0f) {
		return false;
        }
  
        // now onto the bulk of the collision...

	dVector3 Diff;
	Diff[0] = Origin[0] - Center[0];
	Diff[1] = Origin[1] - Center[1];
	Diff[2] = Origin[2] - Center[2];
	Diff[3] = Origin[3] - Center[3];

	float A00 = dDOT(Edge0, Edge0);
	float A01 = dDOT(Edge0, Edge1);
	float A11 = dDOT(Edge1, Edge1);

	float B0 = dDOT(Diff, Edge0);
	float B1 = dDOT(Diff, Edge1);

	float C = dDOT(Diff, Diff);

	float Det = dFabs(A00 * A11 - A01 * A01);
	u = A01 * B1 - A11 * B0;
	v = A01 * B0 - A00 * B1;

	float DistSq;

	if (u + v <= Det){
		if(u < REAL(0.0)){
			if(v < REAL(0.0)){  // region 4
				if(B0 < REAL(0.0)){
					v = REAL(0.0);
					if (-B0 >= A00){
						u = REAL(1.0);
						DistSq = A00 + REAL(2.0) * B0 + C;
					}
					else{
						u = -B0 / A00;
						DistSq = B0 * u + C;
					}
				}
				else{
					u = REAL(0.0);
					if(B1 >= REAL(0.0)){
						v = REAL(0.0);
						DistSq = C;
					}
					else if(-B1 >= A11){
						v = REAL(1.0);
						DistSq = A11 + REAL(2.0) * B1 + C;
					}
					else{
						v = -B1 / A11;
						DistSq = B1 * v + C;
					}
				}
			}
			else{  // region 3
				u = REAL(0.0);
				if(B1 >= REAL(0.0)){
					v = REAL(0.0);
					DistSq = C;
				}
				else if(-B1 >= A11){
					v = REAL(1.0);
					DistSq = A11 + REAL(2.0) * B1 + C;
				}
				else{
					v = -B1 / A11;
					DistSq = B1 * v + C;
				}
			}
		}
		else if(v < REAL(0.0)){  // region 5
			v = REAL(0.0);
			if (B0 >= REAL(0.0)){
				u = REAL(0.0);
				DistSq = C;
			}
			else if (-B0 >= A00){
				u = REAL(1.0);
				DistSq = A00 + REAL(2.0) * B0 + C;
			}
			else{
				u = -B0 / A00;
				DistSq = B0 * u + C;
			}
		}
		else{  // region 0
			// minimum at interior point
			if (Det == REAL(0.0)){
				u = REAL(0.0);
				v = REAL(0.0);
				DistSq = FLT_MAX;
			}
			else{
				float InvDet = REAL(1.0) / Det;
				u *= InvDet;
				v *= InvDet;
				DistSq = u * (A00 * u + A01 * v + REAL(2.0) * B0) + v * (A01 * u + A11 * v + REAL(2.0) * B1) + C;
			}
		}
	}
	else{
		float Tmp0, Tmp1, Numer, Denom;

		if(u < REAL(0.0)){  // region 2
			Tmp0 = A01 + B0;
			Tmp1 = A11 + B1;
			if (Tmp1 > Tmp0){
				Numer = Tmp1 - Tmp0;
				Denom = A00 - REAL(2.0) * A01 + A11;
				if (Numer >= Denom){
					u = REAL(1.0);
					v = REAL(0.0);
					DistSq = A00 + REAL(2.0) * B0 + C;
				}
				else{
					u = Numer / Denom;
					v = REAL(1.0) - u;
					DistSq = u * (A00 * u + A01 * v + REAL(2.0) * B0) + v * (A01 * u + A11 * v + REAL(2.0) * B1) + C;
				}
			}
			else{
				u = REAL(0.0);
				if(Tmp1 <= REAL(0.0)){
					v = REAL(1.0);
					DistSq = A11 + REAL(2.0) * B1 + C;
				}
				else if(B1 >= REAL(0.0)){
					v = REAL(0.0);
					DistSq = C;
				}
				else{
					v = -B1 / A11;
					DistSq = B1 * v + C;
				}
			}
		}
		else if(v < REAL(0.0)){  // region 6
			Tmp0 = A01 + B1;
			Tmp1 = A00 + B0;
			if (Tmp1 > Tmp0){
				Numer = Tmp1 - Tmp0;
				Denom = A00 - REAL(2.0) * A01 + A11;
				if (Numer >= Denom){
					v = REAL(1.0);
					u = REAL(0.0);
					DistSq = A11 + REAL(2.0) * B1 + C;
				}
				else{
					v = Numer / Denom;
					u = REAL(1.0) - v;
					DistSq =  u * (A00 * u + A01 * v + REAL(2.0) * B0) + v * (A01 * u + A11 * v + REAL(2.0) * B1) + C;
				}
			}
			else{
				v = REAL(0.0);
				if (Tmp1 <= REAL(0.0)){
					u = REAL(1.0);
					DistSq = A00 + REAL(2.0) * B0 + C;
				}
				else if(B0 >= REAL(0.0)){
					u = REAL(0.0);
					DistSq = C;
				}
				else{
					u = -B0 / A00;
					DistSq = B0 * u + C;
				}
			}
		}
		else{  // region 1
			Numer = A11 + B1 - A01 - B0;
			if (Numer <= REAL(0.0)){
				u = REAL(0.0);
				v = REAL(1.0);
				DistSq = A11 + REAL(2.0) * B1 + C;
			}
			else{
				Denom = A00 - REAL(2.0) * A01 + A11;
				if (Numer >= Denom){
					u = REAL(1.0);
					v = REAL(0.0);
					DistSq = A00 + REAL(2.0) * B0 + C;
				}
				else{
					u = Numer / Denom;
					v = REAL(1.0) - u;
					DistSq = u * (A00 * u + A01 * v + REAL(2.0) * B0) + v * (A01 * u + A11 * v + REAL(2.0) * B1) + C;
				}
			}
		}
	}

	Dist = dSqrt(dFabs(DistSq));

	if (Dist <= Radius){
		Dist = Radius - Dist;
		return true;
	}
	else return false;
}
예제 #2
0
int dcTriListCollider::CollideBox(dxGeom* Box, int Flags, dContactGeom* Contacts, int Stride)
{
	Fvector AABB;
	dVector3 BoxSides;
	dGeomBoxGetLengths(Box,BoxSides);
	dReal* R=const_cast<dReal*>(dGeomGetRotation(Box));
	AABB.x=(dFabs(BoxSides[0]*R[0])+dFabs(BoxSides[1]*R[1])+dFabs(BoxSides[2]*R[2]))/2.f +10.f*EPS_L;
	AABB.y=(dFabs(BoxSides[0]*R[4])+dFabs(BoxSides[1]*R[5])+dFabs(BoxSides[2]*R[6]))/2.f +10.f*EPS_L;
	AABB.z=(dFabs(BoxSides[0]*R[8])+dFabs(BoxSides[1]*R[9])+dFabs(BoxSides[2]*R[10]))/2.f+10.f*EPS_L;
	dBodyID box_body=dGeomGetBody(Box);
	if(box_body)	{
		const dReal*velocity=dBodyGetLinearVel(box_body);
		AABB.x+=dFabs(velocity[0])*0.04f;
		AABB.y+=dFabs(velocity[1])*0.04f;
		AABB.z+=dFabs(velocity[2])*0.04f;

	}

	
	BoxTri	bt(*this);
	return dSortTriPrimitiveCollide
		(bt,
		Box,
		Geometry,
		Flags,
		Contacts,   
		Stride,
		AABB
		);
}
dReal doStuffAndGetError (int n)
{
  switch (n) {

  // ********** fixed joint

  case 0: {			// 2 body
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    // check the orientations are the same
    const dReal *R1 = dBodyGetRotation (body[0]);
    const dReal *R2 = dBodyGetRotation (body[1]);
    dReal err1 = dMaxDifference (R1,R2,3,3);
    // check the body offset is correct
    dVector3 p,pp;
    const dReal *p1 = dBodyGetPosition (body[0]);
    const dReal *p2 = dBodyGetPosition (body[1]);
    for (int i=0; i<3; i++) p[i] = p2[i] - p1[i];
    dMULTIPLY1_331 (pp,R1,p);
    pp[0] += 0.5;
    pp[1] += 0.5;
    return (err1 + length (pp)) * 300;
  }

  case 1: {			// 1 body to static env
    addOscillatingTorque (0.1);

    // check the orientation is the identity
    dReal err1 = cmpIdentity (dBodyGetRotation (body[0]));

    // check the body offset is correct
    dVector3 p;
    const dReal *p1 = dBodyGetPosition (body[0]);
    for (int i=0; i<3; i++) p[i] = p1[i];
    p[0] -= 0.25;
    p[1] -= 0.25;
    p[2] -= 1;
    return (err1 + length (p)) * 1e6;
  }

  case 2: {			// 2 body
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    // check the body offset is correct
    // Should really check body rotation too.  Oh well.
    const dReal *R1 = dBodyGetRotation (body[0]);
    dVector3 p,pp;
    const dReal *p1 = dBodyGetPosition (body[0]);
    const dReal *p2 = dBodyGetPosition (body[1]);
    for (int i=0; i<3; i++) p[i] = p2[i] - p1[i];
    dMULTIPLY1_331 (pp,R1,p);
    pp[0] += 0.5;
    pp[1] += 0.5;
    return length(pp) * 300;
  }

  case 3: {			// 1 body to static env with relative rotation
    addOscillatingTorque (0.1);

    // check the body offset is correct
    dVector3 p;
    const dReal *p1 = dBodyGetPosition (body[0]);
    for (int i=0; i<3; i++) p[i] = p1[i];
    p[0] -= 0.25;
    p[1] -= 0.25;
    p[2] -= 1;
    return  length (p) * 1e6;
  }


  // ********** hinge joint

  case 200:			// 2 body
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    return dInfinity;

  case 220:			// hinge angle polarity test
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    if (iteration == 40) {
      dReal a = dJointGetHingeAngle (joint);
      if (a > 0.5 && a < 1) return 0; else return 10;
    }
    return 0;

  case 221: {			// hinge angle rate test
    static dReal last_angle = 0;
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    dReal a = dJointGetHingeAngle (joint);
    dReal r = dJointGetHingeAngleRate (joint);
    dReal er = (a-last_angle)/STEPSIZE;		// estimated rate
    last_angle = a;
    return fabs(r-er) * 4e4;
  }

  case 230:			// hinge motor rate (and polarity) test
  case 231: {			// ...with stops
    static dReal a = 0;
    dReal r = dJointGetHingeAngleRate (joint);
    dReal err = fabs (cos(a) - r);
    if (a==0) err = 0;
    a += 0.03;
    dJointSetHingeParam (joint,dParamVel,cos(a));
    if (n==231) return dInfinity;
    return err * 1e6;
  }

  // ********** slider joint

  case 300:			// 2 body
    addOscillatingTorque (0.05);
    dampRotationalMotion (0.1);
    addSpringForce (0.5);
    return dInfinity;

  case 320:			// slider angle polarity test
    dBodyAddForce (body[0],0,0,0.1);
    dBodyAddForce (body[1],0,0,-0.1);
    if (iteration == 40) {
      dReal a = dJointGetSliderPosition (joint);
      if (a > 0.2 && a < 0.5) return 0; else return 10;
      return a;
    }
    return 0;

  case 321: {			// slider angle rate test
    static dReal last_pos = 0;
    dBodyAddForce (body[0],0,0,0.1);
    dBodyAddForce (body[1],0,0,-0.1);
    dReal p = dJointGetSliderPosition (joint);
    dReal r = dJointGetSliderPositionRate (joint);
    dReal er = (p-last_pos)/STEPSIZE;	// estimated rate (almost exact)
    last_pos = p;
    return fabs(r-er) * 1e9;
  }

  case 330:			// slider motor rate (and polarity) test
  case 331: {			// ...with stops
    static dReal a = 0;
    dReal r = dJointGetSliderPositionRate (joint);
    dReal err = fabs (0.7*cos(a) - r);
    if (a < 0.04) err = 0;
    a += 0.03;
    dJointSetSliderParam (joint,dParamVel,0.7*cos(a));
    if (n==331) return dInfinity;
    return err * 1e6;
  }

  // ********** hinge-2 joint

  case 420:			// hinge-2 steering angle polarity test
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    if (iteration == 40) {
      dReal a = dJointGetHinge2Angle1 (joint);
      if (a > 0.5 && a < 0.6) return 0; else return 10;
    }
    return 0;

  case 421: {			// hinge-2 steering angle rate test
    static dReal last_angle = 0;
    dBodyAddTorque (body[0],0,0,0.01);
    dBodyAddTorque (body[1],0,0,-0.01);
    dReal a = dJointGetHinge2Angle1 (joint);
    dReal r = dJointGetHinge2Angle1Rate (joint);
    dReal er = (a-last_angle)/STEPSIZE;		// estimated rate
    last_angle = a;
    return fabs(r-er)*2e4;
  }

  case 430:			// hinge 2 steering motor rate (+polarity) test
  case 431: {			// ...with stops
    static dReal a = 0;
    dReal r = dJointGetHinge2Angle1Rate (joint);
    dReal err = fabs (cos(a) - r);
    if (a==0) err = 0;
    a += 0.03;
    dJointSetHinge2Param (joint,dParamVel,cos(a));
    if (n==431) return dInfinity;
    return err * 1e6;
  }

  case 432: {			// hinge 2 wheel motor rate (+polarity) test
    static dReal a = 0;
    dReal r = dJointGetHinge2Angle2Rate (joint);
    dReal err = fabs (cos(a) - r);
    if (a==0) err = 0;
    a += 0.03;
    dJointSetHinge2Param (joint,dParamVel2,cos(a));
    return err * 1e6;
  }

  // ********** angular motor joint

  case 600: {			// test euler angle calculations
    // desired euler angles from last iteration
    static dReal a1,a2,a3;

    // find actual euler angles
    dReal aa1 = dJointGetAMotorAngle (joint,0);
    dReal aa2 = dJointGetAMotorAngle (joint,1);
    dReal aa3 = dJointGetAMotorAngle (joint,2);
    // printf ("actual  = %.4f %.4f %.4f\n\n",aa1,aa2,aa3);

    dReal err = dInfinity;
    if (iteration > 0) {
      err = dFabs(aa1-a1) + dFabs(aa2-a2) + dFabs(aa3-a3);
      err *= 1e10;
    }

    // get random base rotation for both bodies
    dMatrix3 Rbase;
    dRFromAxisAndAngle (Rbase, 3*(dRandReal()-0.5), 3*(dRandReal()-0.5),
			3*(dRandReal()-0.5), 3*(dRandReal()-0.5));
    dBodySetRotation (body[0],Rbase);

    // rotate body 2 by random euler angles w.r.t. body 1
    a1 = 3.14 * 2 * (dRandReal()-0.5);
    a2 = 1.57 * 2 * (dRandReal()-0.5);
    a3 = 3.14 * 2 * (dRandReal()-0.5);
    dMatrix3 R1,R2,R3,Rtmp1,Rtmp2;
    dRFromAxisAndAngle (R1,0,0,1,-a1);
    dRFromAxisAndAngle (R2,0,1,0,a2);
    dRFromAxisAndAngle (R3,1,0,0,-a3);
    dMultiply0 (Rtmp1,R2,R3,3,3,3);
    dMultiply0 (Rtmp2,R1,Rtmp1,3,3,3);
    dMultiply0 (Rtmp1,Rbase,Rtmp2,3,3,3);
    dBodySetRotation (body[1],Rtmp1);
    // printf ("desired = %.4f %.4f %.4f\n",a1,a2,a3);

    return err;
  }

  // ********** universal joint

  case 700: {		// 2 body: joint constraint
    dVector3 ax1, ax2;

    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 701: {		// 2 body: angle 1 rate
    static dReal last_angle = 0;
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    // I'm not sure why the error is so large here.
    return fabs(r - er) * 1e1;
  }

  case 702: {		// 2 body: angle 2 rate
    static dReal last_angle = 0;
    addOscillatingTorque (0.1);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    // I'm not sure why the error is so large here.
    return fabs(r - er) * 1e1;
  }

  case 720: {		// universal transmit torque test: constraint error
    dVector3 ax1, ax2;
    addOscillatingTorqueAbout (0.1, 1, 1, 0);
    dampRotationalMotion (0.1);
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 721: {		// universal transmit torque test: angle1 rate
    static dReal last_angle = 0;
    addOscillatingTorqueAbout (0.1, 1, 1, 0);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 722: {		// universal transmit torque test: angle2 rate
    static dReal last_angle = 0;
    addOscillatingTorqueAbout (0.1, 1, 1, 0);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 730:{
    dVector3 ax1, ax2;
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax1[0], ax1[1], ax1[2]);
    dampRotationalMotion (0.1);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 731:{
    dVector3 ax1;
    static dReal last_angle = 0;
    dJointGetUniversalAxis1(joint, ax1);
    addOscillatingTorqueAbout (0.1, ax1[0], ax1[1], ax1[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 2e3;
  }

  case 732:{
    dVector3 ax1;
    static dReal last_angle = 0;
    dJointGetUniversalAxis1(joint, ax1);
    addOscillatingTorqueAbout (0.1, ax1[0], ax1[1], ax1[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 740:{
    dVector3 ax1, ax2;
    dJointGetUniversalAxis1(joint, ax1);
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax2[0], ax2[1], ax2[2]);
    dampRotationalMotion (0.1);
    return fabs(10*dDOT(ax1, ax2));
  }

  case 741:{
    dVector3 ax2;
    static dReal last_angle = 0;
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax2[0], ax2[1], ax2[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle1(joint);
    dReal r = dJointGetUniversalAngle1Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e10;
  }

  case 742:{
    dVector3 ax2;
    static dReal last_angle = 0;
    dJointGetUniversalAxis2(joint, ax2);
    addOscillatingTorqueAbout (0.1, ax2[0], ax2[1], ax2[2]);
    dampRotationalMotion (0.1);
    dReal a = dJointGetUniversalAngle2(joint);
    dReal r = dJointGetUniversalAngle2Rate(joint);
    dReal diff = a - last_angle;
    if (diff > M_PI) diff -= 2*M_PI;
    if (diff < -M_PI) diff += 2*M_PI;
    dReal er = diff / STEPSIZE;    // estimated rate
    last_angle = a;
    return fabs(r - er) * 1e4;
  }
  }

  return dInfinity;
}
예제 #4
0
int test_box_point_depth()
{
  int i,j;
  dVector3 s,p,q,q2;	// s = box sides
  dMatrix3 R;
  dReal ss,d;		// ss = smallest side

  dSimpleSpace space(0);
  dGeomID box = dCreateBox (0,1,1,1);
  dSpaceAdd (space,box);

  // ********** make a random box

  for (j=0; j<3; j++) s[j] = dRandReal() + 0.1;
  dGeomBoxSetLengths (box,s[0],s[1],s[2]);
  dMakeRandomVector (p,3,1.0);
  dGeomSetPosition (box,p[0],p[1],p[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (box,R);

  // ********** test center point has depth of smallest side

  ss = 1e9;
  for (j=0; j<3; j++) if (s[j] < ss) ss = s[j];
  if (dFabs(dGeomBoxPointDepth (box,p[0],p[1],p[2]) - 0.5*ss) > tol)
    FAILED();

  // ********** test point on surface has depth 0

  for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j];
  i = dRandInt (3);
  if (dRandReal() > 0.5) q[i] = 0.5*s[i]; else q[i] = -0.5*s[i];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  if (dFabs(dGeomBoxPointDepth (box,q2[0],q2[1],q2[2])) > tol) FAILED();

  // ********** test points outside box have -ve depth

  for (j=0; j<3; j++) {
    q[j] = 0.5*s[j] + dRandReal() + 0.01;
    if (dRandReal() > 0.5) q[j] = -q[j];
  }
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  if (dGeomBoxPointDepth (box,q2[0],q2[1],q2[2]) >= 0) FAILED();

  // ********** test points inside box have +ve depth

  for (j=0; j<3; j++) q[j] = s[j] * 0.99 * (dRandReal()-0.5);
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  if (dGeomBoxPointDepth (box,q2[0],q2[1],q2[2]) <= 0) FAILED();

