예제 #1
0
static bool tryDFGCompile(JSGlobalData* globalData, CodeBlock* codeBlock, JITCode& jitCode, MacroAssemblerCodePtr& jitCodeWithArityCheck)
{
#if ENABLE(DFG_JIT)
#if ENABLE(DFG_JIT_RESTRICTIONS)
    // FIXME: No flow control yet supported, don't bother scanning the bytecode if there are any jump targets.
    // FIXME: temporarily disable property accesses until we fix regressions.
    if (codeBlock->numberOfJumpTargets() || codeBlock->numberOfStructureStubInfos())
        return false;
#endif

    DFG::Graph dfg(codeBlock->m_numParameters, codeBlock->m_numVars);
    if (!parse(dfg, globalData, codeBlock))
        return false;

    DFG::JITCompiler dataFlowJIT(globalData, dfg, codeBlock);
    dataFlowJIT.compileFunction(jitCode, jitCodeWithArityCheck);
    return true;
#else
    UNUSED_PARAM(globalData);
    UNUSED_PARAM(codeBlock);
    UNUSED_PARAM(jitCode);
    UNUSED_PARAM(jitCodeWithArityCheck);
    return false;
#endif
}
예제 #2
0
inline bool compile(CompileMode compileMode, JSGlobalData& globalData, CodeBlock* codeBlock, JITCode& jitCode, MacroAssemblerCodePtr* jitCodeWithArityCheck)
{
    SamplingRegion samplingRegion("DFG Compilation (Driver)");
    
    ASSERT(codeBlock);
    ASSERT(codeBlock->alternative());
    ASSERT(codeBlock->alternative()->getJITType() == JITCode::BaselineJIT);

#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLog("DFG compiling code block %p(%p), number of instructions = %u.\n", codeBlock, codeBlock->alternative(), codeBlock->instructionCount());
#endif
    
    Graph dfg(globalData, codeBlock);
    if (!parse(dfg))
        return false;
    
    if (compileMode == CompileFunction)
        dfg.predictArgumentTypes();

    performRedundantPhiElimination(dfg);
    performPredictionPropagation(dfg);
    performFixup(dfg);
    performCSE(dfg);
    performVirtualRegisterAllocation(dfg);
    performCFA(dfg);

#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLog("Graph after optimization:\n");
    dfg.dump();
#endif
    
    JITCompiler dataFlowJIT(dfg);
    bool result;
    if (compileMode == CompileFunction) {
        ASSERT(jitCodeWithArityCheck);
        
        result = dataFlowJIT.compileFunction(jitCode, *jitCodeWithArityCheck);
    } else {
        ASSERT(compileMode == CompileOther);
        ASSERT(!jitCodeWithArityCheck);
        
        result = dataFlowJIT.compile(jitCode);
    }
    
    return result;
}
예제 #3
0
MenuInfo::MenuInfo(const QString& desktopFile)
{
    d = new Private;
    KConfig df(KStandardDirs::locate("data", QString::fromLatin1("kicker/menuext/%1").arg(desktopFile)));
	KConfigGroup dfg(&df, "Desktop Entry");

    QStringList list = dfg.readEntry("X-KDE-AuthorizeAction", QStringList() );
    if (kapp && !list.isEmpty())
    {
       for(QStringList::ConstIterator it = list.begin();
           it != list.end();
           ++it)
       {
          if (!KAuthorized::authorize((*it).trimmed()))
             return;
       }
    }

    d->name = dfg.readEntry("Name");
    d->comment = dfg.readEntry("Comment");
    d->icon = dfg.readEntry("Icon");
    d->library = dfg.readEntry("X-KDE-Library");
    d->desktopfile = desktopFile;
}
예제 #4
0
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState)
{
    if (verboseCompilationEnabled() && osrEntryBytecodeIndex != UINT_MAX) {
        dataLog("\n");
        dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n");
        dataLog("\n");
    }
    
    Graph dfg(vm, *this, longLivedState);
    
    if (!parse(dfg)) {
        finalizer = adoptPtr(new FailedFinalizer(*this));
        return FailPath;
    }
    
