gmMatrix3 Algebraic::hess(const gmVector3 & v) { double dfdxy = dxdy(v), dfdxz = dxdz(v), dfdyz = dydz(v); double dfdxx = dx2(v), dfdyy = dy2(v), dfdzz = dz2(v); gmMatrix3 hess(dfdxx, dfdxy, dfdxz, dfdxy, dfdyy, dfdyz, dfdxz, dfdyz, dfdzz); return hess; }
// ** Temporary version int ClpPdco::pdco( ClpPdcoBase * stuff, Options &options, Info &info, Outfo &outfo) { // D1, D2 are positive-definite diagonal matrices defined from d1, d2. // In particular, d2 indicates the accuracy required for // satisfying each row of Ax = b. // // D1 and D2 (via d1 and d2) provide primal and dual regularization // respectively. They ensure that the primal and dual solutions // (x,r) and (y,z) are unique and bounded. // // A scalar d1 is equivalent to d1 = ones(n,1), D1 = diag(d1). // A scalar d2 is equivalent to d2 = ones(m,1), D2 = diag(d2). // Typically, d1 = d2 = 1e-4. // These values perturb phi(x) only slightly (by about 1e-8) and request // that A*x = b be satisfied quite accurately (to about 1e-8). // Set d1 = 1e-4, d2 = 1 for least-squares problems with bound constraints. // The problem is then // // minimize phi(x) + 1/2 norm(d1*x)^2 + 1/2 norm(A*x - b)^2 // subject to bl <= x <= bu. // // More generally, d1 and d2 may be n and m vectors containing any positive // values (preferably not too small, and typically no larger than 1). // Bigger elements of d1 and d2 improve the stability of the solver. // // At an optimal solution, if x(j) is on its lower or upper bound, // the corresponding z(j) is positive or negative respectively. // If x(j) is between its bounds, z(j) = 0. // If bl(j) = bu(j), x(j) is fixed at that value and z(j) may have // either sign. // // Also, r and y satisfy r = D2 y, so that Ax + D2^2 y = b. // Thus if d2(i) = 1e-4, the i-th row of Ax = b will be satisfied to // approximately 1e-8. This determines how large d2(i) can safely be. // // // EXTERNAL FUNCTIONS: // options = pdcoSet; provided with pdco.m // [obj,grad,hess] = pdObj( x ); provided by user // y = pdMat( name,mode,m,n,x ); provided by user if pdMat // is a string, not a matrix // // INPUT ARGUMENTS: // pdObj is a string containing the name of a function pdObj.m // or a function_handle for such a function // such that [obj,grad,hess] = pdObj(x) defines // obj = phi(x) : a scalar, // grad = gradient of phi(x) : an n-vector, // hess = diag(Hessian of phi): an n-vector. // Examples: // If phi(x) is the linear function c"x, pdObj should return // [obj,grad,hess] = [c"*x, c, zeros(n,1)]. // If phi(x) is the entropy function E(x) = sum x(j) log x(j), // [obj,grad,hess] = [E(x), log(x)+1, 1./x]. // pdMat may be an ifexplicit m x n matrix A (preferably sparse!), // or a string containing the name of a function pdMat.m // or a function_handle for such a function // such that y = pdMat( name,mode,m,n,x ) // returns y = A*x (mode=1) or y = A"*x (mode=2). // The input parameter "name" will be the string pdMat. // b is an m-vector. // bl is an n-vector of lower bounds. Non-existent bounds // may be represented by bl(j) = -Inf or bl(j) <= -1e+20. // bu is an n-vector of upper bounds. Non-existent bounds // may be represented by bu(j) = Inf or bu(j) >= 1e+20. // d1, d2 may be positive scalars or positive vectors (see above). // options is a structure that may be set and altered by pdcoSet // (type help pdcoSet). // x0, y0, z0 provide an initial solution. // xsize, zsize are estimates of the biggest x and z at the solution. // They are used to scale (x,y,z). Good estimates // should improve the performance of the barrier method. // // // OUTPUT ARGUMENTS: // x is the primal solution. // y is the dual solution