  // ********** test random depth of point aligned along axis (up to ss deep)

  i = dRandInt (3);
  for (j=0; j<3; j++) q[j] = 0;
  d = (dRandReal()*(ss*0.5+1)-1);
  q[i] = s[i]*0.5 - d;
  if (dRandReal() > 0.5) q[i] = -q[i];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  if (dFabs(dGeomBoxPointDepth (box,q2[0],q2[1],q2[2]) - d) >= tol) FAILED();

  PASSED();
}
예제 #5
0
파일: box.cpp 프로젝트: 4nakin/awesomeball
int dBoxBox (const dVector3 p1, const dMatrix3 R1,
	     const dVector3 side1, const dVector3 p2,
	     const dMatrix3 R2, const dVector3 side2,
	     dVector3 normal, dReal *depth, int *return_code,
	     int flags, dContactGeom *contact, int skip)
{
  const dReal fudge_factor = REAL(1.05);
  dVector3 p,pp,normalC={0,0,0};
  const dReal *normalR = 0;
  dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
    Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,expr1_val;
  int i,j,invert_normal,code;

  // get vector from centers of box 1 to box 2, relative to box 1
  p[0] = p2[0] - p1[0];
  p[1] = p2[1] - p1[1];
  p[2] = p2[2] - p1[2];
  dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

  // get side lengths / 2
  A[0] = side1[0]*REAL(0.5);
  A[1] = side1[1]*REAL(0.5);
  A[2] = side1[2]*REAL(0.5);
  B[0] = side2[0]*REAL(0.5);
  B[1] = side2[1]*REAL(0.5);
  B[2] = side2[2]*REAL(0.5);

  // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
  R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
  R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
  R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);

  Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
  Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
  Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);

  // for all 15 possible separating axes:
  //   * see if the axis separates the boxes. if so, return 0.
  //   * find the depth of the penetration along the separating axis (s2)
  //   * if this is the largest depth so far, record it.
  // the normal vector will be set to the separating axis with the smallest
  // depth. note: normalR is set to point to a column of R1 or R2 if that is
  // the smallest depth normal so far. otherwise normalR is 0 and normalC is
  // set to a vector relative to body 1. invert_normal is 1 if the sign of
  // the normal should be flipped.

  do {
#define TST(expr1,expr2,norm,cc) \
    expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \
    s2 = dFabs(expr1_val) - (expr2); \
    if (s2 > 0) return 0; \
    if (s2 > s) { \
      s = s2; \
      normalR = norm; \
      invert_normal = ((expr1_val) < 0); \
      code = (cc); \
	  if (flags & CONTACTS_UNIMPORTANT) break; \
	}

    s = -dInfinity;
    invert_normal = 0;
    code = 0;

    // separating axis = u1,u2,u3
    TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
    TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
    TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);

    // separating axis = v1,v2,v3
    TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
    TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
    TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);

    // note: cross product axes need to be scaled when s is computed.
    // normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
    expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \
    s2 = dFabs(expr1_val) - (expr2); \
    if (s2 > 0) return 0; \
    l = dSqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
    if (l > 0) { \
      s2 /= l; \
      if (s2*fudge_factor > s) { \
        s = s2; \
        normalR = 0; \
        normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
        invert_normal = ((expr1_val) < 0); \
        code = (cc); \
        if (flags & CONTACTS_UNIMPORTANT) break; \
	  } \
	}

    // We only need to check 3 edges per box 
    // since parallel edges are equivalent.

    // separating axis = u1 x (v1,v2,v3)
    TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
    TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
    TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);

    // separating axis = u2 x (v1,v2,v3)
    TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
    TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
    TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);

    // separating axis = u3 x (v1,v2,v3)
    TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
    TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
    TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
#undef TST
  } while (0);

  if (!code) return 0;

  // if we get to this point, the boxes interpenetrate. compute the normal
  // in global coordinates.
  if (normalR) {
    normal[0] = normalR[0];
    normal[1] = normalR[4];
    normal[2] = normalR[8];
  }
  else {
    dMULTIPLY0_331 (normal,R1,normalC);
  }
  if (invert_normal) {
    normal[0] = -normal[0];
    normal[1] = -normal[1];
    normal[2] = -normal[2];
  }
  *depth = -s;

  // compute contact point(s)

  if (code > 6) {
    // An edge from box 1 touches an edge from box 2.
    // find a point pa on the intersecting edge of box 1
    dVector3 pa;
    dReal sign;
    // Copy p1 into pa
    for (i=0; i<3; i++) pa[i] = p1[i]; // why no memcpy?
    // Get world position of p2 into pa
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0);
      for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
    }

    // find a point pb on the intersecting edge of box 2
    dVector3 pb;
    // Copy p2 into pb
    for (i=0; i<3; i++) pb[i] = p2[i]; // why no memcpy?
    // Get world position of p2 into pb
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0);
      for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
    }
    
    dReal alpha,beta;
    dVector3 ua,ub;
    // Get direction of first edge
    for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
    // Get direction of second edge
    for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
    // Get closest points between edges (one at each)
    dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);    
    for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
    for (i=0; i<3; i++) pb[i] += ub[i]*beta;
    // Set the contact point as halfway between the 2 closest points
    for (i=0; i<3; i++) contact[0].pos[i] = REAL(0.5)*(pa[i]+pb[i]);
    contact[0].depth = *depth;
    *return_code = code;
    return 1;
  }

  // okay, we have a face-something intersection (because the separating
  // axis is perpendicular to a face). define face 'a' to be the reference
  // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
  // the incident face (the closest face of the other box).
  // Note: Unmodified parameter values are being used here
  const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb;
  if (code <= 3) { // One of the faces of box 1 is the reference face
    Ra = R1; // Rotation of 'a'
    Rb = R2; // Rotation of 'b'
    pa = p1; // Center (location) of 'a'
    pb = p2; // Center (location) of 'b'
    Sa = A;  // Side Lenght of 'a'
    Sb = B;  // Side Lenght of 'b'
  }
  else { // One of the faces of box 2 is the reference face
    Ra = R2; // Rotation of 'a'
    Rb = R1; // Rotation of 'b'
    pa = p2; // Center (location) of 'a'
    pb = p1; // Center (location) of 'b'
    Sa = B;  // Side Lenght of 'a'
    Sb = A;  // Side Lenght of 'b'
  }

  // nr = normal vector of reference face dotted with axes of incident box.
  // anr = absolute values of nr.
  /*
	The normal is flipped if necessary so it always points outward from box 'a',
	box 'b' is thus always the incident box
  */
  dVector3 normal2,nr,anr;
  if (code <= 3) {
    normal2[0] = normal[0];
    normal2[1] = normal[1];
    normal2[2] = normal[2];
  }
  else {
    normal2[0] = -normal[0];
    normal2[1] = -normal[1];
    normal2[2] = -normal[2];
  }
  // Rotate normal2 in incident box opposite direction
  dMULTIPLY1_331 (nr,Rb,normal2);
  anr[0] = dFabs (nr[0]);
  anr[1] = dFabs (nr[1]);
  anr[2] = dFabs (nr[2]);

  // find the largest compontent of anr: this corresponds to the normal
  // for the incident face. the other axis numbers of the incident face
  // are stored in a1,a2.
  int lanr,a1,a2;
  if (anr[1] > anr[0]) {
    if (anr[1] > anr[2]) {
      a1 = 0;
      lanr = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }
  else {
    if (anr[0] > anr[2]) {
      lanr = 0;
      a1 = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }

  // compute center point of incident face, in reference-face coordinates
  dVector3 center;
  if (nr[lanr] < 0) {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
  }
  else {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
  }

  // find the normal and non-normal axis numbers of the reference box
  int codeN,code1,code2;
  if (code <= 3) codeN = code-1; else codeN = code-4;
  if (codeN==0) {
    code1 = 1;
    code2 = 2;
  }
  else if (codeN==1) {
    code1 = 0;
    code2 = 2;
  }
  else {
    code1 = 0;
    code2 = 1;
  }

  // find the four corners of the incident face, in reference-face coordinates
  dReal quad[8];	// 2D coordinate of incident face (x,y pairs)
  dReal c1,c2,m11,m12,m21,m22;
  c1 = dDOT14 (center,Ra+code1);
  c2 = dDOT14 (center,Ra+code2);
  // optimize this? - we have already computed this data above, but it is not
  // stored in an easy-to-index format. for now it's quicker just to recompute
  // the four dot products.
  m11 = dDOT44 (Ra+code1,Rb+a1);
  m12 = dDOT44 (Ra+code1,Rb+a2);
  m21 = dDOT44 (Ra+code2,Rb+a1);
  m22 = dDOT44 (Ra+code2,Rb+a2);
  {
    dReal k1 = m11*Sb[a1];
    dReal k2 = m21*Sb[a1];
    dReal k3 = m12*Sb[a2];
    dReal k4 = m22*Sb[a2];
    quad[0] = c1 - k1 - k3;
    quad[1] = c2 - k2 - k4;
    quad[2] = c1 - k1 + k3;
    quad[3] = c2 - k2 + k4;
    quad[4] = c1 + k1 + k3;
    quad[5] = c2 + k2 + k4;
    quad[6] = c1 + k1 - k3;
    quad[7] = c2 + k2 - k4;
  }

  // find the size of the reference face
  dReal rect[2];
  rect[0] = Sa[code1];
  rect[1] = Sa[code2];

  // intersect the incident and reference faces
  dReal ret[16];
  int n = intersectRectQuad (rect,quad,ret);
  if (n < 1) return 0;		// this should never happen

  // convert the intersection points into reference-face coordinates,
  // and compute the contact position and depth for each point. only keep
  // those points that have a positive (penetrating) depth. delete points in
  // the 'ret' array as necessary so that 'point' and 'ret' correspond.
  dReal point[3*8];		// penetrating contact points
  dReal dep[8];			// depths for those points
  dReal det1 = dRecip(m11*m22 - m12*m21);
  m11 *= det1;
  m12 *= det1;
  m21 *= det1;
  m22 *= det1;
  int cnum = 0;			// number of penetrating contact points found
  for (j=0; j < n; j++) {
    dReal k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
    dReal k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
    for (i=0; i<3; i++) point[cnum*3+i] =
			  center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
    dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
    if (dep[cnum] >= 0) {
      ret[cnum*2] = ret[j*2];
      ret[cnum*2+1] = ret[j*2+1];
      cnum++;
	  if ((cnum | CONTACTS_UNIMPORTANT) == (flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
		  break;
	  }
    }
  }
  if (cnum < 1) { 
	  return 0;	// this should not happen, yet does at times (demo_plane2d single precision).
  }

  // we can't generate more contacts than we actually have
  int maxc = flags & NUMC_MASK;
  if (maxc > cnum) maxc = cnum;
  if (maxc < 1) maxc = 1;	// Even though max count must not be zero this check is kept for backward compatibility as this is a public function

  if (cnum <= maxc) {
    // we have less contacts than we need, so we use them all
    for (j=0; j < cnum; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i];
      con->depth = dep[j];
    }
  }
  else {
    dIASSERT(!(flags & CONTACTS_UNIMPORTANT)); // cnum should be generated not greater than maxc so that "then" clause is executed
    // we have more contacts than are wanted, some of them must be culled.
    // find the deepest point, it is always the first contact.
    int i1 = 0;
    dReal maxdepth = dep[0];
    for (i=1; i<cnum; i++) {
      if (dep[i] > maxdepth) {
	maxdepth = dep[i];
	i1 = i;
      }
    }

    int iret[8];
    cullPoints (cnum,ret,maxc,i1,iret);

    for (j=0; j < maxc; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
      con->depth = dep[iret[j]];
    }
    cnum = maxc;
  }

  *return_code = code;
  return cnum;
}
예제 #6
0
파일: lcp.cpp 프로젝트: VincentYu68/dart
void dSolveLCP (int n, dReal *A, dReal *x, dReal *b,
                dReal *outer_w/*=NULL*/, int nub, dReal *lo, dReal *hi, int *findex)
{
  dAASSERT (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
# ifndef dNODEBUG
  {
    // check restrictions on lo and hi
    for (int k=0; k<n; ++k) dIASSERT (lo[k] <= 0 && hi[k] >= 0);
  }
# endif


  // if all the variables are unbounded then we can just factor, solve,
  // and return
  if (nub >= n) {
    dReal *d = new dReal[n];
    dSetZero (d, n);

    int nskip = dPAD(n);
    dFactorLDLT (A, d, n, nskip);
    dSolveLDLT (A, d, b, n, nskip);
    memcpy (x, b, n*sizeof(dReal));

    return;
  }

  const int nskip = dPAD(n);
  dReal *L = new dReal[ (n*nskip)];
  dReal *d = new dReal[ (n)];
  dReal *w = outer_w ? outer_w : (new dReal[n]);
  dReal *delta_w = new dReal[ (n)];
  dReal *delta_x = new dReal[ (n)];
  dReal *Dell = new dReal[ (n)];
  dReal *ell = new dReal[ (n)];
#ifdef ROWPTRS
  dReal **Arows = new dReal* [n];
#else
  dReal **Arows = NULL;
#endif
  int *p = new int[n];
  int *C = new int[n];

  // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
  bool *state = new bool[n];

  // create LCP object. note that tmp is set to delta_w to save space, this
  // optimization relies on knowledge of how tmp is used, so be careful!
  dLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,L,d,Dell,ell,delta_w,state,findex,p,C,Arows);
  int adj_nub = lcp.getNub();

  // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
  // LCP conditions then i is added to the appropriate index set. otherwise
  // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
  // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
  // while driving x(i) we maintain the LCP conditions on the other variables
  // 0..i-1. we do this by watching out for other x(i),w(i) values going
  // outside the valid region, and then switching them between index sets
  // when that happens.

  bool hit_first_friction_index = false;
  for (int i=adj_nub; i<n; ++i) {
    bool s_error = false;
    // the index i is the driving index and indexes i+1..n-1 are "dont care",
    // i.e. when we make changes to the system those x's will be zero and we
    // don't care what happens to those w's. in other words, we only consider
    // an (i+1)*(i+1) sub-problem of A*x=b+w.

    // if we've hit the first friction index, we have to compute the lo and
    // hi values based on the values of x already computed. we have been
    // permuting the indexes, so the values stored in the findex vector are
    // no longer valid. thus we have to temporarily unpermute the x vector. 
    // for the purposes of this computation, 0*infinity = 0 ... so if the
    // contact constraint's normal force is 0, there should be no tangential
    // force applied.

    if (!hit_first_friction_index && findex && findex[i] >= 0) {
      // un-permute x into delta_w, which is not being used at the moment
      for (int j=0; j<n; ++j) delta_w[p[j]] = x[j];

      // set lo and hi values
      for (int k=i; k<n; ++k) {
        dReal wfk = delta_w[findex[k]];
        if (wfk == 0) {
          hi[k] = 0;
          lo[k] = 0;
        }
        else {
          hi[k] = dFabs (hi[k] * wfk);
          lo[k] = -hi[k];
        }
      }
      hit_first_friction_index = true;
    }

    // thus far we have not even been computing the w values for indexes
    // greater than i, so compute w[i] now.
    w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];

    // if lo=hi=0 (which can happen for tangential friction when normals are
    // 0) then the index will be assigned to set N with some state. however,
    // set C's line has zero size, so the index will always remain in set N.
    // with the "normal" switching logic, if w changed sign then the index
    // would have to switch to set C and then back to set N with an inverted
    // state. this is pointless, and also computationally expensive. to
    // prevent this from happening, we use the rule that indexes with lo=hi=0
    // will never be checked for set changes. this means that the state for
    // these indexes may be incorrect, but that doesn't matter.

    // see if x(i),w(i) is in a valid region
    if (lo[i]==0 && w[i] >= 0) {
      lcp.transfer_i_to_N (i);
      state[i] = false;
    }
    else if (hi[i]==0 && w[i] <= 0) {
      lcp.transfer_i_to_N (i);
      state[i] = true;
    }
    else if (w[i]==0) {
      // this is a degenerate case. by the time we get to this test we know
      // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
      // and similarly that hi > 0. this means that the line segment
      // corresponding to set C is at least finite in extent, and we are on it.
      // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
      lcp.solve1 (delta_x,i,0,1);

      lcp.transfer_i_to_C (i);
    }
    else {
      // we must push x(i) and w(i)
      for (;;) {
        int dir;
        dReal dirf;
        // find direction to push on x(i)
        if (w[i] <= 0) {
          dir = 1;
          dirf = REAL(1.0);
        }
        else {
          dir = -1;
          dirf = REAL(-1.0);
        }

        // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
        lcp.solve1 (delta_x,i,dir);

        // note that delta_x[i] = dirf, but we wont bother to set it

        // compute: delta_w = A*delta_x ... note we only care about
        // delta_w(N) and delta_w(i), the rest is ignored
        lcp.pN_equals_ANC_times_qC (delta_w,delta_x);
        lcp.pN_plusequals_ANi (delta_w,i,dir);
        delta_w[i] = lcp.AiC_times_qC (i,delta_x) + lcp.Aii(i)*dirf;

        // find largest step we can take (size=s), either to drive x(i),w(i)
        // to the valid LCP region or to drive an already-valid variable
        // outside the valid region.

        int cmd = 1;		// index switching command
        int si = 0;		// si = index to switch if cmd>3
        dReal s = -w[i]/delta_w[i];
        if (dir > 0) {
          if (hi[i] < dInfinity) {
            dReal s2 = (hi[i]-x[i])*dirf;	// was (hi[i]-x[i])/dirf	// step to x(i)=hi(i)
            if (s2 < s) {
              s = s2;
              cmd = 3;
            }
          }
        }
        else {
          if (lo[i] > -dInfinity) {
            dReal s2 = (lo[i]-x[i])*dirf;	// was (lo[i]-x[i])/dirf	// step to x(i)=lo(i)
            if (s2 < s) {
              s = s2;
              cmd = 2;
            }
          }
        }

        {
          const int numN = lcp.numN();
          for (int k=0; k < numN; ++k) {
            const int indexN_k = lcp.indexN(k);
            if (!state[indexN_k] ? delta_w[indexN_k] < 0 : delta_w[indexN_k] > 0) {
                // don't bother checking if lo=hi=0
                if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
                dReal s2 = -w[indexN_k] / delta_w[indexN_k];
                if (s2 < s) {
                  s = s2;
                  cmd = 4;
                  si = indexN_k;
                }
            }
          }
        }

        {
          const int numC = lcp.numC();
          for (int k=adj_nub; k < numC; ++k) {
            const int indexC_k = lcp.indexC(k);
            if (delta_x[indexC_k] < 0 && lo[indexC_k] > -dInfinity) {
              dReal s2 = (lo[indexC_k]-x[indexC_k]) / delta_x[indexC_k];
              if (s2 < s) {
                s = s2;
                cmd = 5;
                si = indexC_k;
              }
            }
            if (delta_x[indexC_k] > 0 && hi[indexC_k] < dInfinity) {
              dReal s2 = (hi[indexC_k]-x[indexC_k]) / delta_x[indexC_k];
              if (s2 < s) {
                s = s2;
                cmd = 6;
                si = indexC_k;
              }
            }
          }
        }

        //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
        //			     "C->NL","C->NH"};
        //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);

        // if s <= 0 then we've got a problem. if we just keep going then
        // we're going to get stuck in an infinite loop. instead, just cross
        // our fingers and exit with the current solution.
        if (s <= REAL(0.0)) {
          dMessage (d_ERR_LCP, "LCP internal error, s <= 0 (s=%.4e)",(double)s);
          if (i < n) {
            dSetZero (x+i,n-i);
            dSetZero (w+i,n-i);
          }
          s_error = true;
          break;
        }

        // apply x = x + s * delta_x
        lcp.pC_plusequals_s_times_qC (x, s, delta_x);
        x[i] += s * dirf;

        // apply w = w + s * delta_w
        lcp.pN_plusequals_s_times_qN (w, s, delta_w);
        w[i] += s * delta_w[i];