    // By this point the DFG bytecode parser will have potentially mutated various tables
    // in the CodeBlock. This is a good time to perform an early shrink, which is more
    // powerful than a late one. It's safe to do so because we haven't generated any code
    // that references any of the tables directly, yet.
    codeBlock->shrinkToFit(CodeBlock::EarlyShrink);

    if (validationEnabled())
        validate(dfg);
    
    performCPSRethreading(dfg);
    performUnification(dfg);
    performPredictionInjection(dfg);
    
    if (mode == FTLForOSREntryMode) {
        bool result = performOSREntrypointCreation(dfg);
        if (!result) {
            finalizer = adoptPtr(new FailedFinalizer(*this));
            return FailPath;
        }
        performCPSRethreading(dfg);
    }
    
    if (validationEnabled())
        validate(dfg);
    
    performBackwardsPropagation(dfg);
    performPredictionPropagation(dfg);
    performFixup(dfg);
    performTypeCheckHoisting(dfg);
    
    unsigned count = 1;
    dfg.m_fixpointState = FixpointNotConverged;
    for (;; ++count) {
        if (logCompilationChanges())
            dataLogF("DFG beginning optimization fixpoint iteration #%u.\n", count);
        bool changed = false;
        
        if (validationEnabled())
            validate(dfg);
        
        performCFA(dfg);
        changed |= performConstantFolding(dfg);
        changed |= performArgumentsSimplification(dfg);
        changed |= performCFGSimplification(dfg);
        changed |= performCSE(dfg);
        
        if (!changed)
            break;
        
        performCPSRethreading(dfg);
    }
    
    if (logCompilationChanges())
        dataLogF("DFG optimization fixpoint converged in %u iterations.\n", count);

    dfg.m_fixpointState = FixpointConverged;

    performStoreElimination(dfg);
    
    // If we're doing validation, then run some analyses, to give them an opportunity
    // to self-validate. Now is as good a time as any to do this.
    if (validationEnabled()) {
        dfg.m_dominators.computeIfNecessary(dfg);
        dfg.m_naturalLoops.computeIfNecessary(dfg);
    }

    switch (mode) {
    case DFGMode: {
        performTierUpCheckInjection(dfg);
        break;
    }
    
    case FTLMode:
    case FTLForOSREntryMode: {
#if ENABLE(FTL_JIT)
        if (FTL::canCompile(dfg) == FTL::CannotCompile) {
            finalizer = adoptPtr(new FailedFinalizer(*this));
            return FailPath;
        }
        
        performCriticalEdgeBreaking(dfg);
        performLoopPreHeaderCreation(dfg);
        performCPSRethreading(dfg);
        performSSAConversion(dfg);
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performLICM(dfg);
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performDCE(dfg); // We rely on this to convert dead SetLocals into the appropriate hint, and to kill dead code that won't be recognized as dead by LLVM.
        performStackLayout(dfg);
        performLivenessAnalysis(dfg);
        performFlushLivenessAnalysis(dfg);
        performOSRAvailabilityAnalysis(dfg);
        
        dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:");
        
        initializeLLVM();
        
        FTL::State state(dfg);
        FTL::lowerDFGToLLVM(state);
        
        if (Options::reportCompileTimes())
            beforeFTL = currentTimeMS();
        
        if (Options::llvmAlwaysFailsBeforeCompile()) {
            FTL::fail(state);
            return FTLPath;
        }
        
        FTL::compile(state);

        if (Options::llvmAlwaysFailsBeforeLink()) {
            FTL::fail(state);
            return FTLPath;
        }
        
        FTL::link(state);
        return FTLPath;
#else
        RELEASE_ASSERT_NOT_REACHED();
        break;
#endif // ENABLE(FTL_JIT)
    }
        
    default:
        RELEASE_ASSERT_NOT_REACHED();
        break;
    }
    
    performCPSRethreading(dfg);
    performDCE(dfg);
    performStackLayout(dfg);
    performVirtualRegisterAllocation(dfg);
    dumpAndVerifyGraph(dfg, "Graph after optimization:");

