예제 #1
0
파일: dlaed0.c 프로젝트: 3deggi/levmar-ndk
/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n, 
	doublereal *d__, doublereal *e, doublereal *q, integer *ldq, 
	doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);

    /* Local variables */
    integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
    doublereal temp;
    integer curr;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    integer iperm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer indxq, iwrem;
    extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *, 
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    integer iqptr;
    extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *);
    integer tlvls;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    integer igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer igivnm, submat, curprb, subpbs, igivpt;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    integer curlvl, matsiz, iprmpt, smlsiz;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAED0 computes all eigenvalues and corresponding eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          = 0:  Compute eigenvalues only. */
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
/*                also.  On entry, Q contains the orthogonal matrix used */
/*                to reduce the original matrix to tridiagonal form. */
/*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal */
/*                matrix. */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the orthogonal matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) DOUBLE PRECISION array, dimension (N) */
/*         On entry, the main diagonal of the tridiagonal matrix. */
/*         On exit, its eigenvalues. */

/*  E      (input) DOUBLE PRECISION array, dimension (N-1) */
/*         The off-diagonal elements of the tridiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*         On entry, Q must contain an N-by-N orthogonal matrix. */
/*         If ICOMPQ = 0    Q is not referenced. */
/*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the */
/*                          orthogonal matrix used to reduce the full */
/*                          matrix to tridiagonal form corresponding to */
/*                          the subset of the full matrix which is being */
/*                          decomposed at this time. */
/*         If ICOMPQ = 2    On entry, Q will be the identity matrix. */
/*                          On exit, Q contains the eigenvectors of the */
/*                          tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  If eigenvectors are */
/*         desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1. */

/*  QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N) */
/*         Referenced only when ICOMPQ = 1.  Used to store parts of */
/*         the eigenvector matrix when the updating matrix multiplies */
/*         take place. */

/*  LDQS   (input) INTEGER */
/*         The leading dimension of the array QSTORE.  If ICOMPQ = 1, */
/*         then  LDQS >= max(1,N).  In any case,  LDQS >= 1. */

/*  WORK   (workspace) DOUBLE PRECISION array, */
/*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
/*                     1 + 3*N + 2*N*lg N + 2*N**2 */
/*                     ( lg( N ) = smallest integer k */
/*                                 such that 2^k >= N ) */
/*         If ICOMPQ = 2, the dimension of WORK must be at least */
/*                     4*N + N**2. */

/*  IWORK  (workspace) INTEGER array, */
/*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
/*                        6 + 6*N + 5*N*lg N. */
/*                        ( lg( N ) = smallest integer k */
/*                                    such that 2^k >= N ) */
/*         If ICOMPQ = 2, the dimension of IWORK must be at least */
/*                        3 + 5*N. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1;
    qstore -= qstore_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0);

/*     Determine the size and placement of the submatrices, and save in */
/*     the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
/*     using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (d__1 = e[smm1], abs(d__1));
	d__[submat] -= (d__1 = e[smm1], abs(d__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vectors */
/*        routine */

	temp = log((doublereal) (*n)) / log(2.);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i__ = 0; i__ <= i__1; ++i__) {
	    iwork[iprmpt + i__] = 1;
	    iwork[igivpt + i__] = 1;
/* L50: */
	}
	iwork[iqptr] = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and */
/*     conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	if (*icompq == 2) {
	    dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + 
		    submat * q_dim1], ldq, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 
		    iwork[iqptr + curr]], &matsiz, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * 
			q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], 
			 &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices */
/*     into eigensystem for the corresponding larger matrix. */

/*     while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
/*     into an eigensystem of size MATSIZ. */
/*     DLAED1 is used only for the full eigensystem of a tridiagonal */
/*     matrix. */
/*     DLAED7 handles the cases in which eigenvalues only or eigenvalues */
/*     and eigenvectors of a full symmetric matrix (which was reduced to */
/*     tridiagonal form) are desired. */

	    if (*icompq == 2) {
		dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], 
			ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
			msd2, &work[1], &iwork[subpbs + 1], info);
	    } else {
		dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
			submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
			work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
, &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
			work[iwrem], &iwork[subpbs + 1], info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while */