        // void *tmpbuf;
        // switch indexes between sets if necessary
        switch (cmd) {
        case 1:		// done
          w[i] = 0;
          lcp.transfer_i_to_C (i);
          break;
        case 2:		// done
          x[i] = lo[i];
          state[i] = false;
          lcp.transfer_i_to_N (i);
          break;
        case 3:		// done
          x[i] = hi[i];
          state[i] = true;
          lcp.transfer_i_to_N (i);
          break;
        case 4:		// keep going
          w[si] = 0;
          lcp.transfer_i_from_N_to_C (si);
          break;
        case 5:		// keep going
          x[si] = lo[si];
          state[si] = false;
          lcp.transfer_i_from_C_to_N (si, NULL);
          break;
        case 6:		// keep going
          x[si] = hi[si];
          state[si] = true;
          lcp.transfer_i_from_C_to_N (si, NULL);
          break;
        }

        if (cmd <= 3) break;
      } // for (;;)
    } // else

    if (s_error) {
      break;
    }
  } // for (int i=adj_nub; i<n; ++i)

  lcp.unpermute();

  if (!outer_w)
	  delete[] w;
  delete[] L;
  delete[] d;
  delete[] delta_w;
  delete[] delta_x;
  delete[] Dell;
  delete[] ell;
#ifdef ROWPTRS
  delete[] Arows;
#endif
  delete[] p;
  delete[] C;

  delete[] state;
}
예제 #7
0
static void CG_LCP (int m, int nb, dRealMutablePtr J, int *jb, dxBody * const *body,
	dRealPtr invI, dRealMutablePtr lambda, dRealMutablePtr fc, dRealMutablePtr b,
	dRealMutablePtr lo, dRealMutablePtr hi, dRealPtr cfm, int *findex,
	dxQuickStepParameters *qs)
{
	int i,j;
	const int num_iterations = qs->num_iterations;

	// precompute iMJ = inv(M)*J'
	dRealAllocaArray (iMJ,m*12);
	compute_invM_JT (m,J,iMJ,jb,body,invI);

	dReal last_rho = 0;
	dRealAllocaArray (r,m);
	dRealAllocaArray (z,m);
	dRealAllocaArray (p,m);
	dRealAllocaArray (q,m);

	// precompute 1 / diagonals of A
	dRealAllocaArray (Ad,m);
	dRealPtr iMJ_ptr = iMJ;
	dRealPtr J_ptr = J;
	for (i=0; i<m; i++) {
		dReal sum = 0;
		for (j=0; j<6; j++) sum += iMJ_ptr[j] * J_ptr[j];
		if (jb[i*2+1] >= 0) {
			for (j=6; j<12; j++) sum += iMJ_ptr[j] * J_ptr[j];
		}
		iMJ_ptr += 12;
		J_ptr += 12;
		Ad[i] = REAL(1.0) / (sum + cfm[i]);
	}

#ifdef WARM_STARTING
	// compute residual r = b - A*lambda
	multiply_J_invM_JT (m,nb,J,iMJ,jb,cfm,fc,lambda,r);
	for (i=0; i<m; i++) r[i] = b[i] - r[i];
#else
	dSetZero (lambda,m);
	memcpy (r,b,m*sizeof(dReal));		// residual r = b - A*lambda
#endif

	for (int iteration=0; iteration < num_iterations; iteration++) {
		for (i=0; i<m; i++) z[i] = r[i]*Ad[i];	// z = inv(M)*r
		dReal rho = dot (m,r,z);		// rho = r'*z

		// @@@
		// we must check for convergence, otherwise rho will go to 0 if
		// we get an exact solution, which will introduce NaNs into the equations.
		if (rho < 1e-10) {
			printf ("CG returned at iteration %d\n",iteration);
			break;
		}

		if (iteration==0) {
			memcpy (p,z,m*sizeof(dReal));	// p = z
		}
		else {
			add (m,p,z,p,rho/last_rho);	// p = z + (rho/last_rho)*p
		}

		// compute q = (J*inv(M)*J')*p
		multiply_J_invM_JT (m,nb,J,iMJ,jb,cfm,fc,p,q);

		dReal alpha = rho/dot (m,p,q);		// alpha = rho/(p'*q)
		add (m,lambda,lambda,p,alpha);		// lambda = lambda + alpha*p
		add (m,r,r,q,-alpha);			// r = r - alpha*q
		last_rho = rho;
	}

	// compute fc = inv(M)*J'*lambda
	multiply_invM_JT (m,nb,iMJ,jb,lambda,fc);

#if 0
	// measure solution error
	multiply_J_invM_JT (m,nb,J,iMJ,jb,cfm,fc,lambda,r);
	dReal error = 0;
	for (i=0; i<m; i++) error += dFabs(r[i] - b[i]);
	printf ("lambda error = %10.6e\n",error);
#endif
}
void sCylinderBoxData::_cldClipBoxToCylinder() 
{
	dIASSERT(m_nContacts != (m_iFlags & NUMC_MASK));
	
	dVector3 vCylinderCirclePos, vCylinderCircleNormal_Rel;
	// check which circle from cylinder we take for clipping
	if ( dVector3Dot(m_vCylinderAxis, m_vNormal) > REAL(0.0) ) 
	{
		// get top circle
		vCylinderCirclePos[0] = m_vCylinderPos[0] + m_vCylinderAxis[0]*(m_fCylinderSize*REAL(0.5));
		vCylinderCirclePos[1] = m_vCylinderPos[1] + m_vCylinderAxis[1]*(m_fCylinderSize*REAL(0.5));
		vCylinderCirclePos[2] = m_vCylinderPos[2] + m_vCylinderAxis[2]*(m_fCylinderSize*REAL(0.5));

		vCylinderCircleNormal_Rel[0] = REAL(0.0);
		vCylinderCircleNormal_Rel[1] = REAL(0.0);
		vCylinderCircleNormal_Rel[2] = REAL(0.0);
		vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(-1.0);
	}
	else 
	{
		// get bottom circle
		vCylinderCirclePos[0] = m_vCylinderPos[0] - m_vCylinderAxis[0]*(m_fCylinderSize*REAL(0.5));
		vCylinderCirclePos[1] = m_vCylinderPos[1] - m_vCylinderAxis[1]*(m_fCylinderSize*REAL(0.5));
		vCylinderCirclePos[2] = m_vCylinderPos[2] - m_vCylinderAxis[2]*(m_fCylinderSize*REAL(0.5));

		vCylinderCircleNormal_Rel[0] = REAL(0.0);
		vCylinderCircleNormal_Rel[1] = REAL(0.0);
		vCylinderCircleNormal_Rel[2] = REAL(0.0);
		vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(1.0);
	}

	// vNr is normal in Box frame, pointing from Cylinder to Box
	dVector3 vNr;
	dMatrix3 mBoxInv;

	// Find a way to use quaternion
	dMatrix3Inv(m_mBoxRot,mBoxInv);
	dMultiplyMat3Vec3(mBoxInv,m_vNormal,vNr);

	dVector3 vAbsNormal;

	vAbsNormal[0] = dFabs( vNr[0] );
	vAbsNormal[1] = dFabs( vNr[1] );
	vAbsNormal[2] = dFabs( vNr[2] );

	// find which face in box is closest to cylinder
	int iB0, iB1, iB2;

	// Different from Croteam's code
	if (vAbsNormal[1] > vAbsNormal[0]) 
	{
		// 1 > 0
		if (vAbsNormal[0]> vAbsNormal[2]) 
		{
			// 0 > 2 -> 1 > 0 >2
			iB0 = 1; iB1 = 0; iB2 = 2;
		} 
		else 
		{
			// 2 > 0-> Must compare 1 and 2
			if (vAbsNormal[1] > vAbsNormal[2])
			{
				// 1 > 2 -> 1 > 2 > 0
				iB0 = 1; iB1 = 2; iB2 = 0;
			}
			else
			{
				// 2 > 1 -> 2 > 1 > 0;
				iB0 = 2; iB1 = 1; iB2 = 0;
			}			
		}
	} 
	else 
	{
		// 0 > 1
		if (vAbsNormal[1] > vAbsNormal[2]) 
		{
			// 1 > 2 -> 0 > 1 > 2
			iB0 = 0; iB1 = 1; iB2 = 2;
		}
		else 
		{
			// 2 > 1 -> Must compare 0 and 2
			if (vAbsNormal[0] > vAbsNormal[2])
			{
				// 0 > 2 -> 0 > 2 > 1;
				iB0 = 0; iB1 = 2; iB2 = 1;
			}
			else
			{
				// 2 > 0 -> 2 > 0 > 1;
				iB0 = 2; iB1 = 0; iB2 = 1;
			}		
		}
	}

	dVector3 vCenter;
	// find center of box polygon
	dVector3 vTemp;
	if (vNr[iB0] > 0) 
	{
		dMat3GetCol(m_mBoxRot,iB0,vTemp);
		vCenter[0] = m_vBoxPos[0] - m_vBoxHalfSize[iB0]*vTemp[0];
		vCenter[1] = m_vBoxPos[1] - m_vBoxHalfSize[iB0]*vTemp[1];
		vCenter[2] = m_vBoxPos[2] - m_vBoxHalfSize[iB0]*vTemp[2];
	}
	else 
	{
		dMat3GetCol(m_mBoxRot,iB0,vTemp);
		vCenter[0] = m_vBoxPos[0] + m_vBoxHalfSize[iB0]*vTemp[0];
		vCenter[1] = m_vBoxPos[1] + m_vBoxHalfSize[iB0]*vTemp[1];
		vCenter[2] = m_vBoxPos[2] + m_vBoxHalfSize[iB0]*vTemp[2];
	}

	// find the vertices of box polygon
	dVector3 avPoints[4];
	dVector3 avTempArray1[MAX_CYLBOX_CLIP_POINTS];
	dVector3 avTempArray2[MAX_CYLBOX_CLIP_POINTS];

	int i=0;
	for(i=0; i<MAX_CYLBOX_CLIP_POINTS; i++) 
	{
		avTempArray1[i][0] = REAL(0.0);
		avTempArray1[i][1] = REAL(0.0);
		avTempArray1[i][2] = REAL(0.0);

		avTempArray2[i][0] = REAL(0.0);
		avTempArray2[i][1] = REAL(0.0);
		avTempArray2[i][2] = REAL(0.0);
	}

	dVector3 vAxis1, vAxis2;

	dMat3GetCol(m_mBoxRot,iB1,vAxis1);
	dMat3GetCol(m_mBoxRot,iB2,vAxis2);

	avPoints[0][0] = vCenter[0] + m_vBoxHalfSize[iB1] * vAxis1[0] - m_vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[0][1] = vCenter[1] + m_vBoxHalfSize[iB1] * vAxis1[1] - m_vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[0][2] = vCenter[2] + m_vBoxHalfSize[iB1] * vAxis1[2] - m_vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[1][0] = vCenter[0] - m_vBoxHalfSize[iB1] * vAxis1[0] - m_vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[1][1] = vCenter[1] - m_vBoxHalfSize[iB1] * vAxis1[1] - m_vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[1][2] = vCenter[2] - m_vBoxHalfSize[iB1] * vAxis1[2] - m_vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[2][0] = vCenter[0] - m_vBoxHalfSize[iB1] * vAxis1[0] + m_vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[2][1] = vCenter[1] - m_vBoxHalfSize[iB1] * vAxis1[1] + m_vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[2][2] = vCenter[2] - m_vBoxHalfSize[iB1] * vAxis1[2] + m_vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[3][0] = vCenter[0] + m_vBoxHalfSize[iB1] * vAxis1[0] + m_vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[3][1] = vCenter[1] + m_vBoxHalfSize[iB1] * vAxis1[1] + m_vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[3][2] = vCenter[2] + m_vBoxHalfSize[iB1] * vAxis1[2] + m_vBoxHalfSize[iB2] * vAxis2[2];

	// transform box points to space of cylinder circle
	dMatrix3 mCylinderInv;
	dMatrix3Inv(m_mCylinderRot,mCylinderInv);

	for(i=0; i<4; i++) 
	{
		dVector3Subtract(avPoints[i],vCylinderCirclePos,vTemp);
		dMultiplyMat3Vec3(mCylinderInv,vTemp,avPoints[i]);
	}

	int iTmpCounter1 = 0;
	int iTmpCounter2 = 0;
	dVector4 plPlane;

	// plane of cylinder that contains circle for intersection
	dConstructPlane(vCylinderCircleNormal_Rel,REAL(0.0),plPlane);
	dClipPolyToPlane(avPoints, 4, avTempArray1, iTmpCounter1, plPlane);


	// Body of base circle of Cylinder
	int nCircleSegment = 0;
	for (nCircleSegment = 0; nCircleSegment < nCYLINDER_SEGMENT; nCircleSegment++)
	{
		dConstructPlane(m_avCylinderNormals[nCircleSegment],m_fCylinderRadius,plPlane);

		if (0 == (nCircleSegment % 2))
		{
			dClipPolyToPlane( avTempArray1 , iTmpCounter1 , avTempArray2, iTmpCounter2, plPlane);
		}
		else
		{
			dClipPolyToPlane( avTempArray2, iTmpCounter2, avTempArray1 , iTmpCounter1 , plPlane );
		}

		dIASSERT( iTmpCounter1 >= 0 && iTmpCounter1 <= MAX_CYLBOX_CLIP_POINTS );
		dIASSERT( iTmpCounter2 >= 0 && iTmpCounter2 <= MAX_CYLBOX_CLIP_POINTS );
	}
	
	// back transform clipped points to absolute space
	dReal ftmpdot;	
	dReal fTempDepth;
	dVector3 vPoint;

	if (nCircleSegment % 2)
	{
		for( i=0; i<iTmpCounter2; i++)
		{
			dMULTIPLY0_331(vPoint,m_mCylinderRot,avTempArray2[i]);
			vPoint[0] += vCylinderCirclePos[0];
			vPoint[1] += vCylinderCirclePos[1];
			vPoint[2] += vCylinderCirclePos[2];

			dVector3Subtract(vPoint,m_vCylinderPos,vTemp);
			ftmpdot	 = dVector3Dot(vTemp, m_vNormal);
			fTempDepth = m_fBestrc - ftmpdot;
			// Depth must be positive
			if (fTempDepth > REAL(0.0))
			{
				// generate contacts
				dContactGeom* Contact0 = SAFECONTACT(m_iFlags, m_gContact, m_nContacts, m_iSkip);
				Contact0->depth = fTempDepth;
				dVector3Copy(m_vNormal,Contact0->normal);
				dVector3Copy(vPoint,Contact0->pos);
				Contact0->g1 = m_gCylinder;
				Contact0->g2 = m_gBox;
				Contact0->side1 = -1;
				Contact0->side2 = -1;
				dVector3Inv(Contact0->normal);
				m_nContacts++;
				
				if (m_nContacts == (m_iFlags & NUMC_MASK))
				{
					break;
				}
			}
		}
	}
	else
	{
		for( i=0; i<iTmpCounter1; i++)
		{
			dMULTIPLY0_331(vPoint,m_mCylinderRot,avTempArray1[i]);
			vPoint[0] += vCylinderCirclePos[0];
			vPoint[1] += vCylinderCirclePos[1];
			vPoint[2] += vCylinderCirclePos[2];

			dVector3Subtract(vPoint,m_vCylinderPos,vTemp);
			ftmpdot	 = dVector3Dot(vTemp, m_vNormal);
			fTempDepth = m_fBestrc - ftmpdot;
			// Depth must be positive
			if (fTempDepth > REAL(0.0))
			{
				// generate contacts
				dContactGeom* Contact0 = SAFECONTACT(m_iFlags, m_gContact, m_nContacts, m_iSkip);
				Contact0->depth = fTempDepth;
				dVector3Copy(m_vNormal,Contact0->normal);
				dVector3Copy(vPoint,Contact0->pos);
				Contact0->g1 = m_gCylinder;
				Contact0->g2 = m_gBox;
				Contact0->side1 = -1;
				Contact0->side2 = -1;
				dVector3Inv(Contact0->normal);
				m_nContacts++;
				
				if (m_nContacts == (m_iFlags & NUMC_MASK))
				{
					break;
				}
			}
		}
	}
}
예제 #9
0
int test_ray_and_ccylinder()
{
  int j;
  dContactGeom contact;
  dVector3 p,a,b,n;
  dMatrix3 R;
  dReal r,l,k,x,y;

  dSimpleSpace space(0);
  dGeomID ray = dCreateRay (0,0);
  dGeomID ccyl = dCreateCapsule (0,1,1);
  dSpaceAdd (space,ray);
  dSpaceAdd (space,ccyl);

  // ********** make a random capped cylinder

  r = dRandReal()*0.5 + 0.01;
  l = dRandReal()*1 + 0.01;
  dGeomCapsuleSetParams (ccyl,r,l);
  dMakeRandomVector (p,3,1.0);
  dGeomSetPosition (ccyl,p[0],p[1],p[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ccyl,R);

  // ********** test ray completely within ccyl

  for (j=0; j<3; j++) a[j] = dRandReal()-0.5;
  dNormalize3 (a);
  k = (dRandReal()-0.5)*l;
  for (j=0; j<3; j++) a[j] = p[j] + r*0.99*a[j] + k*0.99*R[j*4+2];
  for (j=0; j<3; j++) b[j] = dRandReal()-0.5;
  dNormalize3 (b);
  k = (dRandReal()-0.5)*l;
  for (j=0; j<3; j++) b[j] = p[j] + r*0.99*b[j] + k*0.99*R[j*4+2];
  dGeomRaySetLength (ray,dCalcPointsDistance3(a,b));
  for (j=0; j<3; j++) b[j] -= a[j];
  dNormalize3 (b);
  dGeomRaySet (ray,a[0],a[1],a[2],b[0],b[1],b[2]);
  if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray outside ccyl that just misses (between caps)

  k = dRandReal()*2*M_PI;
  x = sin(k);
  y = cos(k);
  for (j=0; j<3; j++) a[j] = x*R[j*4+0] + y*R[j*4+1];
  k = (dRandReal()-0.5)*l;
  for (j=0; j<3; j++) b[j] = -a[j]*r*2 + k*R[j*4+2] + p[j];
  dGeomRaySet (ray,b[0],b[1],b[2],a[0],a[1],a[2]);
  dGeomRaySetLength (ray,r*0.99);
  if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray outside ccyl that just hits (between caps)

  dGeomRaySetLength (ray,r*1.01);
  if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 1) FAILED();
  // check depth of contact point
  if (dFabs (dGeomCapsulePointDepth
	     (ccyl,contact.pos[0],contact.pos[1],contact.pos[2])) > tol)
    FAILED();

  // ********** test ray outside ccyl that just misses (caps)

  for (j=0; j<3; j++) a[j] = dRandReal()-0.5;
  dNormalize3 (a);
  if (dCalcVectorDot3_14(a,R+2) < 0) {
    for (j=0; j<3; j++) b[j] = p[j] - a[j]*2*r + l*0.5*R[j*4+2];
  }
  else {
    for (j=0; j<3; j++) b[j] = p[j] - a[j]*2*r - l*0.5*R[j*4+2];
  }
  dGeomRaySet (ray,b[0],b[1],b[2],a[0],a[1],a[2]);
  dGeomRaySetLength (ray,r*0.99);
  if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray outside ccyl that just hits (caps)

  dGeomRaySetLength (ray,r*1.01);
  if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 1) FAILED();
  // check depth of contact point
  if (dFabs (dGeomCapsulePointDepth
	     (ccyl,contact.pos[0],contact.pos[1],contact.pos[2])) > tol)
    FAILED();

  // ********** test random rays

  for (j=0; j<3; j++) a[j] = dRandReal()-0.5;
  for (j=0; j<3; j++) n[j] = dRandReal()-0.5;
  dNormalize3 (n);
  dGeomRaySet (ray,a[0],a[1],a[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,10);

  if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom))) {
    // check depth of contact point
    if (dFabs (dGeomCapsulePointDepth
	       (ccyl,contact.pos[0],contact.pos[1],contact.pos[2])) > tol)
      FAILED();

    // check normal signs
    if (dCalcVectorDot3 (n,contact.normal) > 0) FAILED();

    draw_all_objects (space);
  }

  PASSED();
}
예제 #10
0
int test_ray_and_plane()
{
  int j;
  dContactGeom contact;
  dVector3 n,p,q,a,b,g,h;		// n,d = plane parameters
  dMatrix3 R;
  dReal d;

  dSimpleSpace space(0);
  dGeomID ray = dCreateRay (0,0);
  dGeomID plane = dCreatePlane (0,0,0,1,0);
  dSpaceAdd (space,ray);
  dSpaceAdd (space,plane);

  // ********** make a random plane

  for (j=0; j<3; j++) n[j] = dRandReal() - 0.5;
  dNormalize3 (n);
  d = dRandReal() - 0.5;
  dGeomPlaneSetParams (plane,n[0],n[1],n[2],d);
  dPlaneSpace (n,p,q);