    JITCompiler dataFlowJIT(dfg);
    if (codeBlock->codeType() == FunctionCode) {
        dataFlowJIT.compileFunction();
        dataFlowJIT.linkFunction();
    } else {
        dataFlowJIT.compile();
        dataFlowJIT.link();
    }
    
    return DFGPath;
}
예제 #5
0
REAL dfgdy(const REAL h, const REAL alpha, const Matrix& f, const Matrix& g, 
	   const unsigned i, const unsigned j)
{
  return dfg(h, alpha, f.at(i,j-1), f.at(i,j), f.at(i,j+1), g.at(i,j-1), g.at(i,j),
	     g.at(i+1,j-1), g.at(i+1,j));
}
예제 #6
0
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState)
{
    cleanMustHandleValuesIfNecessary();
    
    if (verboseCompilationEnabled(mode) && osrEntryBytecodeIndex != UINT_MAX) {
        dataLog("\n");
        dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n");
        dataLog("\n");
    }
    
    Graph dfg(*vm, *this, longLivedState);
    
    if (!parse(dfg)) {
        finalizer = std::make_unique<FailedFinalizer>(*this);
        return FailPath;
    }

    codeBlock->setCalleeSaveRegisters(RegisterSet::dfgCalleeSaveRegisters());
    
    // By this point the DFG bytecode parser will have potentially mutated various tables
    // in the CodeBlock. This is a good time to perform an early shrink, which is more
    // powerful than a late one. It's safe to do so because we haven't generated any code
    // that references any of the tables directly, yet.
    codeBlock->shrinkToFit(CodeBlock::EarlyShrink);

    if (validationEnabled())
        validate(dfg);
    
    if (Options::dumpGraphAfterParsing()) {
        dataLog("Graph after parsing:\n");
        dfg.dump();
    }

    performLiveCatchVariablePreservationPhase(dfg);

    if (Options::useMaximalFlushInsertionPhase())
        performMaximalFlushInsertion(dfg);
    
    performCPSRethreading(dfg);
    performUnification(dfg);
    performPredictionInjection(dfg);
    
    performStaticExecutionCountEstimation(dfg);
    
    if (mode == FTLForOSREntryMode) {
        bool result = performOSREntrypointCreation(dfg);
        if (!result) {
            finalizer = std::make_unique<FailedFinalizer>(*this);
            return FailPath;
        }
        performCPSRethreading(dfg);
    }
    
    if (validationEnabled())
        validate(dfg);
    
    performBackwardsPropagation(dfg);
    performPredictionPropagation(dfg);
    performFixup(dfg);
    performStructureRegistration(dfg);
    performInvalidationPointInjection(dfg);
    performTypeCheckHoisting(dfg);
    
    dfg.m_fixpointState = FixpointNotConverged;
    
    // For now we're back to avoiding a fixpoint. Note that we've ping-ponged on this decision
    // many times. For maximum throughput, it's best to fixpoint. But the throughput benefit is
    // small and not likely to show up in FTL anyway. On the other hand, not fixpointing means
    // that the compiler compiles more quickly. We want the third tier to compile quickly, which
    // not fixpointing accomplishes; and the fourth tier shouldn't need a fixpoint.
    if (validationEnabled())
        validate(dfg);
        
    performStrengthReduction(dfg);
    performCPSRethreading(dfg);
    performCFA(dfg);
    performConstantFolding(dfg);
    bool changed = false;
    changed |= performCFGSimplification(dfg);
    changed |= performLocalCSE(dfg);
    
    if (validationEnabled())
        validate(dfg);
    
    performCPSRethreading(dfg);
    if (!isFTL(mode)) {
        // Only run this if we're not FTLing, because currently for a LoadVarargs that is forwardable and
        // in a non-varargs inlined call frame, this will generate ForwardVarargs while the FTL
        // ArgumentsEliminationPhase will create a sequence of GetStack+PutStacks. The GetStack+PutStack
        // sequence then gets sunk, eliminating anything that looks like an escape for subsequent phases,
        // while the ForwardVarargs doesn't get simplified until later (or not at all) and looks like an
        // escape for all of the arguments. This then disables object allocation sinking.
        //
        // So, for now, we just disable this phase for the FTL.
        //
        // If we wanted to enable it, we'd have to do any of the following:
        // - Enable ForwardVarargs->GetStack+PutStack strength reduction, and have that run before
        //   PutStack sinking and object allocation sinking.
        // - Make VarargsForwarding emit a GetLocal+SetLocal sequence, that we can later turn into
        //   GetStack+PutStack.
        //
        // But, it's not super valuable to enable those optimizations, since the FTL
        // ArgumentsEliminationPhase does everything that this phase does, and it doesn't introduce this
        // pathology.
        