/*     Re-merge the eigenvalues/vectors which were deflated at the final */
/*     merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 
		    + 1], &c__1);
/* L100: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
/* L110: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
	dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
/* L120: */
	}
	dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of DLAED0 */

} /* dlaed0_ */
예제 #2
0
/* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n, 
	doublereal *d, doublereal *e, doublereal *q, integer *ldq, doublereal 
	*qstore, integer *ldqs, doublereal *work, integer *iwork, integer *
	info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DLAED0 computes all eigenvalues and corresponding eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   

    Arguments   
    =========   

    ICOMPQ  (input) INTEGER   
            = 0:  Compute eigenvalues only.   
            = 1:  Compute eigenvectors of original dense symmetric matrix 
  
                  also.  On entry, Q contains the orthogonal matrix used 
  
                  to reduce the original matrix to tridiagonal form.   
            = 2:  Compute eigenvalues and eigenvectors of tridiagonal   
                  matrix.   

    QSIZ   (input) INTEGER   
           The dimension of the orthogonal matrix used to reduce   
           the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. 
  

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D      (input/output) DOUBLE PRECISION array, dimension (N)   
           On entry, the main diagonal of the tridiagonal matrix.   
           On exit, its eigenvalues.   

    E      (input) DOUBLE PRECISION array, dimension (N-1)   
           The off-diagonal elements of the tridiagonal matrix.   
           On exit, E has been destroyed.   

    Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)   
           On entry, Q must contain an N-by-N orthogonal matrix.   
           If ICOMPQ = 0    Q is not referenced.   
           If ICOMPQ = 1    On entry, Q is a subset of the columns of the 
  
                            orthogonal matrix used to reduce the full   
                            matrix to tridiagonal form corresponding to   
                            the subset of the full matrix which is being 
  
                            decomposed at this time.   
           If ICOMPQ = 2    On entry, Q will be the identity matrix.   
                            On exit, Q contains the eigenvectors of the   
                            tridiagonal matrix.   

    LDQ    (input) INTEGER   
           The leading dimension of the array Q.  If eigenvectors are   
           desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.   

    QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)   
           Referenced only when ICOMPQ = 1.  Used to store parts of   
           the eigenvector matrix when the updating matrix multiplies   
           take place.   

    LDQS   (input) INTEGER   
           The leading dimension of the array QSTORE.  If ICOMPQ = 1,   
           then  LDQS >= max(1,N).  In any case,  LDQS >= 1.   

    WORK   (workspace) DOUBLE PRECISION array,   
                                  dimension (1 + 3*N + 2*N*lg N + 2*N**2) 
  
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   

    IWORK  (workspace) INTEGER array,   
           If ICOMPQ = 0 or 1, the dimension of IWORK must be at least   
                          6 + 6*N + 5*N*lg N.   
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of IWORK must be at least   
                          2 + 5*N.   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__2 = 2;
    static doublereal c_b16 = 1.;
    static doublereal c_b17 = 0.;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    doublereal d__1;
    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    /* Local variables */
    static doublereal temp;
    static integer curr, i, j, k;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    static integer iperm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer indxq, iwrem;
    extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);
    static integer iqptr;
    extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, integer *);
    static integer tlvls, iq;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer igivnm, submat, curprb, subpbs, igivpt;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    static integer curlvl, matsiz, iprmpt, lgn, msd2, smm1, spm1, spm2;



#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]

#define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)]
#define QSTORE(I,J) qstore[(I)-1 + ((J)-1)* ( *ldqs)]

    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the size and placement of the submatrices, and save in   
       the leading elements of IWORK. */