  // ********** test finite length ray below plane

  dGeomRaySetLength (ray,0.09);
  a[0] = dRandReal()-0.5;
  a[1] = dRandReal()-0.5;
  a[2] = -dRandReal()*0.5 - 0.1;
  for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j];
  dGeomSetPosition (ray,b[0],b[1],b[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ray,R);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test finite length ray above plane

  a[0] = dRandReal()-0.5;
  a[1] = dRandReal()-0.5;
  a[2] = dRandReal()*0.5 + 0.01;
  for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j];
  g[0] = dRandReal()-0.5;
  g[1] = dRandReal()-0.5;
  g[2] = dRandReal() + 0.01;
  for (j=0; j<3; j++) h[j] = g[0]*p[j] + g[1]*q[j] + g[2]*n[j];
  dNormalize3 (h);
  dGeomRaySet (ray,b[0],b[1],b[2],h[0],h[1],h[2]);
  dGeomRaySetLength (ray,10);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test finite length ray that intersects plane

  a[0] = dRandReal()-0.5;
  a[1] = dRandReal()-0.5;
  a[2] = dRandReal()-0.5;
  for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j];
  g[0] = dRandReal()-0.5;
  g[1] = dRandReal()-0.5;
  g[2] = dRandReal()-0.5;
  for (j=0; j<3; j++) h[j] = g[0]*p[j] + g[1]*q[j] + g[2]*n[j];
  dNormalize3 (h);
  dGeomRaySet (ray,b[0],b[1],b[2],h[0],h[1],h[2]);
  dGeomRaySetLength (ray,10);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom))) {
    // test that contact is on plane surface
    if (dFabs (dCalcVectorDot3(contact.pos,n) - d) > tol) FAILED();
    // also check normal signs
    if (dCalcVectorDot3 (h,contact.normal) > 0) FAILED();
    // also check contact point depth
    if (dFabs (dGeomPlanePointDepth
	       (plane,contact.pos[0],contact.pos[1],contact.pos[2])) > tol)
      FAILED();

    draw_all_objects (space);
  }

  // ********** test ray that just misses

  for (j=0; j<3; j++) b[j] = (1+d)*n[j];
  for (j=0; j<3; j++) h[j] = -n[j];
  dGeomRaySet (ray,b[0],b[1],b[2],h[0],h[1],h[2]);
  dGeomRaySetLength (ray,0.99);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray that just hits

  dGeomRaySetLength (ray,1.01);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 1) FAILED();

  // ********** test polarity with typical ground plane

  dGeomPlaneSetParams (plane,0,0,1,0);
  for (j=0; j<3; j++) a[j] = 0.1;
  for (j=0; j<3; j++) b[j] = 0;
  a[2] = 1;
  b[2] = -1;
  dGeomRaySet (ray,a[0],a[1],a[2],b[0],b[1],b[2]);
  dGeomRaySetLength (ray,2);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 1) FAILED();
  if (dFabs (contact.depth - 1) > tol) FAILED();
  a[2] = -1;
  b[2] = 1;
  dGeomRaySet (ray,a[0],a[1],a[2],b[0],b[1],b[2]);
  if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 1) FAILED();
  if (dFabs (contact.depth - 1) > tol) FAILED();

  PASSED();
}
예제 #11
0
int test_ray_and_box()
{
  int i,j;
  dContactGeom contact;
  dVector3 s,p,q,n,q2,q3,q4;		// s = box sides
  dMatrix3 R;
  dReal k;

  dSimpleSpace space(0);
  dGeomID ray = dCreateRay (0,0);
  dGeomID box = dCreateBox (0,1,1,1);
  dSpaceAdd (space,ray);
  dSpaceAdd (space,box);

  // ********** make a random box

  for (j=0; j<3; j++) s[j] = dRandReal() + 0.1;
  dGeomBoxSetLengths (box,s[0],s[1],s[2]);
  dMakeRandomVector (p,3,1.0);
  dGeomSetPosition (box,p[0],p[1],p[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (box,R);

  // ********** test zero length ray just inside box

  dGeomRaySetLength (ray,0);
  for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j];
  i = dRandInt (3);
  if (dRandReal() > 0.5) q[i] = 0.99*0.5*s[i]; else q[i] = -0.99*0.5*s[i];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  dGeomSetPosition (ray,q2[0],q2[1],q2[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ray,R);
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test zero length ray just outside box

  dGeomRaySetLength (ray,0);
  for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j];
  i = dRandInt (3);
  if (dRandReal() > 0.5) q[i] = 1.01*0.5*s[i]; else q[i] = -1.01*0.5*s[i];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  dGeomSetPosition (ray,q2[0],q2[1],q2[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ray,R);
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test finite length ray totally contained inside the box

  for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*0.99*s[j];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  for (j=0; j<3; j++) q3[j] = (dRandReal()-0.5)*0.99*s[j];
  dMultiply0 (q4,dGeomGetRotation(box),q3,3,3,1);
  for (j=0; j<3; j++) q4[j] += p[j];
  for (j=0; j<3; j++) n[j] = q4[j] - q2[j];
  dNormalize3 (n);
  dGeomRaySet (ray,q2[0],q2[1],q2[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,dCalcPointsDistance3(q2,q4));
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test finite length ray totally outside the box

  for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j];
  i = dRandInt (3);
  if (dRandReal() > 0.5) q[i] = 1.01*0.5*s[i]; else q[i] = -1.01*0.5*s[i];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q3[j] = q2[j] + p[j];
  dNormalize3 (q2);
  dGeomRaySet (ray,q3[0],q3[1],q3[2],q2[0],q2[1],q2[2]);
  dGeomRaySetLength (ray,10);
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray from outside to just above surface

  for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j];
  i = dRandInt (3);
  if (dRandReal() > 0.5) q[i] = 1.01*0.5*s[i]; else q[i] = -1.01*0.5*s[i];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q3[j] = 2*q2[j] + p[j];
  k = dSqrt(q2[0]*q2[0] + q2[1]*q2[1] + q2[2]*q2[2]);
  for (j=0; j<3; j++) q2[j] = -q2[j];
  dGeomRaySet (ray,q3[0],q3[1],q3[2],q2[0],q2[1],q2[2]);
  dGeomRaySetLength (ray,k*0.99);
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray from outside to just below surface

  dGeomRaySetLength (ray,k*1.01);
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 1) FAILED();

  // ********** test contact point position for random rays

  for (j=0; j<3; j++) q[j] = dRandReal()*s[j];
  dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1);
  for (j=0; j<3; j++) q2[j] += p[j];
  for (j=0; j<3; j++) q3[j] = dRandReal()-0.5;
  dNormalize3 (q3);
  dGeomRaySet (ray,q2[0],q2[1],q2[2],q3[0],q3[1],q3[2]);
  dGeomRaySetLength (ray,10);
  if (dCollide (ray,box,1,&contact,sizeof(dContactGeom))) {
    // check depth of contact point
    if (dFabs (dGeomBoxPointDepth
	       (box,contact.pos[0],contact.pos[1],contact.pos[2])) > tol)
      FAILED();
    // check position of contact point
    for (j=0; j<3; j++) contact.pos[j] -= p[j];
    dMultiply1 (q,dGeomGetRotation(box),contact.pos,3,3,1);
    if ( dFabs(dFabs (q[0]) - 0.5*s[0]) > tol &&
	 dFabs(dFabs (q[1]) - 0.5*s[1]) > tol &&
	 dFabs(dFabs (q[2]) - 0.5*s[2]) > tol) {
      FAILED();
    }
    // also check normal signs
    if (dCalcVectorDot3 (q3,contact.normal) > 0) FAILED();

    draw_all_objects (space);
  }

  PASSED();
}
예제 #12
0
int test_ray_and_sphere()
{
  int j;
  dContactGeom contact;
  dVector3 p,q,q2,n,v1;
  dMatrix3 R;
  dReal r,k;

  dSimpleSpace space(0);
  dGeomID ray = dCreateRay (0,0);
  dGeomID sphere = dCreateSphere (0,1);
  dSpaceAdd (space,ray);
  dSpaceAdd (space,sphere);

  // ********** make a random sphere of radius r at position p

  r = dRandReal()+0.1;
  dGeomSphereSetRadius (sphere,r);
  dMakeRandomVector (p,3,1.0);
  dGeomSetPosition (sphere,p[0],p[1],p[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (sphere,R);

  // ********** test zero length ray just inside sphere

  dGeomRaySetLength (ray,0);
  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  for (j=0; j<3; j++) q[j] = 0.99*r * q[j] + p[j];
  dGeomSetPosition (ray,q[0],q[1],q[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ray,R);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test zero length ray just outside that sphere

  dGeomRaySetLength (ray,0);
  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  for (j=0; j<3; j++) q[j] = 1.01*r * q[j] + p[j];
  dGeomSetPosition (ray,q[0],q[1],q[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ray,R);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test finite length ray totally contained inside the sphere

  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  k = dRandReal();
  for (j=0; j<3; j++) q[j] = k*r*0.99 * q[j] + p[j];
  dMakeRandomVector (q2,3,1.0);
  dNormalize3 (q2);
  k = dRandReal();
  for (j=0; j<3; j++) q2[j] = k*r*0.99 * q2[j] + p[j];
  for (j=0; j<3; j++) n[j] = q2[j] - q[j];
  dNormalize3 (n);
  dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,dCalcPointsDistance3(q,q2));
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test finite length ray totally outside the sphere

  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  do {
    dMakeRandomVector (n,3,1.0);
    dNormalize3 (n);
  }
  while (dCalcVectorDot3(n,q) < 0);	// make sure normal goes away from sphere
  for (j=0; j<3; j++) q[j] = 1.01*r * q[j] + p[j];
  dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,100);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray from outside to just above surface

  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  for (j=0; j<3; j++) n[j] = -q[j];
  for (j=0; j<3; j++) q2[j] = 2*r * q[j] + p[j];
  dGeomRaySet (ray,q2[0],q2[1],q2[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,0.99*r);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test ray from outside to just below surface

  dGeomRaySetLength (ray,1.01*r);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 1) FAILED();
  for (j=0; j<3; j++) q2[j] = r * q[j] + p[j];
  if (dCalcPointsDistance3 (contact.pos,q2) > tol) FAILED();

  // ********** test contact point distance for random rays

  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  k = dRandReal()+0.5;
  for (j=0; j<3; j++) q[j] = k*r * q[j] + p[j];
  dMakeRandomVector (n,3,1.0);
  dNormalize3 (n);
  dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,100);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom))) {
    k = dCalcPointsDistance3 (contact.pos,dGeomGetPosition(sphere));
    if (dFabs(k - r) > tol) FAILED();
    // also check normal signs
    if (dCalcVectorDot3 (n,contact.normal) > 0) FAILED();
    // also check depth of contact point
    if (dFabs (dGeomSpherePointDepth
	       (sphere,contact.pos[0],contact.pos[1],contact.pos[2])) > tol)
      FAILED();

    draw_all_objects (space);
  }

  // ********** test tangential grazing - miss

  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  dPlaneSpace (q,n,v1);
  for (j=0; j<3; j++) q[j] = 1.01*r * q[j] + p[j];
  for (j=0; j<3; j++) q[j] -= n[j];
  dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,2);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED();

  // ********** test tangential grazing - hit

  dMakeRandomVector (q,3,1.0);
  dNormalize3 (q);
  dPlaneSpace (q,n,v1);
  for (j=0; j<3; j++) q[j] = 0.99*r * q[j] + p[j];
  for (j=0; j<3; j++) q[j] -= n[j];
  dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]);
  dGeomRaySetLength (ray,2);
  if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 1) FAILED();

  PASSED();
}
예제 #13
0
int test_ccylinder_point_depth()
{
  int j;
  dVector3 p,a;
  dMatrix3 R;
  dReal r,l,beta,x,y,d;

  dSimpleSpace space(0);
  dGeomID ccyl = dCreateCapsule (0,1,1);
  dSpaceAdd (space,ccyl);

  // ********** make a random ccyl

  r = dRandReal()*0.5 + 0.01;
  l = dRandReal()*1 + 0.01;
  dGeomCapsuleSetParams (ccyl,r,l);
  dMakeRandomVector (p,3,1.0);
  dGeomSetPosition (ccyl,p[0],p[1],p[2]);
  dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1,
		      dRandReal()*2-1,dRandReal()*10-5);
  dGeomSetRotation (ccyl,R);

  // ********** test point on axis has depth of 'radius'

  beta = dRandReal()-0.5;
  for (j=0; j<3; j++) a[j] = p[j] + l*beta*R[j*4+2];
  if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) - r) >= tol)
    FAILED();

  // ********** test point on surface (excluding caps) has depth 0

  beta = dRandReal()*2*M_PI;
  x = r*sin(beta);
  y = r*cos(beta);
  beta = dRandReal()-0.5;
  for (j=0; j<3; j++) a[j] = p[j] + x*R[j*4+0] + y*R[j*4+1] + l*beta*R[j*4+2];
  if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2])) >= tol) FAILED();

  // ********** test point on surface of caps has depth 0

  for (j=0; j<3; j++) a[j] = dRandReal()-0.5;
  dNormalize3 (a);
  if (dCalcVectorDot3_14(a,R+2) > 0) {
    for (j=0; j<3; j++) a[j] = p[j] + a[j]*r + l*0.5*R[j*4+2];
  }
  else {
    for (j=0; j<3; j++) a[j] = p[j] + a[j]*r - l*0.5*R[j*4+2];
  }
  if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2])) >= tol) FAILED();

  // ********** test point inside ccyl has positive depth

  for (j=0; j<3; j++) a[j] = dRandReal()-0.5;
  dNormalize3 (a);
  beta = dRandReal()-0.5;
  for (j=0; j<3; j++) a[j] = p[j] + a[j]*r*0.99 + l*beta*R[j*4+2];
  if (dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) < 0) FAILED();

  // ********** test point depth (1)

  d = (dRandReal()*2-1) * r;
  beta = dRandReal()*2*M_PI;
  x = (r-d)*sin(beta);
  y = (r-d)*cos(beta);
  beta = dRandReal()-0.5;
  for (j=0; j<3; j++) a[j] = p[j] + x*R[j*4+0] + y*R[j*4+1] + l*beta*R[j*4+2];
  if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) - d) >= tol)
    FAILED();

  // ********** test point depth (2)

  d = (dRandReal()*2-1) * r;
  for (j=0; j<3; j++) a[j] = dRandReal()-0.5;
  dNormalize3 (a);
  if (dCalcVectorDot3_14(a,R+2) > 0) {
    for (j=0; j<3; j++) a[j] = p[j] + a[j]*(r-d) + l*0.5*R[j*4+2];
  }
  else {
    for (j=0; j<3; j++) a[j] = p[j] + a[j]*(r-d) - l*0.5*R[j*4+2];
  }
  if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) - d) >= tol)
    FAILED();

  PASSED();
}
예제 #14
0
BOOL sTrimeshCapsuleColliderData::_cldTestAxis(
    const dVector3 &v0,
    const dVector3 &v1,
    const dVector3 &v2, 
    dVector3 vAxis, 
    int iAxis,
    BOOL bNoFlip/* = FALSE*/) 
{

    // calculate length of separating axis vector
    dReal fL = LENGTHOF(vAxis);
    // if not long enough
    // TODO : dReal epsilon please
    if ( fL < REAL(1e-5) ) 
    {
        // do nothing
        //iLastOutAxis = 0;
        return TRUE;
    }

    // otherwise normalize it
    dNormalize3(vAxis);

    // project capsule on vAxis
    dReal frc = dFabs(dCalcVectorDot3(m_vCapsuleAxis,vAxis))*(m_fCapsuleSize*REAL(0.5)-m_vCapsuleRadius) + m_vCapsuleRadius;

    // project triangle on vAxis
    dReal afv[3];
    afv[0] = dCalcVectorDot3(m_vV0, vAxis);
    afv[1] = dCalcVectorDot3(m_vV1, vAxis);
    afv[2] = dCalcVectorDot3(m_vV2, vAxis);

    dReal fMin = MAX_REAL;
    dReal fMax = MIN_REAL;

    // for each vertex 
    for(int i=0; i<3; i++) 
    {
        // find minimum
        if (afv[i]<fMin) 
        {
            fMin = afv[i];
        }
        // find maximum
        if (afv[i]>fMax) 
        {
            fMax = afv[i];
        }
    }

    // find triangle's center of interval on axis
    dReal fCenter = (fMin+fMax)*REAL(0.5);
    // calculate triangles half interval 
    dReal fTriangleRadius = (fMax-fMin)*REAL(0.5);

    // if they do not overlap, 
    if (dFabs(fCenter) > ( frc + fTriangleRadius ))
    { 
        // exit, we have no intersection
        return FALSE; 
    }

    // calculate depth 
    dReal fDepth = dFabs(fCenter) - (frc+fTriangleRadius);

    // if greater then best found so far
    if ( fDepth > m_fBestDepth ) 
    {
        // remember depth
        m_fBestDepth  = fDepth;
        m_fBestCenter = fCenter;
        m_fBestrt     = fTriangleRadius;

        m_vNormal[0]     = vAxis[0];
        m_vNormal[1]     = vAxis[1];
        m_vNormal[2]     = vAxis[2];

        m_iBestAxis   = iAxis;

        // flip normal if interval is wrong faced
        if (fCenter<0 && !bNoFlip) 
        { 
            m_vNormal[0] = -m_vNormal[0];
            m_vNormal[1] = -m_vNormal[1];
            m_vNormal[2] = -m_vNormal[2];

            m_fBestCenter = -fCenter;
        }
    }

    return TRUE;
}
예제 #15
0
int dCollideSphereBox (dxGeom *o1, dxGeom *o2, int flags,
		       dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dSphereClass);
  dIASSERT (o2->type == dBoxClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);
  
  // this is easy. get the sphere center `p' relative to the box, and then clip
  // that to the boundary of the box (call that point `q'). if q is on the
  // boundary of the box and |p-q| is <= sphere radius, they touch.
  // if q is inside the box, the sphere is inside the box, so set a contact
  // normal to push the sphere to the closest box face.

  dVector3 l,t,p,q,r;
  dReal depth;
  int onborder = 0;

  dxSphere *sphere = (dxSphere*) o1;
  dxBox *box = (dxBox*) o2;

  contact->g1 = o1;
  contact->g2 = o2;

  p[0] = o1->final_posr->pos[0] - o2->final_posr->pos[0];
  p[1] = o1->final_posr->pos[1] - o2->final_posr->pos[1];
  p[2] = o1->final_posr->pos[2] - o2->final_posr->pos[2];

  l[0] = box->side[0]*REAL(0.5);
  t[0] = dDOT14(p,o2->final_posr->R);
  if (t[0] < -l[0]) { t[0] = -l[0]; onborder = 1; }
  if (t[0] >  l[0]) { t[0] =  l[0]; onborder = 1; }

  l[1] = box->side[1]*REAL(0.5);
  t[1] = dDOT14(p,o2->final_posr->R+1);
  if (t[1] < -l[1]) { t[1] = -l[1]; onborder = 1; }
  if (t[1] >  l[1]) { t[1] =  l[1]; onborder = 1; }

  t[2] = dDOT14(p,o2->final_posr->R+2);
  l[2] = box->side[2]*REAL(0.5);
  if (t[2] < -l[2]) { t[2] = -l[2]; onborder = 1; }
  if (t[2] >  l[2]) { t[2] =  l[2]; onborder = 1; }

  if (!onborder) {
    // sphere center inside box. find closest face to `t'
    dReal min_distance = l[0] - dFabs(t[0]);
    int mini = 0;
    for (int i=1; i<3; i++) {
      dReal face_distance = l[i] - dFabs(t[i]);
      if (face_distance < min_distance) {
	min_distance = face_distance;
	mini = i;
      }
    }
    // contact position = sphere center
    contact->pos[0] = o1->final_posr->pos[0];
    contact->pos[1] = o1->final_posr->pos[1];
    contact->pos[2] = o1->final_posr->pos[2];
    // contact normal points to closest face
    dVector3 tmp;
    tmp[0] = 0;
    tmp[1] = 0;
    tmp[2] = 0;
    tmp[mini] = (t[mini] > 0) ? REAL(1.0) : REAL(-1.0);
    dMULTIPLY0_331 (contact->normal,o2->final_posr->R,tmp);
    // contact depth = distance to wall along normal plus radius
    contact->depth = min_distance + sphere->radius;
    return 1;
  }

  t[3] = 0;			//@@@ hmmm
  dMULTIPLY0_331 (q,o2->final_posr->R,t);
  r[0] = p[0] - q[0];
  r[1] = p[1] - q[1];
  r[2] = p[2] - q[2];
  depth = sphere->radius - dSqrt(dDOT(r,r));
  if (depth < 0) return 0;
  contact->pos[0] = q[0] + o2->final_posr->pos[0];
  contact->pos[1] = q[1] + o2->final_posr->pos[1];
  contact->pos[2] = q[2] + o2->final_posr->pos[2];
  contact->normal[0] = r[0];
  contact->normal[1] = r[1];
  contact->normal[2] = r[2];
  dNormalize3 (contact->normal);
  contact->depth = depth;
  return 1;
}
// test for given separating axis
int sCylinderBoxData::_cldTestAxis( dVector3& vInputNormal, int iAxis ) 
{
	// check length of input normal
	dReal fL = dVector3Length(vInputNormal);
	// if not long enough
	if ( fL < REAL(1e-5) ) 
	{
		// do nothing
		return 1;
	}