        changed |= performVarargsForwarding(dfg); // Do this after CFG simplification and CPS rethreading.
    }
    if (changed) {
        performCFA(dfg);
        performConstantFolding(dfg);
    }
    
    // If we're doing validation, then run some analyses, to give them an opportunity
    // to self-validate. Now is as good a time as any to do this.
    if (validationEnabled()) {
        dfg.ensureDominators();
        dfg.ensureNaturalLoops();
        dfg.ensurePrePostNumbering();
    }

    switch (mode) {
    case DFGMode: {
        dfg.m_fixpointState = FixpointConverged;
    
        performTierUpCheckInjection(dfg);

        performFastStoreBarrierInsertion(dfg);
        performStoreBarrierClustering(dfg);
        performCleanUp(dfg);
        performCPSRethreading(dfg);
        performDCE(dfg);
        performPhantomInsertion(dfg);
        performStackLayout(dfg);
        performVirtualRegisterAllocation(dfg);
        performWatchpointCollection(dfg);
        dumpAndVerifyGraph(dfg, "Graph after optimization:");
        
        JITCompiler dataFlowJIT(dfg);
        if (codeBlock->codeType() == FunctionCode)
            dataFlowJIT.compileFunction();
        else
            dataFlowJIT.compile();
        
        return DFGPath;
    }
    
    case FTLMode:
    case FTLForOSREntryMode: {
#if ENABLE(FTL_JIT)
        if (FTL::canCompile(dfg) == FTL::CannotCompile) {
            finalizer = std::make_unique<FailedFinalizer>(*this);
            return FailPath;
        }
        
        performCleanUp(dfg); // Reduce the graph size a bit.
        performCriticalEdgeBreaking(dfg);
        if (Options::createPreHeaders())
            performLoopPreHeaderCreation(dfg);
        performCPSRethreading(dfg);
        performSSAConversion(dfg);
        performSSALowering(dfg);
        
        // Ideally, these would be run to fixpoint with the object allocation sinking phase.
        performArgumentsElimination(dfg);
        if (Options::usePutStackSinking())
            performPutStackSinking(dfg);
        
        performConstantHoisting(dfg);
        performGlobalCSE(dfg);
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performConstantFolding(dfg);
        performCleanUp(dfg); // Reduce the graph size a lot.
        changed = false;
        changed |= performStrengthReduction(dfg);
        if (Options::useObjectAllocationSinking()) {
            changed |= performCriticalEdgeBreaking(dfg);
            changed |= performObjectAllocationSinking(dfg);
        }
        if (changed) {
            // State-at-tail and state-at-head will be invalid if we did strength reduction since
            // it might increase live ranges.
            performLivenessAnalysis(dfg);
            performCFA(dfg);
            performConstantFolding(dfg);
        }
        
        // Currently, this relies on pre-headers still being valid. That precludes running CFG
        // simplification before it, unless we re-created the pre-headers. There wouldn't be anything
        // wrong with running LICM earlier, if we wanted to put other CFG transforms above this point.
        // Alternatively, we could run loop pre-header creation after SSA conversion - but if we did that
        // then we'd need to do some simple SSA fix-up.
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performLICM(dfg);

        // FIXME: Currently: IntegerRangeOptimization *must* be run after LICM.
        //
        // IntegerRangeOptimization makes changes on nodes based on preceding blocks
        // and nodes. LICM moves nodes which can invalidates assumptions used
        // by IntegerRangeOptimization.
        //
        // Ideally, the dependencies should be explicit. See https://bugs.webkit.org/show_bug.cgi?id=157534.
        performLivenessAnalysis(dfg);
        performIntegerRangeOptimization(dfg);
        
        performCleanUp(dfg);
        performIntegerCheckCombining(dfg);
        performGlobalCSE(dfg);
        
        // At this point we're not allowed to do any further code motion because our reasoning
        // about code motion assumes that it's OK to insert GC points in random places.
        dfg.m_fixpointState = FixpointConverged;
        