associated with Ax + D2 r = b. // z is the dual solution associated with bl <= x <= bu. // inform = 0 if a solution is found; // = 1 if too many iterations were required; // = 2 if the linesearch failed too often. // PDitns is the number of Primal-Dual Barrier iterations required. // CGitns is the number of Conjugate-Gradient iterations required // if an iterative solver is used (LSQR). // time is the cpu time used. //---------------------------------------------------------------------- // PRIVATE FUNCTIONS: // pdxxxbounds // pdxxxdistrib // pdxxxlsqr // pdxxxlsqrmat // pdxxxmat // pdxxxmerit // pdxxxresid1 // pdxxxresid2 // pdxxxstep // // GLOBAL VARIABLES: // global pdDDD1 pdDDD2 pdDDD3 // // // NOTES: // The matrix A should be reasonably well scaled: norm(A,inf) =~ 1. // The vector b and objective phi(x) may be of any size, but ensure that // xsize and zsize are reasonably close to norm(x,inf) and norm(z,inf) // at the solution. // // The files defining pdObj and pdMat // must not be called Fname.m or Aname.m!! // // // AUTHOR: // Michael Saunders, Systems Optimization Laboratory (SOL), // Stanford University, Stanford, California, USA. // [email protected] // // CONTRIBUTORS: // Byunggyoo Kim, SOL, Stanford University. // [email protected] // // DEVELOPMENT: // 20 Jun 1997: Original version of pdsco.m derived from pdlp0.m. // 29 Sep 2002: Original version of pdco.m derived from pdsco.m. // Introduced D1, D2 in place of gamma*I, delta*I // and allowed for general bounds bl <= x <= bu. // 06 Oct 2002: Allowed for fixed variabes: bl(j) = bu(j) for any j. // 15 Oct 2002: Eliminated some work vectors (since m, n might be LARGE). // Modularized residuals, linesearch // 16 Oct 2002: pdxxx..., pdDDD... names rationalized. // pdAAA eliminated (global copy of A). // Aname is now used directly as an ifexplicit A or a function. // NOTE: If Aname is a function, it now has an extra parameter. // 23 Oct 2002: Fname and Aname can now be function handles. // 01 Nov 2002: Bug fixed in feval in pdxxxmat. //----------------------------------------------------------------------- // global pdDDD1 pdDDD2 pdDDD3 double inf = 1.0e30; double eps = 1.0e-15; double atolold = -1.0, r3ratio = -1.0, Pinf, Dinf, Cinf, Cinf0; printf("\n --------------------------------------------------------"); printf("\n pdco.m Version of 01 Nov 2002"); printf("\n Primal-dual barrier method to minimize a convex function"); printf("\n subject to linear constraints Ax + r = b, bl <= x <= bu"); printf("\n --------------------------------------------------------\n"); int m = numberRows_; int n = numberColumns_; bool ifexplicit = true; CoinDenseVector<double> b(m, rhs_); CoinDenseVector<double> x(n, x_); CoinDenseVector<double> y(m, y_); CoinDenseVector<double> z(n, dj_); //delete old arrays delete [] rhs_; delete [] x_; delete [] y_; delete [] dj_; rhs_ = NULL; x_ = NULL; y_ = NULL; dj_ = NULL; // Save stuff so available elsewhere pdcoStuff_ = stuff; double normb = b.infNorm(); double normx0 = x.infNorm(); double normy0 = y.infNorm(); double normz0 = z.infNorm(); printf("\nmax |b | = %8g max |x0| = %8g", normb , normx0); printf( " xsize = %8g", xsize_); printf("\nmax |y0| = %8g max |z0| = %8g", normy0, normz0); printf( " zsize = %8g", zsize_); //--------------------------------------------------------------------- // Initialize. //--------------------------------------------------------------------- //true = 1; //false = 0; //zn = zeros(n,1); //int nb = n + m; int CGitns = 0; int inform = 0; //--------------------------------------------------------------------- // Only allow scalar d1, d2 for now //--------------------------------------------------------------------- /* if (d1_->size()==1) d1_->resize(n, d1_->getElements()[0]); // Allow scalar d1, d2 if (d2_->size()==1) d2->resize(m, d2->getElements()[0]); // to mean dk * unit vector */ assert (stuff->sizeD1() == 1); double d1 = stuff->getD1(); double d2 = stuff->getD2(); //--------------------------------------------------------------------- // Grab input options. //--------------------------------------------------------------------- int maxitn = options.MaxIter; double featol = options.FeaTol; double opttol = options.OptTol; double steptol = options.StepTol; int stepSame = 1; /* options.StepSame; // 1 means stepx == stepz */ double x0min = options.x0min; double z0min = options.z0min; double mu0 = options.mu0; int LSproblem = options.LSproblem; // See below int LSmethod = options.LSmethod; // 1=Cholesky 2=QR 3=LSQR int itnlim = options.LSQRMaxIter * CoinMin(m, n); double atol1 = options.LSQRatol1; // Initial atol double atol2 = options.LSQRatol2; // Smallest atol,unless atol1 is smaller double conlim = options.LSQRconlim; //int wait = options.wait; // LSproblem: // 1 = dy 2 = dy shifted, DLS // 11 = s 12 = s shifted, DLS (dx = Ds) // 21 = dx // 31 = 3x3 system, symmetrized by Z^{1/2} // 32 = 2x2 system, symmetrized by X^{1/2} //--------------------------------------------------------------------- // Set other parameters. //--------------------------------------------------------------------- int kminor = 0; // 1 stops after each iteration double eta = 1e-4; // Linesearch tolerance for "sufficient descent" double maxf = 10; // Linesearch backtrack limit (function evaluations) double maxfail = 1; // Linesearch failure limit (consecutive iterations) double bigcenter = 1e+3; // mu is reduced if center < bigcenter. // Parameters for LSQR. double atolmin = eps; // Smallest atol if linesearch back-tracks double btol = 0; // Should be small (zero is ok) double show = false; // Controls lsqr iteration log /* double gamma = d1->infNorm(); double delta = d2->infNorm(); */ double gamma = d1; double delta = d2; printf("\n\nx0min = %8g featol = %8.1e", x0min, featol); printf( " d1max = %8.1e", gamma); printf( "\nz0min = %8g opttol = %8.1e", z0min, opttol); printf( " d2max = %8.1e", delta); printf( "\nmu0 = %8.1e steptol = %8g", mu0 , steptol); printf( " bigcenter= %8g" , bigcenter); printf("\n\nLSQR:"); printf("\natol1 = %8.1e atol2 = %8.1e", atol1 , atol2 ); printf( " btol = %8.1e", btol ); printf("\nconlim = %8.1e itnlim = %8d" , conlim, itnlim); printf( " show = %8g" , show ); // LSmethod = 3; ////// Hardwire LSQR // LSproblem = 1; ////// and LS problem defining "dy". /* if wait printf("\n\nReview parameters... then type "return"\n") keyboard end */ if (eta < 0) printf("\n\nLinesearch disabled by eta < 0"); //--------------------------------------------------------------------- // All parameters have now been set. //--------------------------------------------------------------------- double time = CoinCpuTime(); //bool useChol = (LSmethod == 1); //bool useQR = (LSmethod == 2); bool direct = (LSmethod <= 2 && ifexplicit); char solver[7]; strncpy(solver, " LSQR", 7); //--------------------------------------------------------------------- // Categorize bounds and allow for fixed variables by modifying b. //--------------------------------------------------------------------- int nlow, nupp, nfix; int *bptrs[3] = {0}; getBoundTypes(&nlow, &nupp, &nfix, bptrs ); int *low = bptrs[0]; int *upp = bptrs[1]; int *fix = bptrs[2]; int nU = n; if (nupp == 0) nU = 1; //Make dummy vectors if no Upper bounds //--------------------------------------------------------------------- // Get pointers to local copy of model bounds //--------------------------------------------------------------------- CoinDenseVector<double> bl(n, columnLower_); double *bl_elts = bl.getElements(); CoinDenseVector<double> bu(nU, columnUpper_); // this is dummy if no UB double *bu_elts = bu.getElements(); CoinDenseVector<double> r1(m, 0.0); double *r1_elts = r1.getElements(); CoinDenseVector<double> x1(n, 0.0); double *x1_elts = x1.getElements(); if (nfix > 0) { for (int k = 0; k < nfix; k++) x1_elts[fix[k]] = bl[fix[k]]; matVecMult(1, r1, x1); b = b - r1; // At some stage, might want to look at normfix = norm(r1,inf); } //--------------------------------------------------------------------- // Scale the input data. // The scaled variables are // xbar = x/beta, // ybar = y/zeta, // zbar = z/zeta. // Define // theta = beta*zeta; // The scaled function is // phibar = ( 1 /theta) fbar(beta*xbar), // gradient = (beta /theta) grad, // Hessian = (beta2/theta) hess. //--------------------------------------------------------------------- double beta = xsize_; if (beta == 0) beta = 1; // beta scales b, x. double zeta = zsize_; if (zeta == 0) zeta = 1; // zeta scales y, z. double theta = beta * zeta; // theta scales obj. // (theta could be anything, but theta = beta*zeta makes // scaled grad = grad/zeta = 1 approximately if zeta is chosen right.) for (int k = 0; k < nlow; k++) bl_elts[low[k]] = bl_elts[low[k]] / beta; for (int k = 0; k < nupp; k++) bu_elts[upp[k]] = bu_elts[upp[k]] / beta; d1 = d1 * ( beta / sqrt(theta) ); d2 = d2 * ( sqrt(theta) / beta ); double beta2 = beta * beta; b.scale( (1.0 / beta) ); y.scale( (1.0 / zeta) ); x.scale( (1.0 / beta) ); z.scale( (1.0 / zeta) ); //--------------------------------------------------------------------- // Initialize vectors that are not fully used if bounds are missing. //--------------------------------------------------------------------- CoinDenseVector<double> rL(n, 0.0); CoinDenseVector<double> cL(n, 0.0); CoinDenseVector<double> z1(n, 0.0); CoinDenseVector<double> dx1(n, 0.0); CoinDenseVector<double> dz1(n, 0.0); CoinDenseVector<double> r2(n, 0.0); // Assign upper bd regions (dummy if no UBs) CoinDenseVector<double> rU(nU, 0.0); CoinDenseVector<double> cU(nU, 0.0); CoinDenseVector<double> x2(nU, 0.0); CoinDenseVector<double> z2(nU, 0.0); CoinDenseVector<double> dx2(nU, 0.0); CoinDenseVector<double> dz2(nU, 0.0); //--------------------------------------------------------------------- // Initialize x, y, z, objective, etc. //--------------------------------------------------------------------- CoinDenseVector<double> dx(n, 0.0); CoinDenseVector<double> dy(m, 0.0); CoinDenseVector<double> Pr(m); CoinDenseVector<double> D(n); double *D_elts = D.getElements(); CoinDenseVector<double> w(n); double *w_elts = w.getElements(); CoinDenseVector<double> rhs(m + n); //--------------------------------------------------------------------- // Pull out the element array pointers for efficiency //--------------------------------------------------------------------- double *x_elts = x.getElements(); double *x2_elts = x2.getElements(); double *z_elts = z.getElements(); double *z1_elts = z1.getElements(); double *z2_elts = z2.getElements(); for (int k = 0; k < nlow; k++) { x_elts[low[k]] = CoinMax( x_elts[low[k]], bl[low[k]]); x1_elts[low[k]] = CoinMax( x_elts[low[k]] - bl[low[k]], x0min ); z1_elts[low[k]] = CoinMax( z_elts[low[k]], z0min ); } for (int k = 0; k < nupp; k++) { x_elts[upp[k]] = CoinMin( x_elts[upp[k]], bu[upp[k]]); x2_elts[upp[k]] = CoinMax(bu[upp[k]] - x_elts[upp[k]], x0min ); z2_elts[upp[k]] = CoinMax(-z_elts[upp[k]], z0min ); } //////////////////// Assume hessian is diagonal. ////////////////////// // [obj,grad,hess] = feval( Fname, (x*beta) ); x.scale(beta); double obj = getObj(x); CoinDenseVector<double> grad(n); getGrad(x, grad); CoinDenseVector<double> H(n); getHessian(x , H); x.scale((1.0 / beta)); //double * g_elts = grad.getElements(); double * H_elts = H.getElements(); obj /= theta; // Scaled obj. grad = grad * (beta / theta) + (d1 * d1) * x; // grad includes x regularization. H = H * (beta2 / theta) + (d1 * d1) ; // H includes x regularization. /*--------------------------------------------------------------------- // Compute primal and dual residuals: // r1 = b - Aprod(x) - d2*d2*y; // r2 = grad - Atprod(y) + z2 - z1; // rL = bl - x + x1; // rU = x + x2 - bu; */ //--------------------------------------------------------------------- // [r1,r2,rL,rU,Pinf,Dinf] = ... // pdxxxresid1( Aname,fix,low,upp, ... // b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ); pdxxxresid1( this, nlow, nupp, nfix, low, upp, fix, b, bl_elts, bu_elts, d1, d2, grad, rL, rU, x, x1, x2, y, z1, z2, r1, r2, &Pinf, &Dinf); //--------------------------------------------------------------------- // Initialize mu and complementarity residuals: // cL = mu*e - X1*z1. // cU = mu*e - X2*z2. // // 25 Jan 2001: Now that b and obj are scaled (and hence x,y,z), // we should be able to use mufirst = mu0 (absolute value). // 0.1 worked poorly on StarTest1 with x0min = z0min = 0.1. // 29 Jan 2001: We might as well use mu0 = x0min * z0min; // so that most variables are centered after a warm start. // 29 Sep 2002: Use mufirst = mu0*(x0min * z0min), // regarding mu0 as a scaling of the initial center. //--------------------------------------------------------------------- // double mufirst = mu0*(x0min * z0min); double mufirst = mu0; // revert to absolute value double mulast = 0.1 * opttol; mulast = CoinMin( mulast, mufirst ); double mu = mufirst; double center, fmerit; pdxxxresid2( mu, nlow, nupp, low, upp, cL, cU, x1, x2, z1, z2, ¢er, &Cinf, &Cinf0 ); fmerit = pdxxxmerit(nlow, nupp, low, upp, r1, r2, rL, rU, cL, cU ); // Initialize other things. bool precon = true; double PDitns = 0; //bool converged = false; double atol = atol1; atol2 = CoinMax( atol2, atolmin ); atolmin = atol2; // pdDDD2 = d2; // Global vector for diagonal matrix D2 // Iteration log. int nf = 0; int itncg = 0; int nfail = 0; printf("\n\nItn mu stepx stepz Pinf Dinf"); printf(" Cinf Objective nf center"); if (direct) { printf("\n"); } else { printf(" atol solver Inexact\n"); } double regx = (d1 * x).twoNorm(); double regy = (d2 * y).twoNorm(); // regterm = twoNorm(d1.*x)^2 + norm(d2.*y)^2; double regterm = regx * regx + regy * regy; double objreg = obj + 0.5 * regterm; double objtrue = objreg * theta; printf("\n%3g ", PDitns ); printf("%6.1f%6.1f" , log10(Pinf ), log10(Dinf)); printf("%6.1f%15.7e", log10(Cinf0), objtrue ); printf(" %8.1f\n" , center ); /* if kminor printf("\n\nStart of first minor itn...\n"); keyboard end */ //--------------------------------------------------------------------- // Main loop. //--------------------------------------------------------------------- // Lsqr ClpLsqr thisLsqr(this); // while (converged) { while(PDitns < maxitn) { PDitns = PDitns + 1; // 31 Jan 2001: Set atol according to progress, a la Inexact Newton. // 07 Feb 2001: 0.1 not small enough for Satellite problem. Try 0.01. // 25 Apr 2001: 0.01 seems wasteful for Star problem. // Now that starting conditions are better, go back to 0.1. double r3norm = CoinMax(Pinf, CoinMax(Dinf, Cinf)); atol = CoinMin(atol, r3norm * 0.1); atol = CoinMax(atol, atolmin ); info.r3norm = r3norm; //------------------------------------------------------------------- // Define a damped Newton iteration for solving f = 0, // keeping x1, x2, z1, z2 > 0. We eliminate dx1, dx2, dz1, dz2 // to obtain the system // // [-H2 A" ] [ dx ] = [ w ], H2 = H + D1^2 + X1inv Z1 + X2inv Z2, // [ A D2^2] [ dy ] = [ r1] w = r2 - X1inv(cL + Z1 rL) // + X2inv(cU + Z2 rU), // // which is equivalent to the least-squares problem // // min || [ D A"]dy - [ D w ] ||, D = H2^{-1/2}. (*) // || [ D2 ] [D2inv r1] || //------------------------------------------------------------------- for (int k = 0; k < nlow; k++) H_elts[low[k]] = H_elts[low[k]] + z1[low[k]] / x1[low[k]]; for (int k = 0; k < nupp; k++) H[upp[k]] = H[upp[k]] + z2[upp[k]] / x2[upp[k]]; w = r2; for (int k = 0; k < nlow; k++) w[low[k]] = w[low[k]] - (cL[low[k]] + z1[low[k]] * rL[low[k]]) / x1[low[k]]; for (int k = 0; k < nupp; k++) w[upp[k]] = w[upp[k]] + (cU[upp[k]] + z2[upp[k]] * rU[upp[k]]) / x2[upp[k]]; if (LSproblem == 1) { //----------------------------------------------------------------- // Solve (*) for dy. //----------------------------------------------------------------- H = 1.0 / H; // H is now Hinv (NOTE!) for (int k = 0; k < nfix; k++) H[fix[k]] = 0; for (int k = 0; k < n; k++) D_elts[k] = sqrt(H_elts[k]); thisLsqr.borrowDiag1(D_elts); thisLsqr.diag2_ = d2; if (direct) { // Omit direct option for now } else {// Iterative solve using LSQR. //rhs = [ D.*w; r1./d2 ]; for (int k = 0; k < n; k++) rhs[k] = D_elts[k] * w_elts[k]; for (int k = 0; k < m; k++) rhs[n+k] = r1_elts[k] * (1.0 / d2); double damp = 0; if (precon) { // Construct diagonal preconditioner for LSQR matPrecon(d2, Pr, D); } /* rw(7) = precon; info.atolmin = atolmin; info.r3norm = fmerit; // Must be the 2-norm here. [ dy, istop, itncg, outfo ] = ... pdxxxlsqr( nb,m,"pdxxxlsqrmat",Aname,rw,rhs,damp, ... atol,btol,conlim,itnlim,show,info ); thisLsqr.input->rhs_vec = &rhs; thisLsqr.input->sol_vec = &dy; thisLsqr.input->rel_mat_err = atol; thisLsqr.do_lsqr(this); */ // New version of lsqr int istop; dy.clear(); show = false; info.atolmin = atolmin; info.r3norm = fmerit; // Must be the 2-norm here. thisLsqr.do_lsqr( rhs, damp, atol, btol, conlim, itnlim, show, info, dy , &istop, &itncg, &outfo, precon, Pr); if (precon) dy = dy * Pr; if (!precon && itncg > 999999) precon = true; if (istop == 3 || istop == 7 ) // conlim or itnlim printf("\n LSQR stopped early: istop = //%d", istop); atolold = outfo.atolold; atol = outfo.atolnew; r3ratio = outfo.r3ratio; }// LSproblem 1 // grad = pdxxxmat( Aname,2,m,n,dy ); // grad = A"dy grad.clear(); matVecMult(2, grad, dy); for (int k = 0; k < nfix; k++) grad[fix[k]] = 0; // grad is a work vector dx = H * (grad - w); } else { perror( "This LSproblem not yet implemented\n" ); } //------------------------------------------------------------------- CGitns += itncg; //------------------------------------------------------------------- // dx and dy are now known. Get dx1, dx2, dz1, dz2. //------------------------------------------------------------------- for (int k = 0; k < nlow; k++) { dx1[low[k]] = - rL[low[k]] + dx[low[k]]; dz1[low[k]] = (cL[low[k]] - z1[low[k]] * dx1[low[k]]) / x1[low[k]]; } for (int k = 0; k < nupp; k++) { dx2[upp[k]] = - rU[upp[k]] - dx[upp[k]]; dz2[upp[k]] = (cU[upp[k]] - z2[upp[k]] * dx2[upp[k]]) / x2[upp[k]]; } //------------------------------------------------------------------- // Find the maximum step. //-------------------------------------------------------------------- double stepx1 = pdxxxstep(nlow, low, x1, dx1 ); double stepx2 = inf; if (nupp > 0) stepx2 = pdxxxstep(nupp, upp, x2, dx2 ); double stepz1 = pdxxxstep( z1 , dz1 ); double stepz2 = inf; if (nupp > 0) stepz2 = pdxxxstep( z2 , dz2 ); double stepx = CoinMin( stepx1, stepx2 ); double stepz = CoinMin( stepz1, stepz2 ); stepx = CoinMin( steptol * stepx, 1.0 ); stepz = CoinMin( steptol * stepz, 1.0 ); if (stepSame) { // For NLPs, force same step stepx = CoinMin( stepx, stepz ); // (true Newton method) stepz = stepx; } //------------------------------------------------------------------- // Backtracking linesearch. //------------------------------------------------------------------- bool fail = true; nf = 0; while (nf < maxf) { nf = nf + 1; x = x + stepx * dx; y = y + stepz * dy; for (int k = 0; k < nlow; k++) { x1[low[k]] = x1[low[k]] + stepx * dx1[low[k]]; z1[low[k]] = z1[low[k]] + stepz * dz1[low[k]]; } for (int k = 0; k < nupp; k++) { x2[upp[k]] = x2[upp[k]] + stepx * dx2[upp[k]]; z2[upp[k]] = z2[upp[k]] + stepz * dz2[upp[k]]; } // [obj,grad,hess] = feval( Fname, (x*beta) ); x.scale(beta); obj = getObj(x); getGrad(x, grad); getHessian(x, H); x.scale((1.0 / beta)); obj /= theta; grad = grad * (beta / theta) + d1 * d1 * x; H = H * (beta2 / theta) + d1 * d1; // [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( this, nlow, nupp, nfix, low, upp, fix, b, bl_elts, bu_elts, d1, d2, grad, rL, rU, x, x1, x2, y, z1, z2, r1, r2, &Pinf, &Dinf ); //double center, Cinf, Cinf0; // [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu, nlow, nupp, low, upp, cL, cU, x1, x2, z1, z2, ¢er, &Cinf, &Cinf0); double fmeritnew = pdxxxmerit(nlow, nupp, low, upp, r1, r2, rL, rU, cL, cU ); double step = CoinMin( stepx, stepz ); if (fmeritnew <= (1 - eta * step)*fmerit) { fail = false; break; } // Merit function didn"t decrease. // Restore variables to previous values. // (This introduces a little error, but save lots of space.) x = x - stepx * dx; y = y - stepz * dy; for (int k = 0; k < nlow; k++) { x1[low[k]] = x1[low[k]] - stepx * dx1[low[k]]; z1[low[k]] = z1[low[k]] - stepz * dz1[low[k]]; } for (int k = 0; k < nupp; k++) { x2[upp[k]] = x2[upp[k]] - stepx * dx2[upp[k]]; z2[upp[k]] = z2[upp[k]] - stepz * dz2[upp[k]]; } // Back-track. // If it"s the first time, // make stepx and stepz the same. if (nf == 1 && stepx != stepz) { stepx = step; } else if (nf < maxf) { stepx = stepx / 2; } stepz = stepx; } if (fail) { printf("\n Linesearch failed (nf too big)"); nfail += 1; } else { nfail = 0; } //------------------------------------------------------------------- // Set convergence measures. //-------------------------------------------------------------------- regx = (d1 * x).twoNorm(); regy = (d2 * y).twoNorm(); regterm = regx * regx + regy * regy; objreg = obj + 0.5 * regterm; objtrue = objreg * theta; bool primalfeas = Pinf <= featol; bool dualfeas = Dinf <= featol; bool complementary = Cinf0 <= opttol; bool enough = PDitns >= 4; // Prevent premature termination. bool converged = primalfeas & dualfeas & complementary & enough; //------------------------------------------------------------------- // Iteration log. //------------------------------------------------------------------- char str1[100], str2[100], str3[100], str4[100], str5[100]; sprintf(str1, "\n%3g%5.1f" , PDitns , log10(mu) ); sprintf(str2, "%8.5f%8.5f" , stepx , stepz ); if (stepx < 0.0001 || stepz < 0.0001) { sprintf(str2, " %6.1e %6.1e" , stepx , stepz ); } sprintf(str3, "%6.1f%6.1f" , log10(Pinf) , log10(Dinf)); sprintf(str4, "%6.1f%15.7e", log10(Cinf0), objtrue ); sprintf(str5, "%3d%8.1f" , nf , center ); if (center > 99999) { sprintf(str5, "%3d%8.1e" , nf , center ); } printf("%s%s%s%s%s", str1, str2, str3, str4, str5); if (direct) { // relax } else { printf(" %5.1f%7d%7.3f", log10(atolold), itncg, r3ratio); } //------------------------------------------------------------------- // Test for termination. //------------------------------------------------------------------- if (kminor) { printf( "\nStart of next minor itn...