	// otherwise make it unit for sure
	dNormalize3(vInputNormal);

	// project box and Cylinder on mAxis
	dReal fdot1 = dVector3Dot(m_vCylinderAxis, vInputNormal);

	dReal frc;

	if (fdot1 > REAL(1.0)) 
	{
		// assume fdot1 = 1
		frc = m_fCylinderSize*REAL(0.5);
	}
	else if (fdot1 < REAL(-1.0))
	{
		// assume fdot1 = -1
		frc = m_fCylinderSize*REAL(0.5);
	}
	else
	{
    	// project box and capsule on iAxis
    	frc = dFabs( fdot1 * (m_fCylinderSize*REAL(0.5))) + m_fCylinderRadius * dSqrt(REAL(1.0)-(fdot1*fdot1));
    }
    
	dVector3	vTemp1;

	dMat3GetCol(m_mBoxRot,0,vTemp1);
	dReal frb = dFabs(dVector3Dot(vTemp1,vInputNormal))*m_vBoxHalfSize[0];

	dMat3GetCol(m_mBoxRot,1,vTemp1);
	frb += dFabs(dVector3Dot(vTemp1,vInputNormal))*m_vBoxHalfSize[1];

	dMat3GetCol(m_mBoxRot,2,vTemp1);
	frb += dFabs(dVector3Dot(vTemp1,vInputNormal))*m_vBoxHalfSize[2];
	
	// project their distance on separating axis
	dReal fd  = dVector3Dot(m_vDiff,vInputNormal);

	// get depth 

	dReal fDepth = frc + frb;  // Calculate partial depth

	// if they do not overlap exit, we have no intersection
	if ( dFabs(fd) > fDepth )
	{ 
		return 0; 
	} 

	// Finalyze the depth calculation
	fDepth -= dFabs(fd);

	// get maximum depth
	if ( fDepth < m_fBestDepth ) 
	{
		m_fBestDepth = fDepth;
		dVector3Copy(vInputNormal,m_vNormal);
		m_iBestAxis  = iAxis;
		m_fBestrb    = frb;
		m_fBestrc    = frc;

		// flip normal if interval is wrong faced
		if (fd > 0) 
		{ 
			dVector3Inv(m_vNormal);
		}
	}

	return 1;
}
예제 #17
0
파일: ray.cpp 프로젝트: Belxjander/Asuna
// Ray-Cylinder collider by Joseph Cooper (2011)
int dCollideRayCylinder( dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip )
{
    dIASSERT( skip >= (int)sizeof( dContactGeom ) );
    dIASSERT( o1->type == dRayClass );
    dIASSERT( o2->type == dCylinderClass );
    dIASSERT( (flags & NUMC_MASK) >= 1 );

    dxRay* ray = (dxRay*)( o1 );
    dxCylinder* cyl = (dxCylinder*)( o2 );

    // Fill in contact information.
    contact->g1 = ray;
    contact->g2 = cyl;
    contact->side1 = -1;
    contact->side2 = -1;

    const dReal half_length = cyl->lz * REAL( 0.5 );


    /* Possible collision cases:
     *  Ray origin between/outside caps
     *  Ray origin within/outside radius
     *  Ray direction left/right/perpendicular
     *  Ray direction parallel/perpendicular/other
     * 
     *  Ray origin cases (ignoring origin on surface)
     *
     *  A          B
     *     /-\-----------\
     *  C (   )    D      )
     *     \_/___________/
     *
     *  Cases A and D can collide with caps or cylinder
     *  Case C can only collide with the caps
     *  Case B can only collide with the cylinder
     *  Case D will produce inverted normals
     *  If the ray is perpendicular, only check the cylinder
     *  If the ray is parallel to cylinder axis,
     *  we can only check caps
     *  If the ray points right,
     *    Case A,C Check left cap
     *    Case  D  Check right cap
     *  If the ray points left
     *    Case A,C Check right cap
     *    Case  D  Check left cap
     *  Case B, check only first possible cylinder collision
     *  Case D, check only second possible cylinder collision
     */
    // Find the ray in the cylinder coordinate frame:
    dVector3 tmp;
    dVector3 pos;  // Ray origin in cylinder frame
    dVector3 dir;  // Ray direction in cylinder frame
    // Translate ray start by inverse cyl
    dSubtractVectors3(tmp,ray->final_posr->pos,cyl->final_posr->pos);
    // Rotate ray start by inverse cyl
    dMultiply1_331(pos,cyl->final_posr->R,tmp);

    // Get the ray's direction
    tmp[0] = ray->final_posr->R[2];
    tmp[1] = ray->final_posr->R[6];
    tmp[2] = ray->final_posr->R[10];
    // Rotate the ray direction by inverse cyl
    dMultiply1_331(dir,cyl->final_posr->R,tmp); 

    // Is the ray origin inside of the (extended) cylinder?
    dReal r2 = cyl->radius*cyl->radius;
    dReal C = pos[0]*pos[0] + pos[1]*pos[1] - r2;

    // Find the different cases
    // Is ray parallel to the cylinder length?
    int parallel = (dir[0]==0 && dir[1]==0);
    // Is ray perpendicular to the cylinder length?
    int perpendicular = (dir[2]==0);
    // Is ray origin within the radius of the caps?
    int inRadius = (C<=0);
    // Is ray origin between the top and bottom caps?
    int inCaps   = (dFabs(pos[2])<=half_length);

    int checkCaps = (!perpendicular && (!inCaps || inRadius));
    int checkCyl  = (!parallel && (!inRadius || inCaps));
    int flipNormals = (inCaps&&inRadius);

    dReal tt=-dInfinity; // Depth to intersection
    dVector3 tmpNorm = {dNaN, dNaN, dNaN}; // ensure we don't leak garbage

    if (checkCaps) {
        // Make it so we only need to check one cap
        int flipDir = 0;
        // Wish c had logical xor...
        if ((dir[2]<0 && flipNormals) || (dir[2]>0 && !flipNormals)) {
            flipDir = 1;
            dir[2]=-dir[2];
            pos[2]=-pos[2];
        }
        // The cap is half the cylinder's length
        // from the cylinder's origin
        // We only checkCaps if dir[2]!=0
        tt = (half_length-pos[2])/dir[2];
        if (tt>=0 && tt<=ray->length) {
            tmp[0] = pos[0] + tt*dir[0];
            tmp[1] = pos[1] + tt*dir[1];
            // Ensure collision point is within cap circle
            if (tmp[0]*tmp[0] + tmp[1]*tmp[1] <= r2) {
                // Successful collision
                tmp[2] = (flipDir)?-half_length:half_length;
                tmpNorm[0]=0;
                tmpNorm[1]=0;
                tmpNorm[2]=(flipDir!=flipNormals)?-1:1;
                checkCyl = 0;  // Short circuit cylinder check
            } else {
                // Ray hits cap plane outside of cap circle
                tt=-dInfinity; // No collision yet
            }
        } else {
            // The cap plane is beyond (or behind) the ray length
            tt=-dInfinity; // No collision yet
        }
        if (flipDir) {
            // Flip back
            dir[2]=-dir[2];
            pos[2]=-pos[2];
        }
    }
    if (checkCyl) {
        // Compute quadratic formula for parametric ray equation
        dReal A =    dir[0]*dir[0] + dir[1]*dir[1];
        dReal B = 2*(pos[0]*dir[0] + pos[1]*dir[1]);
        // Already computed C

        dReal k = B*B - 4*A*C;
        // Check collision with infinite cylinder
        // k<0 means the ray passes outside the cylinder
        // k==0 means ray is tangent to cylinder (or parallel)
        //
        //  Our quadratic formula: tt = (-B +- sqrt(k))/(2*A)   
        // 
        // A must be positive (otherwise we wouldn't be checking
        // cylinder because ray is parallel)
        //    if (k<0) ray doesn't collide with sphere
        //    if (B > sqrt(k)) then both times are negative
        //         -- don't calculate
        //    if (B<-sqrt(k)) then both times are positive (Case A or B)
        //         -- only calculate first, if first isn't valid
        //         -- second can't be without first going through a cap
        //    otherwise (fabs(B)<=sqrt(k)) then C<=0 (ray-origin inside/on cylinder)
        //         -- only calculate second collision
        if (k>=0 && (B<0 || B*B<=k)) {
            k = dSqrt(k); 
            A = dRecip(2*A);
            if (dFabs(B)<=k) {
                tt = (-B + k)*A; // Second solution
                // If ray origin is on surface and pointed out, we
                // can get a tt=0 solution...
            } else {
                tt = (-B - k)*A; // First solution
            }
            if (tt<=ray->length) {
                tmp[2] = pos[2] + tt*dir[2];
                if (dFabs(tmp[2])<=half_length) {
                    // Valid solution
                    tmp[0] = pos[0] + tt*dir[0];
                    tmp[1] = pos[1] + tt*dir[1];
                    tmpNorm[0] = tmp[0]/cyl->radius;
                    tmpNorm[1] = tmp[1]/cyl->radius;
                    tmpNorm[2] = 0;
                    if (flipNormals) {
                        // Ray origin was inside cylinder
                        tmpNorm[0] = -tmpNorm[0];
                        tmpNorm[1] = -tmpNorm[1];
                    }
                } else {
                    // Ray hits cylinder outside of caps
                    tt=-dInfinity;
                }
            } else {
                // Ray doesn't reach the cylinder
                tt=-dInfinity;
            }
        }
    }

    if (tt>0) {
        contact->depth = tt;
        // Transform the point back to world coordinates
        tmpNorm[3]=0;
        tmp[3] = 0;
        dMultiply0_331(contact->normal,cyl->final_posr->R,tmpNorm);
        dMultiply0_331(contact->pos,cyl->final_posr->R,tmp);
        contact->pos[0]+=cyl->final_posr->pos[0];
        contact->pos[1]+=cyl->final_posr->pos[1];
        contact->pos[2]+=cyl->final_posr->pos[2];

        return 1;
    }
    // No contact with anything.
    return 0;
}
예제 #18
0
파일: box.cpp 프로젝트: 4nakin/awesomeball
void cullPoints (int n, dReal p[], int m, int i0, int iret[])
{
  // compute the centroid of the polygon in cx,cy
  int i,j;
  dReal a,cx,cy,q;
  if (n==1) {
    cx = p[0];
    cy = p[1];
  }
  else if (n==2) {
    cx = REAL(0.5)*(p[0] + p[2]);
    cy = REAL(0.5)*(p[1] + p[3]);
  }
  else {
    a = 0;
    cx = 0;
    cy = 0;
    for (i=0; i<(n-1); i++) {
      q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
      a += q;
      cx += q*(p[i*2]+p[i*2+2]);
      cy += q*(p[i*2+1]+p[i*2+3]);
    }
    q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
    a = dRecip(REAL(3.0)*(a+q));
    cx = a*(cx + q*(p[n*2-2]+p[0]));
    cy = a*(cy + q*(p[n*2-1]+p[1]));
  }

  // compute the angle of each point w.r.t. the centroid
  dReal A[8];
  for (i=0; i<n; i++) A[i] = dAtan2(p[i*2+1]-cy,p[i*2]-cx);

  // search for points that have angles closest to A[i0] + i*(2*pi/m).
  int avail[8];
  for (i=0; i<n; i++) avail[i] = 1;
  avail[i0] = 0;
  iret[0] = i0;
  iret++;
  for (j=1; j<m; j++) {
    a = (dReal)(dReal(j)*(2*M_PI/m) + A[i0]);
    if (a > M_PI) a -= (dReal)(2*M_PI);
    dReal maxdiff=1e9,diff;
#ifndef dNODEBUG
    *iret = i0;			// iret is not allowed to keep this value
#endif
    for (i=0; i<n; i++) {
      if (avail[i]) {
	diff = dFabs (A[i]-a);
	if (diff > M_PI) diff = (dReal) (2*M_PI - diff);
	if (diff < maxdiff) {
	  maxdiff = diff;
	  *iret = i;
	}
      }
    }
#ifndef dNODEBUG
    dIASSERT (*iret != i0);	// ensure iret got set
#endif
    avail[*iret] = 0;
    iret++;
  }
}
예제 #19
0
int dcTriListCollider::dTriCyl (
						const dReal* v0,const dReal* v1,const dReal* v2,
						Triangle* T,
						dxGeom *o1, dxGeom *o2,
						int flags, dContactGeom *contact, int skip
						)
{

 // VERIFY (skip >= (int)sizeof(dContactGeom));
  VERIFY (dGeomGetClass(o1)== dCylinderClassUser);
  

  
  
  const dReal *R = dGeomGetRotation(o1);
  const dReal* p=dGeomGetPosition(o1);
  dReal radius;
  dReal hlz;
  dGeomCylinderGetParams(o1,&radius,&hlz);
  hlz/=2.f;

    // find number of contacts requested
  int maxc = flags & NUMC_MASK;
  if (maxc < 1) maxc = 1;
  if (maxc > 3) maxc = 3;	// no more than 3 contacts per box allowed


  const dVector3 &triAx=T->norm;
  dVector3 triSideAx0={T->side0[0],T->side0[1],T->side0[2]}; //{v1[0]-v0[0],v1[1]-v0[1],v1[2]-v0[2]};
  dVector3 triSideAx1={T->side1[0],T->side1[1],T->side1[2]}; //{v2[0]-v1[0],v2[1]-v1[1],v2[2]-v1[2]};
  dVector3 triSideAx2={v0[0]-v2[0],v0[1]-v2[1],v0[2]-v2[2]};
  //dCROSS(triAx,=,triSideAx0,triSideAx1);
  int code=0;
  dReal signum, outDepth,cos0,cos1,cos2,sin1;
////////////////////////////////////////////////////////////////////////////
//sepparation along tri plane normal;///////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
//accurate_normalize(triAx);

//cos0=dDOT14(triAx,R+0);
cos1=dFabs(dDOT14(triAx,R+1));
//cos2=dDOT14(triAx,R+2);

//sin1=_sqrt(cos0*cos0+cos2*cos2);

////////////////////////
//another way //////////
cos1=cos1<REAL(1.) ? cos1 : REAL(1.); //cos1 may slightly exeed 1.f
sin1=_sqrt(REAL(1.)-cos1*cos1);
//////////////////////////////

dReal sidePr=cos1*hlz+sin1*radius;

dReal dist=-T->dist; //dDOT(triAx,v0)-dDOT(triAx,p);
if(dist>0.f) RETURN0;
dReal depth=sidePr-dFabs(dist);
outDepth=depth;
signum=dist>0.f ? 1.f : -1.f;

code=0;
if(depth<0.f) RETURN0;

dReal depth0,depth1,depth2,dist0,dist1,dist2;
bool isPdist0,isPdist1,isPdist2;
bool testV0,testV1,testV2;
bool sideTestV00,sideTestV01,sideTestV02;
bool sideTestV10,sideTestV11,sideTestV12;
bool sideTestV20,sideTestV21,sideTestV22;


//////////////////////////////////////////////////////////////////////////////
//cylinder axis - one of the triangle vertexes touches cylinder's flat surface
//////////////////////////////////////////////////////////////////////////////
dist0=dDOT14(v0,R+1)-dDOT14(p,R+1);
dist1=dDOT14(v1,R+1)-dDOT14(p,R+1);
dist2=dDOT14(v2,R+1)-dDOT14(p,R+1);

isPdist0=dist0>0.f;
isPdist1=dist1>0.f;
isPdist2=dist2>0.f;

depth0=hlz-dFabs(dist0);
depth1=hlz-dFabs(dist1);
depth2=hlz-dFabs(dist2);

testV0=depth0>0.f;
testV1=depth1>0.f;
testV2=depth2>0.f;

if(isPdist0==isPdist1 && isPdist1== isPdist2) //(here and lower) check the tryangle is on one side of the cylinder
   
{
if(depth0>depth1) 
		if(depth0>depth2) 	
			if(testV0){
				if(depth0<outDepth) 
					{
					signum= isPdist0 ? 1.f : -1.f;
					outDepth=depth0;			
					code=1;
					}
				}
			else 
				RETURN0;
		else
			if(testV2){
				if(depth2<outDepth) 
					{
					outDepth=depth2;
					signum= isPdist2 ? 1.f : -1.f;
					code=3;
					}
			}
			else 
				RETURN0;
else
		if(depth1>depth2)
			if(testV1){
				if(depth1<outDepth) 
					{
					outDepth=depth1;
					signum= isPdist1 ? 1.f : -1.f;
					code=2;
					}
			}
			else 
				RETURN0;

		else
			if(testV2){
				if(depth2<outDepth) 
					{
					outDepth=depth2;
					signum= isPdist2 ? 1.f : -1.f;
					code=2;
					}
			}
			else RETURN0;
}


dVector3 axis,outAx;
dReal posProj;
dReal pointDepth=0.f;


#define TEST(vx,ox1,ox2,c)	\
	{\
	posProj=dDOT14(v##vx,R+1)-dDOT14(p,R+1);\
\
	axis[0]=v##vx[0]-p[0]-R[1]*posProj;\
	axis[1]=v##vx[1]-p[1]-R[5]*posProj;\
	axis[2]=v##vx[2]-p[2]-R[9]*posProj;\
\
	accurate_normalize(axis);\
\
\
	dist0=dDOT(v0,axis)-dDOT(p,axis);\
	dist1=dDOT(v1,axis)-dDOT(p,axis);\
	dist2=dDOT(v2,axis)-dDOT(p,axis);\
\
	isPdist0=dist0>0.f;\
	isPdist1=dist1>0.f;\
	isPdist2=dist2>0.f;\
\
	depth0=radius-dFabs(dist0);\
	depth1=radius-dFabs(dist1);\
	depth2=radius-dFabs(dist2);\
\
	sideTestV##vx##0=depth0>0.f;\
	sideTestV##vx##1=depth1>0.f;\
	sideTestV##vx##2=depth2>0.f;\
\
	if(isPdist0==isPdist1 && isPdist1== isPdist2)\
\
	{\
	if(sideTestV##vx##0||sideTestV##vx##1||sideTestV##vx##2){\
	if(!(depth##vx<depth##ox1 || depth##vx<depth##ox2))\
					{\
						if(depth##vx<outDepth && depth##vx > pointDepth)\
							{\
							pointDepth=depth##vx;\
							signum= isPdist##vx ? 1.f : -1.f;\
							outAx[0]=axis[0];\
							outAx[1]=axis[1];\
							outAx[2]=axis[2];\
							code=c;\
							}\
					}\
	}\
	else RETURN0;\
			\
\
\
	}\
}

if(testV0) TEST(0,1,2,4)
if(testV1 ) TEST(1,2,0,5)
//&& sideTestV01
if(testV2 ) TEST(2,0,1,6)
//&& sideTestV02 && sideTestV12
#undef TEST

dVector3 tpos,pos;
if(code>3) outDepth=pointDepth; //deepest vertex axis used if its depth less than outDepth
//else{
//bool outV0=!(testV0&&sideTestV00&&sideTestV10&&sideTestV20);
//bool outV1=!(testV1&&sideTestV01&&sideTestV11&&sideTestV21);
//bool outV2=!(testV2&&sideTestV02&&sideTestV12&&sideTestV22);
bool outV0=true;
bool outV1=true;
bool outV2=true;
/////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///crosses between triangle sides and cylinder axis//////////////////////////
/////////////////////////////////////////////////////////////////////////////
#define TEST(ax,nx,ox,c)	if(cylinderCrossesLine(p,R+1,hlz,v##ax,v##nx,triSideAx##ax,tpos))	{\
	dCROSS114(axis,=,triSideAx##ax,R+1);\
	accurate_normalize(axis);\
	dist##ax=dDOT(v##ax,axis)-dDOT(p,axis);\
	dist##ox=dDOT(v##ox,axis)-dDOT(p,axis);\
\
	isPdist##ax=dist##ax>0.f;\
	isPdist##ox=dist##ox>0.f;\
\
	if(isPdist##ax == isPdist##ox)\
{\
depth##ax=radius-dFabs(dist##ax);\
depth##ox=radius-dFabs(dist##ox);\
	\
			if(depth##ax>0.f){\
				if(depth##ax<=outDepth && depth##ax>=depth##ox) \
					{\
						outDepth=depth##ax;\
						signum= isPdist##ax ? 1.f : -1.f;\
						outAx[0]=axis[0];\
						outAx[1]=axis[1];\
						outAx[2]=axis[2];\
						pos[0]=tpos[0];\
						pos[1]=tpos[1];\
						pos[2]=tpos[2];\
						code=c;\
					}\
				}\
			else if(depth##ox<0.f) RETURN0;\
\
}\
}

accurate_normalize(triSideAx0);
if(outV0&&outV1) 
TEST(0,1,2,7)

accurate_normalize(triSideAx1);
if(outV1&&outV2) 
TEST(1,2,0,8)

accurate_normalize(triSideAx2);
if(outV2&&outV0) 
TEST(2,0,1,9)
#undef TEST

////////////////////////////////////
//test cylinder rings on triangle sides////
////////////////////////////////////

dVector3 tAx,cen;
dReal sign;
bool cs;