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performGlobalStoreBarrierInsertion(dfg);
        performStoreBarrierClustering(dfg);
        if (Options::useMovHintRemoval())
            performMovHintRemoval(dfg);
        performCleanUp(dfg);
        performDCE(dfg); // We rely on this to kill dead code that won't be recognized as dead by B3.
        performStackLayout(dfg);
        performLivenessAnalysis(dfg);
        performOSRAvailabilityAnalysis(dfg);
        performWatchpointCollection(dfg);
        
        if (FTL::canCompile(dfg) == FTL::CannotCompile) {
            finalizer = std::make_unique<FailedFinalizer>(*this);
            return FailPath;
        }

        dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:", shouldDumpDisassembly(mode));

        // Flash a safepoint in case the GC wants some action.
        Safepoint::Result safepointResult;
        {
            GraphSafepoint safepoint(dfg, safepointResult);
        }
        if (safepointResult.didGetCancelled())
            return CancelPath;

        FTL::State state(dfg);
        FTL::lowerDFGToB3(state);
        
        if (UNLIKELY(computeCompileTimes()))
            m_timeBeforeFTL = monotonicallyIncreasingTimeMS();
        
        if (Options::b3AlwaysFailsBeforeCompile()) {
            FTL::fail(state);
            return FTLPath;
        }
        
        FTL::compile(state, safepointResult);
        if (safepointResult.didGetCancelled())
            return CancelPath;
        
        if (Options::b3AlwaysFailsBeforeLink()) {
            FTL::fail(state);
            return FTLPath;
        }
        
        if (state.allocationFailed) {
            FTL::fail(state);
            return FTLPath;
        }

        FTL::link(state);
        
        if (state.allocationFailed) {
            FTL::fail(state);
            return FTLPath;
        }
        
        return FTLPath;
#else
        RELEASE_ASSERT_NOT_REACHED();
        return FailPath;
#endif // ENABLE(FTL_JIT)
    }
        
    default:
        RELEASE_ASSERT_NOT_REACHED();
        return FailPath;
    }
}
inline bool compile(CompileMode compileMode, ExecState* exec, CodeBlock* codeBlock, JITCode& jitCode, MacroAssemblerCodePtr* jitCodeWithArityCheck, unsigned osrEntryBytecodeIndex)
{
    SamplingRegion samplingRegion("DFG Compilation (Driver)");
    
    numCompilations++;
    
    ASSERT(codeBlock);
    ASSERT(codeBlock->alternative());
    ASSERT(codeBlock->alternative()->getJITType() == JITCode::BaselineJIT);

    ASSERT(osrEntryBytecodeIndex != UINT_MAX);

    if (!Options::useDFGJIT())
        return false;

    if (!Options::bytecodeRangeToDFGCompile().isInRange(codeBlock->instructionCount()))
        return false;
    
    if (logCompilationChanges())
        dataLog("DFG compiling ", *codeBlock, ", number of instructions = ", codeBlock->instructionCount(), "\n");
    
    // Derive our set of must-handle values. The compilation must be at least conservative
    // enough to allow for OSR entry with these values.
    unsigned numVarsWithValues;
    if (osrEntryBytecodeIndex)
        numVarsWithValues = codeBlock->m_numVars;
    else
        numVarsWithValues = 0;
    Operands<JSValue> mustHandleValues(codeBlock->numParameters(), numVarsWithValues);
    for (size_t i = 0; i < mustHandleValues.size(); ++i) {
        int operand = mustHandleValues.operandForIndex(i);
        if (operandIsArgument(operand)
            && !operandToArgument(operand)
            && compileMode == CompileFunction
            && codeBlock->specializationKind() == CodeForConstruct) {
            // Ugh. If we're in a constructor, the 'this' argument may hold garbage. It will
            // also never be used. It doesn't matter what we put into the value for this,
            // but it has to be an actual value that can be grokked by subsequent DFG passes,
            // so we sanitize it here by turning it into Undefined.
            mustHandleValues[i] = jsUndefined();
        } else
            mustHandleValues[i] = exec->uncheckedR(operand).jsValue();
    }
    
    Graph dfg(exec->vm(), codeBlock, osrEntryBytecodeIndex, mustHandleValues);
    if (!parse(exec, dfg))
        return false;
    