\n"); // keyboard; } if (converged) { printf("\n Converged"); break; } else if (PDitns >= maxitn) { printf("\n Too many iterations"); inform = 1; break; } else if (nfail >= maxfail) { printf("\n Too many linesearch failures"); inform = 2; break; } else { // Reduce mu, and reset certain residuals. double stepmu = CoinMin( stepx , stepz ); stepmu = CoinMin( stepmu, steptol ); double muold = mu; mu = mu - stepmu * mu; if (center >= bigcenter) mu = muold; // mutrad = mu0*(sum(Xz)/n); // 24 May 1998: Traditional value, but // mu = CoinMin(mu,mutrad ); // it seemed to decrease mu too much. mu = CoinMax(mu, mulast); // 13 Jun 1998: No need for smaller mu. // [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu, nlow, nupp, low, upp, cL, cU, x1, x2, z1, z2, ¢er, &Cinf, &Cinf0 ); fmerit = pdxxxmerit( nlow, nupp, low, upp, r1, r2, rL, rU, cL, cU ); // Reduce atol for LSQR (and SYMMLQ). // NOW DONE AT TOP OF LOOP. atolold = atol; // if atol > atol2 // atolfac = (mu/mufirst)^0.25; // atol = CoinMax( atol*atolfac, atol2 ); // end // atol = CoinMin( atol, mu ); // 22 Jan 2001: a la Inexact Newton. // atol = CoinMin( atol, 0.5*mu ); // 30 Jan 2001: A bit tighter // If the linesearch took more than one function (nf > 1), // we assume the search direction needed more accuracy // (though this may be true only for LPs). // 12 Jun 1998: Ask for more accuracy if nf > 2. // 24 Nov 2000: Also if the steps are small. // 30 Jan 2001: Small steps might be ok with warm start. // 06 Feb 2001: Not necessarily. Reinstated tests in next line. if (nf > 2 || CoinMin( stepx, stepz ) <= 0.01) atol = atolold * 0.1; } //--------------------------------------------------------------------- // End of main loop. //--------------------------------------------------------------------- } for (int k = 0; k < nfix; k++) x[fix[k]] = bl[fix[k]]; z = z1; if (nupp > 0) z = z - z2; printf("\n\nmax |x| =%10.3f", x.infNorm() ); printf(" max |y| =%10.3f", y.infNorm() ); printf(" max |z| =%10.3f", z.infNorm() ); printf(" scaled"); x.scale(beta); y.scale(zeta); z.scale(zeta); // Unscale x, y, z. printf( "\nmax |x| =%10.3f", x.infNorm() ); printf(" max |y| =%10.3f", y.infNorm() ); printf(" max |z| =%10.3f", z.infNorm() ); printf(" unscaled\n"); time = CoinCpuTime() - time; char str1[100], str2[100]; sprintf(str1, "\nPDitns =%10g", PDitns ); sprintf(str2, "itns =%10d", CGitns ); // printf( [str1 " " solver str2] ); printf(" time =%10.1f\n", time); /* pdxxxdistrib( abs(x),abs(z) ); // Private function if (wait) keyboard; */ //----------------------------------------------------------------------- // End function pdco.m //----------------------------------------------------------------------- /* printf("Solution x values:\n\n"); for (int k=0; k<n; k++) printf(" %d %e\n", k, x[k]); */ // Print distribution double thresh[9] = { 0.00000001, 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.00001}; int counts[9] = {0}; for (int ij = 0; ij < n; ij++) { for (int j = 0; j < 9; j++) { if(x[ij] < thresh[j]) { counts[j] += 1; break; } } } printf ("Distribution of Solution Values\n"); for (int j = 8; j > 1; j--) printf(" %g to %g %d\n", thresh[j-1], thresh[j], counts[j]); printf(" Less than %g %d\n", thresh[2], counts[0]); return inform; }