#define TEST(ax,nx,ox,c)	\
{\
posProj=dDOT(p,triSideAx##ax)-dDOT(v##ax,triSideAx##ax);\
axis[0]=p[0]-v0[0]-triSideAx##ax[0]*posProj;\
axis[1]=p[1]-v0[1]-triSideAx##ax[1]*posProj;\
axis[2]=p[2]-v0[2]-triSideAx##ax[2]*posProj;\
	\
sign=dDOT14(axis,R+1)>0.f ? 1.f :-1.f;\
cen[0]=p[0]-sign*R[1]*hlz;\
cen[1]=p[1]-sign*R[5]*hlz;\
cen[2]=p[2]-sign*R[9]*hlz;\
\
cs=circleLineIntersection(R+1,cen,radius,triSideAx##ax,v##ax,-sign,tpos);\
\
axis[0]=tpos[0]-cen[0];\
axis[1]=tpos[1]-cen[1];\
axis[2]=tpos[2]-cen[2];\
\
if(cs){ \
\
cos0=dDOT14(axis,R+0);\
cos2=dDOT14(axis,R+2);\
tAx[0]=R[2]*cos0-R[0]*cos2;\
tAx[1]=R[6]*cos0-R[4]*cos2;\
tAx[2]=R[10]*cos0-R[8]*cos2;\
\
dCROSS(axis,=,triSideAx##ax,tAx);\
\
}\
accurate_normalize(axis);\
dist##ax=dDOT(v##ax,axis)-dDOT(p,axis);\
if(dist##ax*dDOT(axis,triSideAx##nx)>0.f){\
\
cos0=dDOT14(axis,R+0);\
cos1=dFabs(dDOT14(axis,R+1));\
cos2=dDOT14(axis,R+2);\
\
\
sin1=_sqrt(cos0*cos0+cos2*cos2);\
\
sidePr=cos1*hlz+sin1*radius;\
\
\
	dist##ox=dDOT(v##ox,axis)-dDOT(p,axis);\
\
	isPdist##ax=dist##ax>0.f;\
	isPdist##ox=dist##ox>0.f;\
\
	if(isPdist##ax == isPdist##ox) \
\
{\
depth##ax=sidePr-dFabs(dist##ax);\
depth##ox=sidePr-dFabs(dist##ox);\
	\
			if(depth##ax>0.f){\
				if(depth##ax<outDepth) \
					{\
						outDepth=depth##ax;\
						signum= isPdist##ax ? 1.f : -1.f;\
						outAx[0]=axis[0];\
						outAx[1]=axis[1];\
						outAx[2]=axis[2];\
						pos[0]=tpos[0];\
						pos[1]=tpos[1];\
						pos[2]=tpos[2];\
						code=c;\
					}\
				}\
			else if(depth##ox<0.f) RETURN0;\
\
\
}\
}\
}

if(7!=code)
	TEST(0,1,2,10)

if(8!=code)
	TEST(1,2,0,11)

if(9!=code)
	TEST(2,0,1,12)

#undef TEST

//}
//////////////////////////////////////////////////////////////////////
///if we get to this poit tri touches cylinder///////////////////////
/////////////////////////////////////////////////////////////////////
//VERIFY( g_pGameLevel );
CDB::TRI*       T_array      = inl_ph_world().ObjectSpace().GetStaticTris();
dVector3 norm;
unsigned int ret;
flags8& gl_state=gl_cl_tries_state[I-B];
if(code==0){
	norm[0]=triAx[0]*signum;
	norm[1]=triAx[1]*signum;
	norm[2]=triAx[2]*signum;


  dReal Q1 = dDOT14(norm,R+0);
  dReal Q2 = dDOT14(norm,R+1);
  dReal Q3 = dDOT14(norm,R+2);
  dReal factor =_sqrt(Q1*Q1+Q3*Q3);
  dReal	C1,C3;
  dReal centerDepth;//depth in the cirle centre
  if(factor>0.f)
  {
  		C1=Q1/factor;
		C3=Q3/factor;
		
  }
  else
  {
		C1=1.f;
		C3=0.f;
	
  }
  
  dReal A1 = radius *		C1;//cosinus
  dReal A2 = hlz;//Q2
  dReal A3 = radius *		C3;//sinus 
	
  if(factor>0.f) centerDepth=outDepth-A1*Q1-A3*Q3; else centerDepth=outDepth;

  pos[0]=p[0];
  pos[1]=p[1];
  pos[2]=p[2];
 
  pos[0]+= Q2>0 ? hlz*R[1]:-hlz*R[1];
  pos[1]+= Q2>0 ? hlz*R[5]:-hlz*R[5];
  pos[2]+= Q2>0 ? hlz*R[9]:-hlz*R[9];

  
  
  
  ret=0;
  dVector3 cross0, cross1, cross2;
  dReal ds0,ds1,ds2;
  
  dCROSS(cross0,=,triAx,triSideAx0);
  ds0=dDOT(cross0,v0);

  dCROSS(cross1,=,triAx,triSideAx1);
  ds1=dDOT(cross1,v1);

  dCROSS(cross2,=,triAx,triSideAx2);
  ds2=dDOT(cross2,v2);

  contact->pos[0] = pos[0]+A1*R[0]+A3*R[2];
  contact->pos[1] = pos[1]+A1*R[4]+A3*R[6];
  contact->pos[2] = pos[2]+A1*R[8]+A3*R[10];

  if(dDOT(cross0,contact->pos)-ds0>0.f && 
	 dDOT(cross1,contact->pos)-ds1>0.f && 
	 dDOT(cross2,contact->pos)-ds2>0.f){
							   contact->depth = outDepth;
							   ret=1;
  }

if(dFabs(Q2)>M_SQRT1_2){

  A1=(-C1*M_COS_PI_3-C3*M_SIN_PI_3)*radius;
  A3=(-C3*M_COS_PI_3+C1*M_SIN_PI_3)*radius;
  CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
  CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
  CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
  CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

  if(CONTACT(contact,ret*skip)->depth>0.f)
    if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && 
	   dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && 
	   dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret;
  
  A1=(-C1*M_COS_PI_3+C3*M_SIN_PI_3)*radius;
  A3=(-C3*M_COS_PI_3-C1*M_SIN_PI_3)*radius;
  CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
  CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
  CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
  CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

  if(CONTACT(contact,ret*skip)->depth>0.f)
    if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && 
	   dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && 
	   dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret;
} else {

  CONTACT(contact,ret*skip)->pos[0]=contact->pos[0]-2.f*(Q2>0 ? hlz*R[1]:-hlz*R[1]);
  CONTACT(contact,ret*skip)->pos[1]=contact->pos[1]-2.f*(Q2>0 ? hlz*R[5]:-hlz*R[5]);
  CONTACT(contact,ret*skip)->pos[2]=contact->pos[2]-2.f*(Q2>0 ? hlz*R[9]:-hlz*R[9]);
  CONTACT(contact,ret*skip)->depth=outDepth-dFabs(Q2*2.f*A2);

  if(CONTACT(contact,ret*skip)->depth>0.f)
    if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && 
	   dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && 
	   dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret;
}
	}
예제 #20
0
파일: box.cpp 프로젝트: 4nakin/awesomeball
int dCollideBoxPlane (dxGeom *o1, dxGeom *o2,
		      int flags, dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dBoxClass);
  dIASSERT (o2->type == dPlaneClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);

  dxBox *box = (dxBox*) o1;
  dxPlane *plane = (dxPlane*) o2;

  contact->g1 = o1;
  contact->g2 = o2;
  contact->side1 = -1;
  contact->side2 = -1;
  
  int ret = 0;

  //@@@ problem: using 4-vector (plane->p) as 3-vector (normal).
  const dReal *R = o1->final_posr->R;		// rotation of box
  const dReal *n = plane->p;		// normal vector

  // project sides lengths along normal vector, get absolute values
  dReal Q1 = dDOT14(n,R+0);
  dReal Q2 = dDOT14(n,R+1);
  dReal Q3 = dDOT14(n,R+2);
  dReal A1 = box->side[0] * Q1;
  dReal A2 = box->side[1] * Q2;
  dReal A3 = box->side[2] * Q3;
  dReal B1 = dFabs(A1);
  dReal B2 = dFabs(A2);
  dReal B3 = dFabs(A3);

  // early exit test
  dReal depth = plane->p[3] + REAL(0.5)*(B1+B2+B3) - dDOT(n,o1->final_posr->pos);
  if (depth < 0) return 0;

  // find number of contacts requested
  int maxc = flags & NUMC_MASK;
  // if (maxc < 1) maxc = 1; // an assertion is made on entry
  if (maxc > 3) maxc = 3;	// not more than 3 contacts per box allowed

  // find deepest point
  dVector3 p;
  p[0] = o1->final_posr->pos[0];
  p[1] = o1->final_posr->pos[1];
  p[2] = o1->final_posr->pos[2];
#define FOO(i,op) \
  p[0] op REAL(0.5)*box->side[i] * R[0+i]; \
  p[1] op REAL(0.5)*box->side[i] * R[4+i]; \
  p[2] op REAL(0.5)*box->side[i] * R[8+i];
#define BAR(i,iinc) if (A ## iinc > 0) { FOO(i,-=) } else { FOO(i,+=) }
  BAR(0,1);
  BAR(1,2);
  BAR(2,3);
#undef FOO
#undef BAR

  // the deepest point is the first contact point
  contact->pos[0] = p[0];
  contact->pos[1] = p[1];
  contact->pos[2] = p[2];
  contact->normal[0] = n[0];
  contact->normal[1] = n[1];
  contact->normal[2] = n[2];
  contact->depth = depth;
  ret = 1;		// ret is number of contact points found so far
  if (maxc == 1) goto done;

  // get the second and third contact points by starting from `p' and going
  // along the two sides with the smallest projected length.

#define FOO(i,j,op) \
  CONTACT(contact,i*skip)->pos[0] = p[0] op box->side[j] * R[0+j]; \
  CONTACT(contact,i*skip)->pos[1] = p[1] op box->side[j] * R[4+j]; \
  CONTACT(contact,i*skip)->pos[2] = p[2] op box->side[j] * R[8+j];
#define BAR(ctact,side,sideinc) \
  depth -= B ## sideinc; \
  if (depth < 0) goto done; \
  if (A ## sideinc > 0) { FOO(ctact,side,+); } else { FOO(ctact,side,-); } \
  CONTACT(contact,ctact*skip)->depth = depth; \
  ret++;

  CONTACT(contact,skip)->normal[0] = n[0];
  CONTACT(contact,skip)->normal[1] = n[1];
  CONTACT(contact,skip)->normal[2] = n[2];
  if (maxc == 3) {
    CONTACT(contact,2*skip)->normal[0] = n[0];
    CONTACT(contact,2*skip)->normal[1] = n[1];
    CONTACT(contact,2*skip)->normal[2] = n[2];
  }

  if (B1 < B2) {
    if (B3 < B1) goto use_side_3; else {
      BAR(1,0,1);	// use side 1
      if (maxc == 2) goto done;
      if (B2 < B3) goto contact2_2; else goto contact2_3;
    }
  }
  else {
    if (B3 < B2) {
      use_side_3:	// use side 3
      BAR(1,2,3);
      if (maxc == 2) goto done;
      if (B1 < B2) goto contact2_1; else goto contact2_2;
    }
    else {
      BAR(1,1,2);	// use side 2
      if (maxc == 2) goto done;
      if (B1 < B3) goto contact2_1; else goto contact2_3;
    }
  }

  contact2_1: BAR(2,0,1); goto done;
  contact2_2: BAR(2,1,2); goto done;
  contact2_3: BAR(2,2,3); goto done;
#undef FOO
#undef BAR

 done:
  for (int i=0; i<ret; i++) {
    dContactGeom *currContact = CONTACT(contact,i*skip);
    currContact->g1 = o1;
    currContact->g2 = o2;
	currContact->side1 = -1;
    currContact->side2 = -1;
  }
  return ret;
}
예제 #21
0
int dcTriListCollider::dSortedTriCyl (
				   const dReal* triSideAx0,const dReal* triSideAx1,
				   const dReal* triAx,
				   //const dReal* v0,
				   //const dReal* v1,
				   //const dReal* v2,
				   CDB::TRI* T,
				   dReal dist,
				   dxGeom *o1, dxGeom *o2,
				   int flags, dContactGeom *contact, int skip
				   )
{
	
	VERIFY (dGeomGetClass(o1)== dCylinderClassUser);

	const dReal *R = dGeomGetRotation(o1);
	const dReal* p=dGeomGetPosition(o1);
	dReal radius;
	dReal hlz;
	dGeomCylinderGetParams(o1,&radius,&hlz);
	hlz/=2.f;

	// find number of contacts requested
	int maxc = flags & NUMC_MASK;
	if (maxc < 1) maxc = 1;
	if (maxc > 3) maxc = 3;	// no more than 3 contacts per box allowed
	
	dReal signum, outDepth,cos1,sin1;
	////////////////////////////////////////////////////////////////////////////
	//sepparation along tri plane normal;///////////////////////////////////////
	////////////////////////////////////////////////////////////////////////////


	//cos0=dDOT14(triAx,R+0);
	cos1=dFabs(dDOT14(triAx,R+1));
	//cos2=dDOT14(triAx,R+2);

	//sin1=_sqrt(cos0*cos0+cos2*cos2);

	////////////////////////
	//another way //////////
	cos1=cos1<REAL(1.) ? cos1 : REAL(1.); //cos1 may slightly exeed 1.f
	sin1=_sqrt(REAL(1.)-cos1*cos1);
	//////////////////////////////

	dReal sidePr=cos1*hlz+sin1*radius;

	
	if(dist>0.f) 
			return 0;
	dReal depth=sidePr-dist;
	outDepth=depth;
	signum=-1.f;

	int code=0;
	if(depth<0.f) return 0;

	dVector3 norm;
	unsigned int ret=0;
	dVector3 pos;
	if(code==0){
		norm[0]=triAx[0]*signum;
		norm[1]=triAx[1]*signum;
		norm[2]=triAx[2]*signum;


		dReal Q1 = signum*dDOT14(triAx,R+0);
		dReal Q2 = signum*dDOT14(triAx,R+1);
		dReal Q3 = signum*dDOT14(triAx,R+2);
		dReal factor =_sqrt(Q1*Q1+Q3*Q3);
		dReal	C1,C3;
		dReal centerDepth;//depth in the cirle centre
		if(factor>0.f)
		{
			C1=Q1/factor;
			C3=Q3/factor;

		}
		else
		{
			C1=1.f;
			C3=0.f;

		}

		dReal A1 = radius *		C1;//cosinus
		dReal A2 = hlz*Q2;
		dReal A3 = radius *		C3;//sinus 

		if(factor>0.f) centerDepth=outDepth-A1*Q1-A3*Q3; else centerDepth=outDepth;

		pos[0]=p[0];
		pos[1]=p[1];
		pos[2]=p[2];

		pos[0]+= A2>0 ? hlz*R[1]:-hlz*R[1];
		pos[1]+= A2>0 ? hlz*R[5]:-hlz*R[5];
		pos[2]+= A2>0 ? hlz*R[9]:-hlz*R[9];




		ret=0;
		contact->pos[0] = pos[0]+A1*R[0]+A3*R[2];
		contact->pos[1] = pos[1]+A1*R[4]+A3*R[6];
		contact->pos[2] = pos[2]+A1*R[8]+A3*R[10];

			{
				contact->depth = outDepth;
				ret=1;
			}

			if(dFabs(Q2)>M_SQRT1_2){

				A1=(-C1*M_COS_PI_3-C3*M_SIN_PI_3)*radius;
				A3=(-C3*M_COS_PI_3+C1*M_SIN_PI_3)*radius;
				CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
				CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
				CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
				CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

				if(CONTACT(contact,ret*skip)->depth>0.f)++ret;

				A1=(-C1*M_COS_PI_3+C3*M_SIN_PI_3)*radius;
				A3=(-C3*M_COS_PI_3-C1*M_SIN_PI_3)*radius;
				CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
				CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
				CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
				CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

				if(CONTACT(contact,ret*skip)->depth>0.f)++ret;
			} else {

				CONTACT(contact,ret*skip)->pos[0]=contact->pos[0]-2.f*(A2>0 ? hlz*R[1]:-hlz*R[1]);
				CONTACT(contact,ret*skip)->pos[1]=contact->pos[1]-2.f*(A2>0 ? hlz*R[5]:-hlz*R[5]);
				CONTACT(contact,ret*skip)->pos[2]=contact->pos[2]-2.f*(A2>0 ? hlz*R[9]:-hlz*R[9]);
				CONTACT(contact,ret*skip)->depth=outDepth-Q2*2.f*A2;

				if(CONTACT(contact,ret*skip)->depth>0.f)++ret;
			}
	}

	if((int)ret>maxc) ret=(unsigned int)maxc;

	for (unsigned int i=0; i<ret; ++i) {
		CONTACT(contact,i*skip)->g1 = const_cast<dxGeom*> (o2);
		CONTACT(contact,i*skip)->g2 = const_cast<dxGeom*> (o1);
		CONTACT(contact,i*skip)->normal[0] = norm[0];
		CONTACT(contact,i*skip)->normal[1] = norm[1];
		CONTACT(contact,i*skip)->normal[2] = norm[2];
		SURFACE(contact,i*skip)->mode=T->material;
	}
	if(ret&&dGeomGetUserData(o1)->callback)dGeomGetUserData(o1)->callback(T,contact);
	return ret;  
}
// clip and generate contacts
void sTrimeshBoxColliderData::_cldClipping(const dVector3 &v0, const dVector3 &v1, const dVector3 &v2, int TriIndex) {
  dIASSERT( !(m_iFlags & CONTACTS_UNIMPORTANT) || m_ctContacts < (m_iFlags & NUMC_MASK) ); // Do not call the function if there is no room to store results

  // if we have edge/edge intersection
  if (m_iBestAxis > 4 ) {
    dVector3 vub,vPb,vPa;

    SET(vPa,m_vHullBoxPos);

    // calculate point on box edge
    for( int i=0; i<3; i++) {
      dVector3 vRotCol;
      GETCOL(m_mHullBoxRot,i,vRotCol);
      dReal fSign = dDOT(m_vBestNormal,vRotCol) > 0 ? 1.0f : -1.0f;

      vPa[0] += fSign * m_vBoxHalfSize[i] * vRotCol[0];
      vPa[1] += fSign * m_vBoxHalfSize[i] * vRotCol[1];
      vPa[2] += fSign * m_vBoxHalfSize[i] * vRotCol[2];
    }

    int iEdge = (m_iBestAxis-5)%3;