    IWORK(1) = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (IWORK(subpbs) > 25) {
	for (j = subpbs; j >= 1; --j) {
	    IWORK(j * 2) = (IWORK(j) + 1) / 2;
	    IWORK((j << 1) - 1) = IWORK(j) / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= subpbs; ++j) {
	IWORK(j) += IWORK(j - 1);
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 
  
       using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i = 1; i <= spm1; ++i) {
	submat = IWORK(i) + 1;
	smm1 = submat - 1;
	D(smm1) -= (d__1 = E(smm1), abs(d__1));
	D(submat) -= (d__1 = E(smm1), abs(d__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vector
s   
          routine */

	temp = log((doublereal) (*n)) / log(2.);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i = 0; i <= subpbs; ++i) {
	    IWORK(iprmpt + i) = 1;
	    IWORK(igivpt + i) = 1;
/* L50: */
	}
	IWORK(iqptr) = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and 
  
       conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i = 0; i <= spm1; ++i) {
	if (i == 0) {
	    submat = 1;
	    matsiz = IWORK(1);
	} else {
	    submat = IWORK(i) + 1;
	    matsiz = IWORK(i + 1) - IWORK(i);
	}
	if (*icompq == 2) {
	    dsteqr_("I", &matsiz, &D(submat), &E(submat), &Q(submat,submat), ldq, &WORK(1), info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    dsteqr_("I", &matsiz, &D(submat), &E(submat), &WORK(iq - 1 + 
		    IWORK(iqptr + curr)), &matsiz, &WORK(1), info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b16, &Q(1,submat), ldq, &WORK(iq - 1 + IWORK(iqptr + curr)),
			 &matsiz, &c_b17, &QSTORE(1,submat), 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    IWORK(iqptr + curr + 1) = IWORK(iqptr + curr) + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = IWORK(i + 1);
	for (j = submat; j <= IWORK(i+1); ++j) {
	    IWORK(indxq + j) = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices   
       into eigensystem for the corresponding larger matrix.   

       while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i = 0; i <= spm2; i += 2) {
	    if (i == 0) {
		submat = 1;
		matsiz = IWORK(2);
		msd2 = IWORK(1);
		curprb = 0;
	    } else {
		submat = IWORK(i) + 1;
		matsiz = IWORK(i + 2) - IWORK(i);
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - M
SD2)   
       into an eigensystem of size MATSIZ.   
       DLAED1 is used only for the full eigensystem of a tridiagon
al   
       matrix.   
       DLAED7 handles the cases in which eigenvalues only or eigen
values   
       and eigenvectors of a full symmetric matrix (which was redu
ced to   
       tridiagonal form) are desired. */

	    if (*icompq == 2) {
		dlaed1_(&matsiz, &D(submat), &Q(submat,submat), 
			ldq, &IWORK(indxq + submat), &E(submat + msd2 - 1), &
			msd2, &WORK(1), &IWORK(subpbs + 1), info);
	    } else {
		dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &D(
			submat), &QSTORE(1,submat), ldqs, &
			IWORK(indxq + submat), &E(submat + msd2 - 1), &msd2, &
			WORK(iq), &IWORK(iqptr), &IWORK(iprmpt), &IWORK(iperm)
			, &IWORK(igivpt), &IWORK(igivcl), &WORK(igivnm), &
			WORK(iwrem), &IWORK(subpbs + 1), info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    IWORK(i / 2 + 1) = IWORK(i + 2);
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while   

       Re-merge the eigenvalues/vectors which were deflated at the final 
  
       merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
	    dcopy_(qsiz, &QSTORE(1,j), &c__1, &Q(1,i), &c__1);
/* L100: */
	}
	dcopy_(n, &WORK(1), &c__1, &D(1), &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
	    dcopy_(n, &Q(1,j), &c__1, &WORK(*n * i + 1), &c__1);
/* L110: */
	}
	dcopy_(n, &WORK(1), &c__1, &D(1), &c__1);
	dlacpy_("A", n, n, &WORK(*n + 1), n, &Q(1,1), ldq);
    } else {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
/* L120: */
	}
	dcopy_(n, &WORK(1), &c__1, &D(1), &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of DLAED0 */

} /* dlaed0_ */