    // By this point the DFG bytecode parser will have potentially mutated various tables
    // in the CodeBlock. This is a good time to perform an early shrink, which is more
    // powerful than a late one. It's safe to do so because we haven't generated any code
    // that references any of the tables directly, yet.
    codeBlock->shrinkToFit(CodeBlock::EarlyShrink);

    if (validationEnabled())
    validate(dfg);
    
    performCPSRethreading(dfg);
    performUnification(dfg);
    performPredictionInjection(dfg);
    
    if (validationEnabled())
        validate(dfg);
    
    performBackwardsPropagation(dfg);
    performPredictionPropagation(dfg);
    performFixup(dfg);
    performTypeCheckHoisting(dfg);
    
    dfg.m_fixpointState = FixpointNotConverged;

    performCSE(dfg);
    performArgumentsSimplification(dfg);
    performCPSRethreading(dfg); // This should usually be a no-op since CSE rarely dethreads, and arguments simplification rarely does anything.
        performCFA(dfg);
    performConstantFolding(dfg);
    performCFGSimplification(dfg);

    dfg.m_fixpointState = FixpointConverged;

    performStoreElimination(dfg);
    performCPSRethreading(dfg);
    performDCE(dfg);
    performVirtualRegisterAllocation(dfg);

    GraphDumpMode modeForFinalValidate = DumpGraph;
    if (verboseCompilationEnabled()) {
        dataLogF("Graph after optimization:\n");
    dfg.dump();
    modeForFinalValidate = DontDumpGraph;
    }
    if (validationEnabled())
    validate(dfg, modeForFinalValidate);
    
    JITCompiler dataFlowJIT(dfg);
    bool result;
    if (compileMode == CompileFunction) {
        ASSERT(jitCodeWithArityCheck);
        
        result = dataFlowJIT.compileFunction(jitCode, *jitCodeWithArityCheck);
    } else {
        ASSERT(compileMode == CompileOther);
        ASSERT(!jitCodeWithArityCheck);
        
        result = dataFlowJIT.compile(jitCode);
    }
    
    return result;
}
예제 #8
0
inline bool compile(CompileMode compileMode, ExecState* exec, CodeBlock* codeBlock, JITCode& jitCode, MacroAssemblerCodePtr* jitCodeWithArityCheck)
{
    SamplingRegion samplingRegion("DFG Compilation (Driver)");
    
    ASSERT(codeBlock);
    ASSERT(codeBlock->alternative());
    ASSERT(codeBlock->alternative()->getJITType() == JITCode::BaselineJIT);
    
#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLog("DFG compiling code block %p(%p) for executable %p, number of instructions = %u.\n", codeBlock, codeBlock->alternative(), codeBlock->ownerExecutable(), codeBlock->instructionCount());
#endif
    
    Graph dfg(exec->globalData(), codeBlock);
    if (!parse(exec, dfg))
        return false;
    
    if (compileMode == CompileFunction)
        dfg.predictArgumentTypes();
    
    // By this point the DFG bytecode parser will have potentially mutated various tables
    // in the CodeBlock. This is a good time to perform an early shrink, which is more
    // powerful than a late one. It's safe to do so because we haven't generated any code
    // that references any of the tables directly, yet.
    codeBlock->shrinkToFit(CodeBlock::EarlyShrink);

    validate(dfg);
    performPredictionPropagation(dfg);
    performFixup(dfg);
    unsigned cnt = 1;
    for (;; ++cnt) {
#if DFG_ENABLE(DEBUG_VERBOSE)
        dataLog("DFG beginning optimization fixpoint iteration #%u.\n", cnt);
#endif
        bool changed = false;
        performCFA(dfg);
        changed |= performConstantFolding(dfg);
        changed |= performArgumentsSimplification(dfg);
        changed |= performCFGSimplification(dfg);
        changed |= performCSE(dfg, FixpointNotConverged);
        if (!changed)
            break;
        dfg.resetExitStates();
        performFixup(dfg);
    }
    performCSE(dfg, FixpointConverged);
#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLog("DFG optimization fixpoint converged in %u iterations.\n", cnt);
#endif
    performVirtualRegisterAllocation(dfg);

    GraphDumpMode modeForFinalValidate = DumpGraph;
#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLog("Graph after optimization:\n");
    dfg.dump();
    modeForFinalValidate = DontDumpGraph;
#endif
    validate(dfg, modeForFinalValidate);
    