    // decide which edge is on triangle
    if ( iEdge == 0 ) {
      SET(vPb,v0);
      SET(vub,m_vE0);
    } else if ( iEdge == 1) {
      SET(vPb,v2);
      SET(vub,m_vE1);
    } else {
      SET(vPb,v1);
      SET(vub,m_vE2);
    }


    // setup direction parameter for face edge
    dNormalize3(vub);

    dReal fParam1, fParam2;

    // setup direction parameter for box edge
    dVector3 vua;
    int col=(m_iBestAxis-5)/3;
    GETCOL(m_mHullBoxRot,col,vua);

    // find two closest points on both edges
    _cldClosestPointOnTwoLines( vPa, vua, vPb, vub, fParam1, fParam2 );
    vPa[0] += vua[0]*fParam1;
    vPa[1] += vua[1]*fParam1;
    vPa[2] += vua[2]*fParam1;

    vPb[0] += vub[0]*fParam2;
    vPb[1] += vub[1]*fParam2;
    vPb[2] += vub[2]*fParam2;

    // calculate collision point
    dVector3 vPntTmp;
    ADD(vPa,vPb,vPntTmp);

    vPntTmp[0]*=0.5f;
    vPntTmp[1]*=0.5f;
    vPntTmp[2]*=0.5f;

    // generate contact point between two closest points
#if 0 //#ifdef ORIG -- if to use conditional define, GenerateContact must be moved into #else
	dContactGeom* Contact = SAFECONTACT(m_iFlags, m_ContactGeoms, m_ctContacts, m_iStride);
	Contact->depth = m_fBestDepth;
	SET(Contact->normal,m_vBestNormal);
	SET(Contact->pos,vPntTmp);
	Contact->g1 = Geom1;
	Contact->g2 = Geom2;
	Contact->side1 = TriIndex;
	Contact->side2 = -1;
	m_ctContacts++;
#endif
    GenerateContact(m_iFlags, m_ContactGeoms, m_iStride, m_Geom1, m_Geom2, TriIndex,
                    vPntTmp, m_vBestNormal, m_fBestDepth, m_ctContacts);


  // if triangle is the referent face then clip box to triangle face
  } else if (m_iBestAxis == 1) {

    dVector3 vNormal2;
    vNormal2[0]=-m_vBestNormal[0];
    vNormal2[1]=-m_vBestNormal[1];
    vNormal2[2]=-m_vBestNormal[2];


    // vNr is normal in box frame, pointing from triangle to box
    dMatrix3 mTransposed;
    mTransposed[0*4+0]=m_mHullBoxRot[0*4+0];
    mTransposed[0*4+1]=m_mHullBoxRot[1*4+0];
    mTransposed[0*4+2]=m_mHullBoxRot[2*4+0];

    mTransposed[1*4+0]=m_mHullBoxRot[0*4+1];
    mTransposed[1*4+1]=m_mHullBoxRot[1*4+1];
    mTransposed[1*4+2]=m_mHullBoxRot[2*4+1];

    mTransposed[2*4+0]=m_mHullBoxRot[0*4+2];
    mTransposed[2*4+1]=m_mHullBoxRot[1*4+2];
    mTransposed[2*4+2]=m_mHullBoxRot[2*4+2];

    dVector3 vNr;
    vNr[0]=mTransposed[0*4+0]*vNormal2[0]+  mTransposed[0*4+1]*vNormal2[1]+  mTransposed[0*4+2]*vNormal2[2];
    vNr[1]=mTransposed[1*4+0]*vNormal2[0]+  mTransposed[1*4+1]*vNormal2[1]+  mTransposed[1*4+2]*vNormal2[2];
    vNr[2]=mTransposed[2*4+0]*vNormal2[0]+  mTransposed[2*4+1]*vNormal2[1]+  mTransposed[2*4+2]*vNormal2[2];


    dVector3 vAbsNormal;
    vAbsNormal[0] = dFabs( vNr[0] );
    vAbsNormal[1] = dFabs( vNr[1] );
    vAbsNormal[2] = dFabs( vNr[2] );

    // get closest face from box
    int iB0, iB1, iB2;
    if (vAbsNormal[1] > vAbsNormal[0]) {
      if (vAbsNormal[1] > vAbsNormal[2]) {
        iB1 = 0;  iB0 = 1;  iB2 = 2;
      } else {
        iB1 = 0;  iB2 = 1;  iB0 = 2;
      }
    } else {

      if (vAbsNormal[0] > vAbsNormal[2]) {
        iB0 = 0;  iB1 = 1;  iB2 = 2;
      } else {
        iB1 = 0;  iB2 = 1;  iB0 = 2;
      }
    }

    // Here find center of box face we are going to project
    dVector3 vCenter;
    dVector3 vRotCol;
    GETCOL(m_mHullBoxRot,iB0,vRotCol);

    if (vNr[iB0] > 0) {
        vCenter[0] = m_vHullBoxPos[0] - v0[0] - m_vBoxHalfSize[iB0] * vRotCol[0];
      vCenter[1] = m_vHullBoxPos[1] - v0[1] - m_vBoxHalfSize[iB0] * vRotCol[1];
      vCenter[2] = m_vHullBoxPos[2] - v0[2] - m_vBoxHalfSize[iB0] * vRotCol[2];
    } else {
      vCenter[0] = m_vHullBoxPos[0] - v0[0] + m_vBoxHalfSize[iB0] * vRotCol[0];
      vCenter[1] = m_vHullBoxPos[1] - v0[1] + m_vBoxHalfSize[iB0] * vRotCol[1];
      vCenter[2] = m_vHullBoxPos[2] - v0[2] + m_vBoxHalfSize[iB0] * vRotCol[2];
    }

    // Here find 4 corner points of box
    dVector3 avPoints[4];

    dVector3 vRotCol2;
    GETCOL(m_mHullBoxRot,iB1,vRotCol);
    GETCOL(m_mHullBoxRot,iB2,vRotCol2);

    for(int x=0;x<3;x++) {
        avPoints[0][x] = vCenter[x] + (m_vBoxHalfSize[iB1] * vRotCol[x]) - (m_vBoxHalfSize[iB2] * vRotCol2[x]);
        avPoints[1][x] = vCenter[x] - (m_vBoxHalfSize[iB1] * vRotCol[x]) - (m_vBoxHalfSize[iB2] * vRotCol2[x]);
        avPoints[2][x] = vCenter[x] - (m_vBoxHalfSize[iB1] * vRotCol[x]) + (m_vBoxHalfSize[iB2] * vRotCol2[x]);
        avPoints[3][x] = vCenter[x] + (m_vBoxHalfSize[iB1] * vRotCol[x]) + (m_vBoxHalfSize[iB2] * vRotCol2[x]);
    }

    // clip Box face with 4 planes of triangle (1 face plane, 3 egde planes)
    dVector3 avTempArray1[9];
    dVector3 avTempArray2[9];
    dVector4 plPlane;

    int iTempCnt1=0;
    int iTempCnt2=0;

    // zeroify vectors - necessary?
    for(int i=0; i<9; i++) {
      avTempArray1[i][0]=0;
      avTempArray1[i][1]=0;
      avTempArray1[i][2]=0;

      avTempArray2[i][0]=0;
      avTempArray2[i][1]=0;
      avTempArray2[i][2]=0;
    }


    // Normal plane
    dVector3 vTemp;
    vTemp[0]=-m_vN[0];
    vTemp[1]=-m_vN[1];
    vTemp[2]=-m_vN[2];
    dNormalize3(vTemp);
    CONSTRUCTPLANE(plPlane,vTemp,0);

    _cldClipPolyToPlane( avPoints, 4, avTempArray1, iTempCnt1, plPlane  );


    // Plane p0
    dVector3 vTemp2;
    SUBTRACT(v1,v0,vTemp2);
    dCROSS(vTemp,=,m_vN,vTemp2);
    dNormalize3(vTemp);
    CONSTRUCTPLANE(plPlane,vTemp,0);

    _cldClipPolyToPlane( avTempArray1, iTempCnt1, avTempArray2, iTempCnt2, plPlane  );

    // Plane p1
    SUBTRACT(v2,v1,vTemp2);
    dCROSS(vTemp,=,m_vN,vTemp2);
    dNormalize3(vTemp);
    SUBTRACT(v0,v2,vTemp2);
    CONSTRUCTPLANE(plPlane,vTemp,dDOT(vTemp2,vTemp));

    _cldClipPolyToPlane( avTempArray2, iTempCnt2, avTempArray1, iTempCnt1, plPlane  );

    // Plane p2
    SUBTRACT(v0,v2,vTemp2);
    dCROSS(vTemp,=,m_vN,vTemp2);
    dNormalize3(vTemp);
    CONSTRUCTPLANE(plPlane,vTemp,0);

    _cldClipPolyToPlane( avTempArray1, iTempCnt1, avTempArray2, iTempCnt2, plPlane  );

    // END of clipping polygons

    // for each generated contact point
    for ( int i=0; i<iTempCnt2; i++ ) {
      // calculate depth
      dReal fTempDepth = dDOT(vNormal2,avTempArray2[i]);

      // clamp depth to zero
      if (fTempDepth > 0) {
        fTempDepth = 0;
      }

      dVector3 vPntTmp;
      ADD(avTempArray2[i],v0,vPntTmp);

#if 0 //#ifdef ORIG -- if to use conditional define, GenerateContact must be moved into #else
      dContactGeom* Contact = SAFECONTACT(m_iFlags, m_ContactGeoms, m_ctContacts, m_iStride);
	  
      Contact->depth = -fTempDepth;
      SET(Contact->normal,m_vBestNormal);
      SET(Contact->pos,vPntTmp);
      Contact->g1 = Geom1;
      Contact->g2 = Geom2;
	  Contact->side1 = TriIndex;
	  Contact->side2 = -1;
      m_ctContacts++;
#endif
		GenerateContact(m_iFlags, m_ContactGeoms, m_iStride,  m_Geom1, m_Geom2, TriIndex,
						vPntTmp, m_vBestNormal, -fTempDepth, m_ctContacts);

		if ((m_ctContacts | CONTACTS_UNIMPORTANT) == (m_iFlags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
			break;
		}
    }

    //dAASSERT(m_ctContacts>0);

  // if box face is the referent face, then clip triangle on box face
  } else { // 2 <= if iBestAxis <= 4
예제 #23
0
static void SOR_LCP (int m, int nb, dRealMutablePtr J, int *jb, dxBody * const *body,
	dRealPtr invI, dRealMutablePtr lambda, dRealMutablePtr fc, dRealMutablePtr b,
	dRealMutablePtr lo, dRealMutablePtr hi, dRealPtr cfm, int *findex,
	dxQuickStepParameters *qs)
{
	const int num_iterations = qs->num_iterations;
	const dReal sor_w = qs->w;		// SOR over-relaxation parameter

	int i,j;

#ifdef WARM_STARTING
	// for warm starting, this seems to be necessary to prevent
	// jerkiness in motor-driven joints. i have no idea why this works.
	for (i=0; i<m; i++) lambda[i] *= 0.9;
#else
	dSetZero (lambda,m);
#endif

	// the lambda computed at the previous iteration.
	// this is used to measure error for when we are reordering the indexes.
	dRealAllocaArray (last_lambda,m);

	// a copy of the 'hi' vector in case findex[] is being used
	dRealAllocaArray (hicopy,m);
	memcpy (hicopy,hi,m*sizeof(dReal));

	// precompute iMJ = inv(M)*J'
	dRealAllocaArray (iMJ,m*12);
	compute_invM_JT (m,J,iMJ,jb,body,invI);

	// compute fc=(inv(M)*J')*lambda. we will incrementally maintain fc
	// as we change lambda.
#ifdef WARM_STARTING
	multiply_invM_JT (m,nb,iMJ,jb,lambda,fc);
#else
	dSetZero (fc,nb*6);
#endif

	// precompute 1 / diagonals of A
	dRealAllocaArray (Ad,m);
	dRealPtr iMJ_ptr = iMJ;
	dRealMutablePtr J_ptr = J;
	for (i=0; i<m; i++) {
		dReal sum = 0;
		for (j=0; j<6; j++) sum += iMJ_ptr[j] * J_ptr[j];
		if (jb[i*2+1] >= 0) {
			for (j=6; j<12; j++) sum += iMJ_ptr[j] * J_ptr[j];
		}
		iMJ_ptr += 12;
		J_ptr += 12;
		Ad[i] = sor_w / (sum + cfm[i]);
	}

	// scale J and b by Ad
	J_ptr = J;
	for (i=0; i<m; i++) {
		for (j=0; j<12; j++) {
			J_ptr[0] *= Ad[i];
			J_ptr++;
		}
		b[i] *= Ad[i];
	}

	// scale Ad by CFM
	for (i=0; i<m; i++) Ad[i] *= cfm[i];

	// order to solve constraint rows in
	IndexError *order = (IndexError*) alloca (m*sizeof(IndexError));

#ifndef REORDER_CONSTRAINTS
	// make sure constraints with findex < 0 come first.
	j=0;
	for (i=0; i<m; i++) if (findex[i] < 0) order[j++].index = i;
	for (i=0; i<m; i++) if (findex[i] >= 0) order[j++].index = i;
	dIASSERT (j==m);
#endif

	for (int iteration=0; iteration < num_iterations; iteration++) {

#ifdef REORDER_CONSTRAINTS
		// constraints with findex < 0 always come first.
		if (iteration < 2) {
			// for the first two iterations, solve the constraints in
			// the given order
			for (i=0; i<m; i++) {
				order[i].error = i;
				order[i].findex = findex[i];
				order[i].index = i;
			}
		}
		else {
			// sort the constraints so that the ones converging slowest
			// get solved last. use the absolute (not relative) error.
			for (i=0; i<m; i++) {
				dReal v1 = dFabs (lambda[i]);
				dReal v2 = dFabs (last_lambda[i]);
				dReal max = (v1 > v2) ? v1 : v2;
				if (max > 0) {
					//@@@ relative error: order[i].error = dFabs(lambda[i]-last_lambda[i])/max;
					order[i].error = dFabs(lambda[i]-last_lambda[i]);
				}
				else {
					order[i].error = dInfinity;
				}
				order[i].findex = findex[i];
				order[i].index = i;
			}
		}
		qsort (order,m,sizeof(IndexError),&compare_index_error);
#endif
#ifdef RANDOMLY_REORDER_CONSTRAINTS
                if ((iteration & 7) == 0) {
			for (i=1; i<m; ++i) {
				IndexError tmp = order[i];
				int swapi = dRandInt(i+1);
				order[i] = order[swapi];
				order[swapi] = tmp;
			}
                }
#endif

		//@@@ potential optimization: swap lambda and last_lambda pointers rather
		//    than copying the data. we must make sure lambda is properly
		//    returned to the caller
		memcpy (last_lambda,lambda,m*sizeof(dReal));

		for (int i=0; i<m; i++) {
			// @@@ potential optimization: we could pre-sort J and iMJ, thereby
			//     linearizing access to those arrays. hmmm, this does not seem
			//     like a win, but we should think carefully about our memory
			//     access pattern.
		
			int index = order[i].index;
			J_ptr = J + index*12;
			iMJ_ptr = iMJ + index*12;
		
			// set the limits for this constraint. note that 'hicopy' is used.
			// this is the place where the QuickStep method differs from the
			// direct LCP solving method, since that method only performs this
			// limit adjustment once per time step, whereas this method performs
			// once per iteration per constraint row.
			// the constraints are ordered so that all lambda[] values needed have
			// already been computed.
			if (findex[index] >= 0) {
				hi[index] = dFabs (hicopy[index] * lambda[findex[index]]);
				lo[index] = -hi[index];
			}

			int b1 = jb[index*2];
			int b2 = jb[index*2+1];
			dReal delta = b[index] - lambda[index]*Ad[index];
			dRealMutablePtr fc_ptr = fc + 6*b1;
			
			// @@@ potential optimization: SIMD-ize this and the b2 >= 0 case
			delta -=fc_ptr[0] * J_ptr[0] + fc_ptr[1] * J_ptr[1] +
				fc_ptr[2] * J_ptr[2] + fc_ptr[3] * J_ptr[3] +
				fc_ptr[4] * J_ptr[4] + fc_ptr[5] * J_ptr[5];
			// @@@ potential optimization: handle 1-body constraints in a separate
			//     loop to avoid the cost of test & jump?
			if (b2 >= 0) {
				fc_ptr = fc + 6*b2;
				delta -=fc_ptr[0] * J_ptr[6] + fc_ptr[1] * J_ptr[7] +
					fc_ptr[2] * J_ptr[8] + fc_ptr[3] * J_ptr[9] +
					fc_ptr[4] * J_ptr[10] + fc_ptr[5] * J_ptr[11];
			}

			// compute lambda and clamp it to [lo,hi].
			// @@@ potential optimization: does SSE have clamping instructions
			//     to save test+jump penalties here?
			dReal new_lambda = lambda[index] + delta;
			if (new_lambda < lo[index]) {
				delta = lo[index]-lambda[index];
				lambda[index] = lo[index];
			}
			else if (new_lambda > hi[index]) {
				delta = hi[index]-lambda[index];
				lambda[index] = hi[index];
			}
			else {
				lambda[index] = new_lambda;
			}

			//@@@ a trick that may or may not help
			//dReal ramp = (1-((dReal)(iteration+1)/(dReal)num_iterations));
			//delta *= ramp;
		
			// update fc.
			// @@@ potential optimization: SIMD for this and the b2 >= 0 case
			fc_ptr = fc + 6*b1;
			fc_ptr[0] += delta * iMJ_ptr[0];
			fc_ptr[1] += delta * iMJ_ptr[1];
			fc_ptr[2] += delta * iMJ_ptr[2];
			fc_ptr[3] += delta * iMJ_ptr[3];
			fc_ptr[4] += delta * iMJ_ptr[4];
			fc_ptr[5] += delta * iMJ_ptr[5];
			// @@@ potential optimization: handle 1-body constraints in a separate
			//     loop to avoid the cost of test & jump?
			if (b2 >= 0) {
				fc_ptr = fc + 6*b2;
				fc_ptr[0] += delta * iMJ_ptr[6];
				fc_ptr[1] += delta * iMJ_ptr[7];
				fc_ptr[2] += delta * iMJ_ptr[8];
				fc_ptr[3] += delta * iMJ_ptr[9];
				fc_ptr[4] += delta * iMJ_ptr[10];
				fc_ptr[5] += delta * iMJ_ptr[11];
			}
		}
	}
}
bool sTrimeshBoxColliderData::_cldTestSeparatingAxes(const dVector3 &v0, const dVector3 &v1, const dVector3 &v2) {
  // reset best axis
  m_iBestAxis = 0;
  m_iExitAxis = -1;
  m_fBestDepth = MAXVALUE;

  // calculate edges
  SUBTRACT(v1,v0,m_vE0);
  SUBTRACT(v2,v0,m_vE1);
  SUBTRACT(m_vE1,m_vE0,m_vE2);

  // calculate poly normal
  dCROSS(m_vN,=,m_vE0,m_vE1);

  // calculate length of face normal
  dReal fNLen = LENGTHOF(m_vN);

  // Even though all triangles might be initially valid, 
  // a triangle may degenerate into a segment after applying 
  // space transformation.
  if (!fNLen) {
	  return false;
  }

  // extract box axes as vectors
  dVector3 vA0,vA1,vA2;
  GETCOL(m_mHullBoxRot,0,vA0);
  GETCOL(m_mHullBoxRot,1,vA1);
  GETCOL(m_mHullBoxRot,2,vA2);

  // box halfsizes
  dReal fa0 = m_vBoxHalfSize[0];
  dReal fa1 = m_vBoxHalfSize[1];
  dReal fa2 = m_vBoxHalfSize[2];

  // calculate relative position between box and triangle
  dVector3 vD;
  SUBTRACT(v0,m_vHullBoxPos,vD);

  dVector3 vL;
  dReal fp0, fp1, fp2, fR, fD;

  // Test separating axes for intersection
  // ************************************************
  // Axis 1 - Triangle Normal
  SET(vL,m_vN);
  fp0  = dDOT(vL,vD);
  fp1  = fp0;
  fp2  = fp0;
  fR=fa0*dFabs( dDOT(m_vN,vA0) ) + fa1 * dFabs( dDOT(m_vN,vA1) ) + fa2 * dFabs( dDOT(m_vN,vA2) );

  if (!_cldTestNormal(fp0, fR, vL, 1)) {
    m_iExitAxis=1;
    return false;
  }

  // ************************************************

  // Test Faces
  // ************************************************
  // Axis 2 - Box X-Axis
  SET(vL,vA0);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 + dDOT(vA0,m_vE0);
  fp2 = fp0 + dDOT(vA0,m_vE1);
  fR  = fa0;

  if (!_cldTestFace(fp0, fp1, fp2, fR, fD, vL, 2)) {
    m_iExitAxis=2;
    return false;
  }
  // ************************************************

  // ************************************************
  // Axis 3 - Box Y-Axis
  SET(vL,vA1);
  fD = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 + dDOT(vA1,m_vE0);
  fp2 = fp0 + dDOT(vA1,m_vE1);
  fR  = fa1;

  if (!_cldTestFace(fp0, fp1, fp2, fR, fD, vL, 3)) {
    m_iExitAxis=3;
    return false;
  }

  // ************************************************

  // ************************************************
  // Axis 4 - Box Z-Axis
  SET(vL,vA2);
  fD = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 + dDOT(vA2,m_vE0);
  fp2 = fp0 + dDOT(vA2,m_vE1);
  fR  = fa2;

  if (!_cldTestFace(fp0, fp1, fp2, fR, fD, vL, 4)) {
    m_iExitAxis=4;
    return false;
  }

  // ************************************************

  // Test Edges
  // ************************************************
  // Axis 5 - Box X-Axis cross Edge0
  dCROSS(vL,=,vA0,m_vE0);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0;
  fp2 = fp0 + dDOT(vA0,m_vN);
  fR  = fa1 * dFabs(dDOT(vA2,m_vE0)) + fa2 * dFabs(dDOT(vA1,m_vE0));

  if (!_cldTestEdge(fp1, fp2, fR, fD, vL, 5)) {
    m_iExitAxis=5;
    return false;
  }
  // ************************************************

  // ************************************************
  // Axis 6 - Box X-Axis cross Edge1
  dCROSS(vL,=,vA0,m_vE1);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 - dDOT(vA0,m_vN);
  fp2 = fp0;
  fR  = fa1 * dFabs(dDOT(vA2,m_vE1)) + fa2 * dFabs(dDOT(vA1,m_vE1));

  if (!_cldTestEdge(fp0, fp1, fR, fD, vL, 6)) {
    m_iExitAxis=6;
    return false;
  }
  // ************************************************

  // ************************************************
  // Axis 7 - Box X-Axis cross Edge2
  dCROSS(vL,=,vA0,m_vE2);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 - dDOT(vA0,m_vN);
  fp2 = fp0 - dDOT(vA0,m_vN);
  fR  = fa1 * dFabs(dDOT(vA2,m_vE2)) + fa2 * dFabs(dDOT(vA1,m_vE2));

  if (!_cldTestEdge(fp0, fp1, fR, fD, vL, 7)) {
    m_iExitAxis=7;
    return false;
  }

  // ************************************************

  // ************************************************
  // Axis 8 - Box Y-Axis cross Edge0
  dCROSS(vL,=,vA1,m_vE0);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0;
  fp2 = fp0 + dDOT(vA1,m_vN);
  fR  = fa0 * dFabs(dDOT(vA2,m_vE0)) + fa2 * dFabs(dDOT(vA0,m_vE0));

  if (!_cldTestEdge(fp0, fp2, fR, fD, vL, 8)) {
    m_iExitAxis=8;
    return false;
  }

  // ************************************************

  // ************************************************
  // Axis 9 - Box Y-Axis cross Edge1
  dCROSS(vL,=,vA1,m_vE1);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 - dDOT(vA1,m_vN);
  fp2 = fp0;
  fR  = fa0 * dFabs(dDOT(vA2,m_vE1)) + fa2 * dFabs(dDOT(vA0,m_vE1));

  if (!_cldTestEdge(fp0, fp1, fR, fD, vL, 9)) {
    m_iExitAxis=9;
    return false;
  }

  // ************************************************

  // ************************************************
  // Axis 10 - Box Y-Axis cross Edge2
  dCROSS(vL,=,vA1,m_vE2);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 - dDOT(vA1,m_vN);
  fp2 = fp0 - dDOT(vA1,m_vN);
  fR  = fa0 * dFabs(dDOT(vA2,m_vE2)) + fa2 * dFabs(dDOT(vA0,m_vE2));

  if (!_cldTestEdge(fp0, fp1, fR, fD, vL, 10)) {
    m_iExitAxis=10;
    return false;
  }

  // ************************************************

  // ************************************************
  // Axis 11 - Box Z-Axis cross Edge0
  dCROSS(vL,=,vA2,m_vE0);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0;
  fp2 = fp0 + dDOT(vA2,m_vN);
  fR  = fa0 * dFabs(dDOT(vA1,m_vE0)) + fa1 * dFabs(dDOT(vA0,m_vE0));

  if (!_cldTestEdge(fp0, fp2, fR, fD, vL, 11)) {
    m_iExitAxis=11;
    return false;
  }
  // ************************************************

  // ************************************************
  // Axis 12 - Box Z-Axis cross Edge1
  dCROSS(vL,=,vA2,m_vE1);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 - dDOT(vA2,m_vN);
  fp2 = fp0;
  fR  = fa0 * dFabs(dDOT(vA1,m_vE1)) + fa1 * dFabs(dDOT(vA0,m_vE1));

  if (!_cldTestEdge(fp0, fp1, fR, fD, vL, 12)) {
    m_iExitAxis=12;
    return false;
  }
  // ************************************************

  // ************************************************
  // Axis 13 - Box Z-Axis cross Edge2
  dCROSS(vL,=,vA2,m_vE2);
  fD  = dDOT(vL,m_vN)/fNLen;
  fp0 = dDOT(vL,vD);
  fp1 = fp0 - dDOT(vA2,m_vN);
  fp2 = fp0 - dDOT(vA2,m_vN);
  fR  = fa0 * dFabs(dDOT(vA1,m_vE2)) + fa1 * dFabs(dDOT(vA0,m_vE2));

  if (!_cldTestEdge(fp0, fp1, fR, fD, vL, 13)) {
    m_iExitAxis=13;
    return false;
  }

  // ************************************************
  return true;
}
예제 #25
0
void
dxJointScrew::getInfo2( dxJoint::Info2 *info )
{
    // Added by OSRF
    //
    // Screw Constraint Overview 
    //
    // make 5 constraint rows.
    // given screw axis, first create two orthogonal axis p and q.
    // row 1: linear constraint along p
    // row 2: linear constraint along q
    // row 3: screw constraint about user specified axis
    // row 4: rotational constraint about p
    // row 5: rotational constraint about q

    // Added by OSRF
    // If joint values of erp and cfm are negative, then ignore them.
    // info->erp, info->cfm already have the global values from quickstep
    if (this->erp >= 0)
      info->erp = erp;
    if (this->cfm >= 0)
    {
      info->cfm[0] = cfm;
      info->cfm[1] = cfm;
      info->cfm[2] = cfm;
      info->cfm[3] = cfm;
      info->cfm[4] = cfm;
    }

    // constraint rows 1 to 3
    {
      // pull out pos and R for both bodies. also get the `connection'
      // vector pos2-pos1.
      dReal *pos1, *pos2, *R1, *R2;
      dVector3 cgdiff;
      cgdiff[0] = cgdiff[1] = cgdiff[2] = 0;
      pos1 = node[0].body->posr.pos;
      R1 = node[0].body->posr.R;
      if ( node[1].body )
      {
          pos2 = node[1].body->posr.pos;
          R2 = node[1].body->posr.R;
          for (int i = 0; i < 3; ++i )
          {
              // store distance between cg's in cgdiff
              cgdiff[i] = pos2[i] - pos1[i];
          }
      }
      else
      {
          pos2 = 0;
          R2 = 0;
      }



      // compute error for screw due to drift
      dReal lin_disp; // linear displacement
      dReal lin_err; // linear displacement
      {
        // get linear disp for screw
        // get axis1 in global coordinates
        dVector3 ax1, q;
        dMultiply0_331 ( ax1, node[0].body->posr.R, axis1 );
        if ( node[1].body )
        {
            // get body2 + offset point in global coordinates
            dMultiply0_331 ( q, node[1].body->posr.R, offset );
            //printf("debug offset q[%f %f %f] p0[%f %f %f] p1[%f %f %f] \t",
            //  q[0],q[1],q[2],
            //  node[0].body->posr.pos[0], node[0].body->posr.pos[1],
            //  node[0].body->posr.pos[2],
            //  node[1].body->posr.pos[0], node[1].body->posr.pos[1],
            //  node[1].body->posr.pos[2]);
            for ( int ii = 0; ii < 3; ++ii )
              q[ii] = node[0].body->posr.pos[ii] - q[ii] -
                node[1].body->posr.pos[ii];
        }
        else
        {
            q[0] = node[0].body->posr.pos[0] - offset[0];
            q[1] = node[0].body->posr.pos[1] - offset[1];
            q[2] = node[0].body->posr.pos[2] - offset[2];
        }
        lin_disp = dCalcVectorDot3 ( ax1, q );

        // linear error should be length scaled, BUT
        if (dFabs(thread_pitch) > 1.0)
        {
          // constraint is written in length scale, so
          // linear error is length scaled.
          lin_err = -(lin_disp-cumulative_angle/thread_pitch);
        }
        else
        {
          // here the entire constraint equation, including lin_err
          // is multiplied by thread_pitch for |thread_pitch| less than 1.0
          // for added numerical stability,
          lin_err = -(thread_pitch*lin_disp-cumulative_angle);
        }
        // printf("lin disp: %f lin err: %f\n", lin_disp, lin_err);
      }



      int s0 = 0 * info->rowskip;
      int s1 = 1 * info->rowskip;
      int s2 = 2 * info->rowskip;

      // remaining two rows. we want: vel2 = vel1 + w1 x cgdiff ... but this would
      // result in three equations, so we project along the planespace vectors
      // so that sliding along the slider axis is disregarded. for symmetry we
      // also substitute (w1+w2)/2 for w1, as w1 is supposed to equal w2.

      // ax1 is axis1 converted to body1 frame
      dVector3 ax1;
      dMultiply0_331 ( ax1, R1, axis1 );

      // p and q are vectors perpendicular to ax1 in body1 frame
      dVector3 p, q;
      dPlaneSpace ( ax1, p, q );

      // linear constraints for the hinge joint
      // perpendicular to the sliding axis direction.
      for (int i = 0; i < 3; ++i ) info->J1l[s0+i] = p[i];
      for (int i = 0; i < 3; ++i ) info->J1l[s1+i] = q[i];

      // if p and q do not pass through body CG's,
      // we need to add angular constraints to balance out the forces
      // from these linear constraints.  See below:

      // a1 and a2 are axis vectors in the body frame
      // (whereas anchor1 and anchor2 are in world frame).
      // anchor1 is the vector from CG to joint anchor in world frame.
      dVector3 a1, a2;
      dMultiply0_331( a1, R1, anchor1 );

      // tmpp is a vector perpendicular to a1 and p in body frame,
      // it is the direction of the angular constraint that will
      // cancel out moment generated by linear constraint p
      // if p does not pass through CG.
      {
        dVector3 tmpp;
        dCalcVectorCross3(tmpp, p, a1);
        for (int i = 0; i < 3; ++i ) info->J1a[s0+i] = -tmpp[i];
      }

      // tmpq is similar to tmpp, but for q.
      {
        dVector3 tmpq;
        dCalcVectorCross3(tmpq, q, a1);
        for (int i = 0; i < 3; ++i ) info->J1a[s1+i] = -tmpq[i];
      }

      // screw constraint:
      // now constrain the sliding axis by rotation of the other body
      if (dFabs(thread_pitch) > 1.0)
      {
        for (int i = 0; i < 3; ++i ) info->J1l[s2+i] = ax1[i];
        for (int i = 0; i < 3; ++i ) info->J1a[s2+i] = -ax1[i]/thread_pitch;
      }
      else
      {
        // here the entire constraint equation, including lin_err
        // is multiplied by thread_pitch for |thread_pitch| less than 1.0
        // for added numerical stability,
        for (int i = 0; i < 3; ++i ) info->J1l[s2+i] = ax1[i]*thread_pitch;
        for (int i = 0; i < 3; ++i ) info->J1a[s2+i] = -ax1[i];
      }

      // repeat above for child body if one exists
      if ( node[1].body )
      {
        // linear constraints for s0 and s1
        for (int i = 0; i < 3; ++i ) info->J2l[s0+i] = -p[i];
        for (int i = 0; i < 3; ++i ) info->J2l[s1+i] = -q[i];

        // angular compensation if p and q do not pass through CG
        dMultiply0_331( a2, R2, anchor2 );
        dVector3 tmpp;
        dCalcVectorCross3(tmpp, p, a2);
        for (int i = 0; i < 3; ++i ) info->J2a[s0+i] = tmpp[i];
        dVector3 tmpq;
        dCalcVectorCross3(tmpq, q, a2);
        for (int i = 0; i < 3; ++i ) info->J2a[s1+i] = tmpq[i];

        // screw constraint:
        // constrain the sliding axis by rotation of the other body
        if (dFabs(thread_pitch) > 1.0)
        {
          for (int i = 0; i < 3; ++i ) info->J2a[s2+i] =  ax1[i]/thread_pitch;
          for (int i = 0; i < 3; ++i ) info->J2l[s2+i] = -ax1[i];
        }
        else
        {
          // here the entire constraint equation, including lin_err
          // is multiplied by thread_pitch for |thread_pitch| less than 1.0
          // for added numerical stability,
          for (int i = 0; i < 3; ++i ) info->J2a[s2+i] =  ax1[i];
          for (int i = 0; i < 3; ++i ) info->J2l[s2+i] = -ax1[i]*thread_pitch;
        }
      }

      // debug
      // printf ("anchor1 %f %f %f\n", anchor1[0], anchor1[1], anchor1[2]);
      // printf ("a1 %f %f %f\n", a1[0], a1[1], a1[2]);
      // printf ("ax1 %f %f %f\n", ax1[0], ax1[1], ax1[2]);
      // printf ("tmpp %f %f %f\n", tmpp[0], tmpp[1], tmpp[2]);
      // printf ("p %f %f %f\n", p[0], p[1], p[2]);
      // printf ("q %f %f %f\n", q[0], q[1], q[2]);
      // printf ("J1a[s0] %f %f %f\n", info->J1a[s0+0], info->J1a[s0+1],
      //   info->J1a[s0+2]);
      // printf ("J1a[s1] %f %f %f\n", info->J1a[s1+0], info->J1a[s1+1],
      //   info->J1a[s1+2]);
      // info->J1a[s0+0] = 1;
      // info->J1a[s0+1] = 0;
      // info->J1a[s0+2] = 0;
      // info->J1a[s1+0] = -1;
      // info->J1a[s1+1] = 0;
      // info->J1a[s1+2] = 0;
      // printf("screw err lin[%f], ang[%f], diff[%f] tp[%f]\n",
      //   thread_pitch*lin_disp, cumulative_angle, lin_err, thread_pitch);

      // compute last two elements of right hand side. we want to align the offset
      // point (in body 2's frame) with the center of body 1.
      dReal k = info->fps * info->erp;
      if ( node[1].body )
      {
          // dVector3 ofs;  // offset point in global coordinates
          // dMultiply0_331 ( ofs, R2, offset );
          // for (int i = 0; i < 3; ++i ) cgdiff[i] += ofs[i];

          // error between body anchors
          dVector3 error12;
          for (int i = 0; i < 3; ++i)
            error12[i] = a2[i] + node[1].body->posr.pos[i] - a1[i] -
              node[0].body->posr.pos[i];

          // error in the p direction is error12 dot p
          info->c[0] = k * (dCalcVectorDot3(error12, p));
          // error in the q direction is error12 dot p
          info->c[1] = k * (dCalcVectorDot3(error12, q));
          // interpenetration error for screw constraint
          info->c[2] = k * lin_err;
      }
      else
      {
          // debug
          // printf ("anchor1 %f %f %f\n", anchor1[0], anchor1[1], anchor1[2]);
          // printf ("anchor2 %f %f %f\n", anchor2[0], anchor2[1], anchor2[2]);
          // printf ("a1 %f %f %f\n", a1[0], a1[1], a1[2]);
          // printf ("p1 %f %f %f\n",
          //   node[0].body->posr.pos[0],
          //   node[0].body->posr.pos[1],
          //   node[0].body->posr.pos[2]);

          // error of body's anchor
          dVector3 error1;
          for (int i = 0; i < 3; ++i) error1[i] = anchor2[i] - a1[i] -
            node[0].body->posr.pos[i];
          // printf ("error1 %f %f %f\n", error1[0], error1[1], error1[2]);

          // error in the p direction is error1 dot p
          info->c[0] = k * (dCalcVectorDot3(error1, p));
          // error in the q direction
          info->c[1] = k * (dCalcVectorDot3(error1, q));
          // interpenetration error for screw constraint
          info->c[2] = k * lin_err;

          if ( flags & dJOINT_REVERSE )
              for (int i = 0; i < 3; ++i ) ax1[i] = -ax1[i];
      }

      // uncommnet to enforce slider joint limit
      // limot.addLimot ( this, info, 5, ax1, 0 );
    }

    // constraint rows 4 and 5
    {
      // set the two hinge rows. the screw axis should be the only unconstrained
      // rotational axis, the angular velocity of the two bodies perpendicular to
      // the hinge axis should be equal. thus the constraint equations are
      //    p*w1 - p*w2 = 0
      //    q*w1 - q*w2 = 0
      // where p and q are unit vectors normal to the hinge axis, and w1 and w2
      // are the angular velocity vectors of the two bodies.

      dVector3 ax1;  // length 1 joint axis in global coordinates, from 1st body
      dVector3 p, q; // plane space vectors for ax1
      dMultiply0_331( ax1, node[0].body->posr.R, axis1 );
      dPlaneSpace( ax1, p, q );

      int s3 = 3 * info->rowskip;
      int s4 = 4 * info->rowskip;

      info->J1a[s3+0] = p[0];
      info->J1a[s3+1] = p[1];
      info->J1a[s3+2] = p[2];
      info->J1a[s4+0] = q[0];
      info->J1a[s4+1] = q[1];
      info->J1a[s4+2] = q[2];

      if ( node[1].body )
      {
          info->J2a[s3+0] = -p[0];
          info->J2a[s3+1] = -p[1];
          info->J2a[s3+2] = -p[2];
          info->J2a[s4+0] = -q[0];
          info->J2a[s4+1] = -q[1];
          info->J2a[s4+2] = -q[2];
      }

      // compute the right hand side of the constraint equation. set relative
      // body velocities along p and q to bring the screw back into alignment.
      // if ax1,ax2 are the unit length screw axes as computed from body1 and
      // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
      // if `theta' is the angle between ax1 and ax2, we need an angular velocity
      // along u to cover angle erp*theta in one step :
      //   |angular_velocity| = angle/time = erp*theta / stepsize
      //                      = (erp*fps) * theta
      //    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
      //                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
      // ...as ax1 and ax2 are unit length. if theta is smallish,
      // theta ~= sin(theta), so
      //    angular_velocity  = (erp*fps) * (ax1 x ax2)
      // ax1 x ax2 is in the plane space of ax1, so we project the angular
      // velocity to p and q to find the right hand side.

      dVector3 ax2, b;
      if ( node[1].body )
      {
          dMultiply0_331( ax2, node[1].body->posr.R, axis2 );
      }
      else
      {
          ax2[0] = axis2[0];
          ax2[1] = axis2[1];
          ax2[2] = axis2[2];
      }
      dCalcVectorCross3( b, ax1, ax2 );
      dReal k = info->fps * info->erp;
      info->c[3] = k * dCalcVectorDot3( b, p );
      info->c[4] = k * dCalcVectorDot3( b, q );

      // enforcing rotation joint limit
      limot.addLimot( this, info, 5, ax1, 1 );
    }
}