    JITCompiler dataFlowJIT(dfg);
    bool result;
    if (compileMode == CompileFunction) {
        ASSERT(jitCodeWithArityCheck);
        
        result = dataFlowJIT.compileFunction(jitCode, *jitCodeWithArityCheck);
    } else {
        ASSERT(compileMode == CompileOther);
        ASSERT(!jitCodeWithArityCheck);
        
        result = dataFlowJIT.compile(jitCode);
    }
    
    return result;
}
예제 #9
0
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState)
{
    Graph dfg(vm, *this, longLivedState);
    
    if (!parse(dfg)) {
        finalizer = adoptPtr(new FailedFinalizer(*this));
        return FailPath;
    }
    
    // By this point the DFG bytecode parser will have potentially mutated various tables
    // in the CodeBlock. This is a good time to perform an early shrink, which is more
    // powerful than a late one. It's safe to do so because we haven't generated any code
    // that references any of the tables directly, yet.
    codeBlock->shrinkToFit(CodeBlock::EarlyShrink);

    if (validationEnabled())
        validate(dfg);
    
    performCPSRethreading(dfg);
    performUnification(dfg);
    performPredictionInjection(dfg);
    
    if (validationEnabled())
        validate(dfg);
    
    performBackwardsPropagation(dfg);
    performPredictionPropagation(dfg);
    performFixup(dfg);
    performTypeCheckHoisting(dfg);
    
    unsigned count = 1;
    dfg.m_fixpointState = FixpointNotConverged;
    for (;; ++count) {
        if (logCompilationChanges())
            dataLogF("DFG beginning optimization fixpoint iteration #%u.\n", count);
        bool changed = false;
        
        if (validationEnabled())
            validate(dfg);
        
        performCFA(dfg);
        changed |= performConstantFolding(dfg);
        changed |= performArgumentsSimplification(dfg);
        changed |= performCFGSimplification(dfg);
        changed |= performCSE(dfg);
        
        if (!changed)
            break;
        
        performCPSRethreading(dfg);
    }
    
    if (logCompilationChanges())
        dataLogF("DFG optimization fixpoint converged in %u iterations.\n", count);

    dfg.m_fixpointState = FixpointConverged;

    performStoreElimination(dfg);
    
    // If we're doing validation, then run some analyses, to give them an opportunity
    // to self-validate. Now is as good a time as any to do this.
    if (validationEnabled()) {
        dfg.m_dominators.computeIfNecessary(dfg);
        dfg.m_naturalLoops.computeIfNecessary(dfg);
    }

#if ENABLE(FTL_JIT)
    if (Options::useExperimentalFTL()
        && compileMode == CompileFunction
        && FTL::canCompile(dfg)) {
        
        performCriticalEdgeBreaking(dfg);
        performLoopPreHeaderCreation(dfg);
        performCPSRethreading(dfg);
        performSSAConversion(dfg);
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performLICM(dfg);
        performLivenessAnalysis(dfg);
        performCFA(dfg);
        performDCE(dfg); // We rely on this to convert dead SetLocals into the appropriate hint, and to kill dead code that won't be recognized as dead by LLVM.
        performLivenessAnalysis(dfg);
        performFlushLivenessAnalysis(dfg);
        performOSRAvailabilityAnalysis(dfg);
        
        dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:");
        
        // FIXME: Support OSR entry.
        // https://bugs.webkit.org/show_bug.cgi?id=113625
        
        FTL::State state(dfg);
        FTL::lowerDFGToLLVM(state);
        
        if (Options::reportCompileTimes())
            beforeFTL = currentTimeMS();
        
        if (Options::llvmAlwaysFails()) {
            FTL::fail(state);
            return FTLPath;
        }
        
        FTL::compile(state);
        FTL::link(state);
        return FTLPath;
    }
#endif // ENABLE(FTL_JIT)
    
    performCPSRethreading(dfg);
    performDCE(dfg);
    performVirtualRegisterAllocation(dfg);
    dumpAndVerifyGraph(dfg, "Graph after optimization:");

    JITCompiler dataFlowJIT(dfg);
    if (compileMode == CompileFunction) {
        dataFlowJIT.compileFunction();
        dataFlowJIT.linkFunction();
    } else {
        ASSERT(compileMode == CompileOther);
        
        dataFlowJIT.compile();
        dataFlowJIT.link();
    }
    
    return DFGPath;
}